Search results for: electric transmission
3131 The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects
Authors: H. Medoukali, B. Zegnini
Abstract:
Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints.Keywords: COMSOL multiphysics, electric field, HVDC, microcavities, space charges, XLPE
Procedia PDF Downloads 1313130 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma
Authors: Abderazak Guettaf
Abstract:
The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma
Procedia PDF Downloads 4893129 Effect of Parameters for Exponential Loads on Voltage Transmission Line with Compensation
Authors: Benalia Nadia, Bensiali Nadia, Zerzouri Noura
Abstract:
This paper presents an analysis of the effects of parameters np and nq for exponential load on the transmission line voltage profile, transferred power and transmission losses for different shunt compensation size. For different values for np and nq in which active and reactive power vary with it is terminal voltages as in exponential form, variations of the load voltage for different sizes of shunt capacitors are simulated with a simple two-bus power system using Matlab SimPowerSystems Toolbox. It is observed that the compensation level is significantly affected by the voltage sensitivities of loads.Keywords: static load model, shunt compensation, transmission system, exponentiel load model
Procedia PDF Downloads 3663128 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System
Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya
Abstract:
The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.Keywords: interline power flow controller, transmission pricing, unified power flow controller, cost allocation
Procedia PDF Downloads 1463127 Analysis of Exponential Nonuniform Transmission Line Parameters
Authors: Mounir Belattar
Abstract:
In this paper the Analysis of voltage waves that propagate along a lossless exponential nonuniform line is presented. For this analysis the parameters of this line are assumed to be varying function of the distance x along the line from the source end. The approach is based on the tow-port networks cascading presentation to derive the ABDC parameters of transmission using Picard-Carson Method which is a powerful method in getting a power series solution for distributed network because it is easy to calculate poles and zeros and solves differential equations such as telegrapher equations by an iterative sequence. So the impedance, admittance voltage and current along the line are expanded as a Taylor series in x/l where l is the total length of the line to obtain at the end, the main transmission line parameters such as voltage response and transmission and reflexion coefficients represented by scattering parameters in frequency domain.Keywords: ABCD parameters, characteristic impedance exponential nonuniform transmission line, Picard-Carson's method, S parameters, Taylor's series
Procedia PDF Downloads 4423126 Model Evaluation of Action Potential Block in Whole-Animal Nerves Induced by Ultrashort, High-Intensity Electric Pulses
Authors: Jiahui Song
Abstract:
There have been decades of research into the action potential block in nerves. To our best knowledge electrical voltages can reversibly block the conduction of action potentials across whole animal nerves. Blocking biological electrical signaling pathways can have a variety of applications in muscular and sensory incapacitation and clinical research, including urethral pressure reduction and relieving chronic pain relief from a peripheral nerve injury. The cessation ability has been used in muscle activation and fatigue reduction. Ultrashort, high-intensity electric pulses modulate the membrane conductivity to block nerve conduction through the electroporation process. Nanopore formation on the membrane surface would increase the local membrane conductivity and effectively "short-out" the trans-membrane potential of a nerve that inhibits action potential propagation. This block would be similar in concept to stopping the propagation of an air-pressure wave down a "leaky" pipe. This research focuses on a distributed electrical model with an additional time-dependent membrane conductance to calculate the poration induced by the ultrashort, high-intensity electric pulses. The changes in membrane conductivity are used to predict changes in action potential transmission. A "strength-duration (SD)" curve is generated for action potential blockage and would be used as a design guide for benchmarking safety thresholds or setting the pulse voltage and/or durations necessary for neuro-muscular incapacitation.Keywords: action potential, ultrashort, high-intensity, nerve, strength-duration
Procedia PDF Downloads 173125 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building
Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar
Abstract:
The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system
Procedia PDF Downloads 533124 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems
Authors: Smko Zangana, Ergun Ercelebi
Abstract:
The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability
Procedia PDF Downloads 3653123 Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues
Authors: Abdon Choque-Rivero
Abstract:
The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem.Keywords: inverse scattering, discrete system, transmission eigenvalues, Marchenko method
Procedia PDF Downloads 1423122 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12
Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu
Abstract:
Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and microhardness) with different USP process parameters were measured. The research proposes that the radius of curvature of shot peened sheet increases with time and electric current decreasing, while it increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical microhardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.Keywords: USP forming, surface properties, radius of curvature, residual stress
Procedia PDF Downloads 5173121 Levels of Students’ Understandings of Electric Field Due to a Continuous Charged Distribution: A Case Study of a Uniformly Charged Insulating Rod
Authors: Thanida Sujarittham, Narumon Emarat, Jintawat Tanamatayarat, Kwan Arayathanitkul, Suchai Nopparatjamjomras
Abstract:
Electric field is an important fundamental concept in electrostatics. In high-school, generally Thai students have already learned about definition of electric field, electric field due to a point charge, and superposition of electric fields due to multiple-point charges. Those are the prerequisite basic knowledge students holding before entrancing universities. In the first-year university level, students will be quickly revised those basic knowledge and will be then introduced to a more complicated topic—electric field due to continuous charged distributions. We initially found that our freshman students, who were from the Faculty of Science and enrolled in the introductory physic course (SCPY 158), often seriously struggled with the basic physics concepts—superposition of electric fields and inverse square law and mathematics being relevant to this topic. These also then resulted on students’ understanding of advanced topics within the course such as Gauss's law, electric potential difference, and capacitance. Therefore, it is very important to determine students' understanding of electric field due to continuous charged distributions. The open-ended question about sketching net electric field vectors from a uniformly charged insulating rod was administered to 260 freshman science students as pre- and post-tests. All of their responses were analyzed and classified into five levels of understandings. To get deep understanding of each level, 30 students were interviewed toward their individual responses. The pre-test result found was that about 90% of students had incorrect understanding. Even after completing the lectures, there were only 26.5% of them could provide correct responses. Up to 50% had confusions and irrelevant ideas. The result implies that teaching methods in Thai high schools may be problematic. In addition for our benefit, these students’ alternative conceptions identified could be used as a guideline for developing the instructional method currently used in the course especially for teaching electrostatics.Keywords: alternative conceptions, electric field of continuous charged distributions, inverse square law, levels of student understandings, superposition principle
Procedia PDF Downloads 2943120 Harmonic Distortion Caused by Electric Bus Battery Charger in Alexandria Distribution System
Authors: Mohamed Elhosieny Aly Ismail
Abstract:
The paper illustrates the total voltage and current harmonic distortion impact caused by fast-charging an electric bus and maintaining standard limit compliance. Measuring the current harmonic level in the range of 2 kHz-9 kHz. Also, the impact of the total demand distortions current caused by fast charger electric bus on the utility by measuring at the point of common coupling and comparing the measurement with IEEE519 -2014 standard. The results show that the total harmonic current distortion for the charger is within the limits of IEC 61000-3-12 and the fifth harmonic current was the most dominant frequency then the seventh harmonic current. The harmonic current in the range of 2 kHz- 9 kHz shows the frequency 5.1kHz is the most dominant frequency.Keywords: electric vehicle, total harmonic distortion, IEEE519-2014, IEC 61000-3-12, super harmonic distortion
Procedia PDF Downloads 983119 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics
Procedia PDF Downloads 3223118 STATCOM’s Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network
Authors: M. Adjabi, A. Amiar, P. O. Logerais
Abstract:
Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network
Procedia PDF Downloads 5673117 STATCOM's Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network
Authors: M. Adjabi, A. Amiar, P. O. Logerais
Abstract:
Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network
Procedia PDF Downloads 5973116 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application
Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas
Abstract:
The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system
Procedia PDF Downloads 3493115 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission
Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola
Abstract:
The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering
Procedia PDF Downloads 3243114 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.Keywords: cooperative communications, MAC protocol, relay node, WLAN
Procedia PDF Downloads 3303113 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process
Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single and double bubbles, electric field, boiling, rising
Procedia PDF Downloads 2253112 Design of Nano-Reinforced Carbon Fiber Reinforced Plastic Wheel for Lightweight Vehicles with Integrated Electrical Hub Motor
Authors: Davide Cocchi, Andrea Zucchelli, Luca Raimondi, Maria Brugo Tommaso
Abstract:
The increasing attention is given to the issues of environmental pollution and climate change is exponentially stimulating the development of electrically propelled vehicles powered by renewable energy, in particular, the solar one. Given the small amount of solar energy that can be stored and subsequently transformed into propulsive energy, it is necessary to develop vehicles with high mechanical, electrical and aerodynamic efficiencies along with reduced masses. The reduction of the masses is of fundamental relevance especially for the unsprung masses, that is the assembly of those elements that do not undergo a variation of their distance from the ground (wheel, suspension system, hub, upright, braking system). Therefore, the reduction of unsprung masses is fundamental in decreasing the rolling inertia and improving the drivability, comfort, and performance of the vehicle. This principle applies even more in solar propelled vehicles, equipped with an electric motor that is connected directly to the wheel hub. In this solution, the electric motor is integrated inside the wheel. Since the electric motor is part of the unsprung masses, the development of compact and lightweight solutions is of fundamental importance. The purpose of this research is the design development and optimization of a CFRP 16 wheel hub motor for solar propulsion vehicles that can carry up to four people. In addition to trying to maximize aspects of primary importance such as mass, strength, and stiffness, other innovative constructive aspects were explored. One of the main objectives has been to achieve a high geometric packing in order to ensure a reduced lateral dimension, without reducing the power exerted by the electric motor. In the final solution, it was possible to realize a wheel hub motor assembly completely comprised inside the rim width, for a total lateral overall dimension of less than 100 mm. This result was achieved by developing an innovative connection system between the wheel and the rotor with a double purpose: centering and transmission of the driving torque. This solution with appropriate interlocking noses allows the transfer of high torques and at the same time guarantees both the centering and the necessary stiffness of the transmission system. Moreover, to avoid delamination in critical areas, evaluated by means of FEM analysis using 3D Hashin damage criteria, electrospun nanofibrous mats have been interleaved between CFRP critical layers. In order to reduce rolling resistance, the rim has been designed to withstand high inflation pressure. Laboratory tests have been performed on the rim using the Digital Image Correlation technique (DIC). The wheel has been tested for fatigue bending according to E/ECE/324 R124e.Keywords: composite laminate, delamination, DIC, lightweight vehicle, motor hub wheel, nanofiber
Procedia PDF Downloads 2123111 Design of Transformerless Electric Energy Router in Smart Home
Authors: Weidong Fu, Qingsong Wang, Wei Hua, Ming Cheng, Giuseppe Buja
Abstract:
A single-phase transformerless electric energy router (TL-EER) is proposed for renewable energy management and power quality improvement in smart homes. The proposed TL-EER only contains four semiconductor switching devices, which reduces costs greatly compared to traditional electric energy routers. TL-EER functions as intelligent systems that optimize the flow and distribution of energy within a grid, enabling seamless interaction between generation, storage, and consumption. In addition, TL-EER operates in multiple modes and could be converted to diverse topologies by changing the states of relays. As for power quality, voltage and current compensating methods are adapted. Thus, high-quality electrical energy could be transferred to the load, and the grid-side power factor could be improved. Finally, laboratory prototypes are established to validate the effectiveness of the system.Keywords: transformerless, electric energy router, power flow, power quality, power factor
Procedia PDF Downloads 73110 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control
Authors: Hartani Kada, Merah Abdelkader
Abstract:
Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion
Procedia PDF Downloads 6093109 Investigation on the Acoustical Transmission Path of Additive Printed Metals
Authors: Raphael Rehmet, Armin Lohrengel, Prof Dr-Ing
Abstract:
In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens.Keywords: 3D-printed, acoustics, dynamics, impedance
Procedia PDF Downloads 2043108 An Algorithm for Estimating the Stable Operation Conditions of the Synchronous Motor of the Ore Mill Electric Drive
Authors: M. Baghdasaryan, A. Sukiasyan
Abstract:
An algorithm for estimating the stable operation conditions of the synchronous motor of the ore mill electric drive is proposed. The stable operation conditions of the synchronous motor are revealed, taking into account the estimation of the q angle change and the technological factors. The stability condition obtained allows to ensure the stable operation of the motor in the synchronous mode, taking into account the nonlinear character of the mill loading. The developed algorithm gives an opportunity to present the undesirable phenomena, arising in the electric drive system. The obtained stability condition can be successfully applied for the optimal control of the electromechanical system of the mill.Keywords: electric drive, synchronous motor, ore mill, stability, technological factors
Procedia PDF Downloads 4233107 Approach to Functional Safety-Compliant Design of Electric Power Steering Systems for Commercial Vehicles
Authors: Hyun Chul Koag, Hyun-Sik Ahn
Abstract:
In this paper, we propose a design approach for the safety mechanism of an actuator used in a commercial vehicle’s EPS system. As the number of electric/electronic system in a vehicle increases, the importance of the functional safety has been receiving much attention. EPS(Electric Power Steering) systems for commercial vehicles require large power than passenger vehicles, and hence, dual motor can be applied to get more torque. We show how to formulate the development process for the design of hardware and software of an EPS system using dual motors. A lot of safety mechanisms for the processor, sensors, and memory have been suggested, however, those for actuators have not been fully researched. It is shown by metric analyses that the target ASIL(Automotive Safety Integrated Level) is satisfied in the point of view of hardware of EPS controller.Keywords: safety mechanism, functional safety, commercial vehicles, electric power steering
Procedia PDF Downloads 3913106 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission
Procedia PDF Downloads 2753105 Cooperative Communication of Energy Harvesting Synchronized-OOK IR-UWB Based Tags
Authors: M. A. Mulatu, L. C. Chang, Y. S. Han
Abstract:
Energy harvesting tags with cooperative communication capabilities are emerging as possible infrastructure for internet of things (IoT) applications. This paper studies about the \ cooperative transmission strategy for a network of energy harvesting active networked tags (EnHANTs), that is adapted to the available energy resource and identification request. We consider a network of EnHANT-equipped objects to communicate with the destination either directly or by cooperating with neighboring objects. We formulate the the problem as a Markov decision process (MDP) under synchronised On/Off keying (S-OOK) pulse modulation format. The simulation results are provided to show the the performance of the cooperative transmission policy and compared against the greedy and conservative policies of single-link transmission.Keywords: cooperative communication, transmission strategy, energy harvesting, Markov decision process, value iteration
Procedia PDF Downloads 4903104 Electric Field Analysis of XLPE, Cross-Linked Polyethylene Covered Aerial Line and Insulator Lashing
Authors: Jyh-Cherng Gu, Ming-Ta Yang, Dai-Ling Tsai
Abstract:
Both sparse lashing and dense lashing are applied to secure overhead XLPE (cross-linked polyethylene) covered power lines on ceramic insulators or HDPE polymer insulators. The distribution of electric field in and among the lashing wires, the XLPE power lines and insulators in normal clean condition and when conducting materials such as salt, metal particles, dust, smoke or acidic smog are present is studied in this paper. The ANSYS Maxwell commercial software is used in this study for electric field analysis. Although the simulation analysis is performed assuming ideal conditions due to the constraints of the simulation software, the result may not be the same as in real situation but still be of sufficient practical values.Keywords: electric field intensity, insulator, XLPE covered aerial line, empty
Procedia PDF Downloads 2623103 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging
Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali
Abstract:
A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models
Procedia PDF Downloads 3233102 Proposal of Methodology Based on Technical Characterization and Quantitative Contrast of Co₂ Emissions for the Migration to Electric Mobility of the Vehicle Fleet: Case Study of Electric Companies in Ecuador
Authors: Rodrigo I. Ullauri, Santiago E. Tinajero, Omar O. Ramos, Paola R. Quintana
Abstract:
The increase of CO₂ emissions in the atmosphere and its impact on climate change is a global concern. The transportation sector is a significant consumer of fossil fuels and contributes significantly to greenhouse gas emissions. The current challenge is to find ways to reduce the use of fossil fuels in transportation. In Ecuador, where 92% of electricity is generated from clean sources, the concept of e-mobility is considered an attractive alternative to address the challenge of sustainable mobility. The proposal is to migrate from combustion-powered vehicles to electric vehicles in the electric companies of Ecuador, using a methodology to standardize criteria, determine specific requirements, contrast technical characteristics, and estimate emission reductions. The results showed that there are three categories of vehicles that have electric counterparts suitable for performing activities under certain operation parameters inherent to current technology limitations but with a significant contribution to the reduction of annual CO₂ emissions.Keywords: climate change, electro mobility, energy, sustainable transportation
Procedia PDF Downloads 86