Search results for: dense masonry unit
2678 The Optimal Location of Brickforce in Brickwork
Authors: Sandile Daniel Ngidi
Abstract:
A brickforce is a product consisting of two main parallel wires joined by in-line welded cross wires. Embedded in the normal thickness of the brickwork joint, the wires are manufactured to a flattened profile to simplify location into the mortar joint without steel build-up problems at lap positions corners/junctions or when used in conjunction with wall ties. A brickforce has been in continuous use since 1918. It is placed in the cement between courses of bricks. Brickforce is used in every course of the foundations and every course above lintel height. Otherwise, brickforce is used every fourth course in between the foundations and lintel height or a concrete slab and lintel height. The brickforce strengthens and stabilizes the wall, especially if you are building on unstable ground. It provides brickwork increased resistance to tensional stresses. Brickforce uses high tensile steel wires, which can withstand high forces but with a very little stretch. This helps to keep crack widths to a minimum. Recently a debate has opened about the purpose of using brickforce in single-story buildings. The debate has been compounded by the fact that there is no consensus about the spacing of brickforce in brickwork or masonry. In addition, very little information had been published on the relative merits of using the same size of brickforce for the different atmospheric conditions in South Africa. This paper aims to compare different types of brickforce systems used in different countries. Conclusions are made to identify the point and location of brickforce that optimize the system.Keywords: brickforce, masonry concrete, reinforcement, strengthening, wall panels
Procedia PDF Downloads 2302677 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay
Procedia PDF Downloads 2402676 Dual-Rail Logic Unit in Double Pass Transistor Logic
Authors: Hamdi Belgacem, Fradi Aymen
Abstract:
In this paper we present a low power, low cost differential logic unit (LU). The proposed LU receives dual-rail inputs and generates dual-rail outputs. The proposed circuit can be used in Arithmetic and Logic Units (ALU) of processor. It can be also dedicated for self-checking applications based on dual duplication code. Four logic functions as well as their inverses are implemented within a single Logic Unit. The hardware overhead for the implementation of the proposed LU is lower than the hardware overhead required for standard LU implemented with standard CMOS logic style. This new implementation is attractive as fewer transistors are required to implement important logic functions. The proposed differential logic unit can perform 8 Boolean logical operations by using only 16 transistors. Spice simulations using a 32 nm technology was utilized to evaluate the performance of the proposed circuit and to prove its acceptable electrical behaviour.Keywords: differential logic unit, double pass transistor logic, low power CMOS design, low cost CMOS design
Procedia PDF Downloads 4522675 A Two Tailed Secretary Problem with Multiple Criteria
Authors: Alaka Padhye, S. P. Kane
Abstract:
The following study considers some variations made to the secretary problem (SP). In a multiple criteria secretary problem (MCSP), the selection of a unit is based on two independent characteristics. The units that appear before an observer are known say N, the best rank of a unit being N. A unit is selected, if it is better with respect to either first or second or both the characteristics. When the number of units is large and due to constraints like time and cost, the observer might want to stop earlier instead of inspecting all the available units. Let the process terminate at r2th unit where r12674 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings
Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch
Abstract:
It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry
Procedia PDF Downloads 1682673 Distributed Manufacturing (DM)- Smart Units and Collaborative Processes
Authors: Hermann Kuehnle
Abstract:
Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.Keywords: autonomous unit, networkability, smart manufacturing unit, virtualization
Procedia PDF Downloads 5262672 Energy Saving and Performance Evaluation of an Air Handling Unit Integrated with a Membrane Energy Exchanger for Cold Climates
Authors: Peng Liu, Maria Justo Alonso, Hans Martin Mathisen
Abstract:
A theoretical model is developed to evaluate the performance and energy saving potential of an air handling unit integrated with a membrane energy exchanger in cold climates. The recovered sensible and latent heat, fan preheating use for frost prevention and heating energy consumed by heating coil after the ventilator is compared for the air handling unit combined heat and energy exchanger respectively. A concept of coefficient of performance of air handling unit is presented and applied to assess the energy use of air handling unit (AHU) in cold climates. The analytic results indicate downsizing of the preheating coil before exchanger and heating coils after exchanger are expected since the required power to preheat and condition the air is reduced compared to heat exchanger when the MEE is integrated with AHU. Simultaneously, a superior ratio of energy recovered (RER) is obtained from AHU build-in a counter-flow MEE. The AHU with sensible-only heat exchanger has noticeably low RER, around 1 at low outdoor air temperature where the maximum energy rate is desired to condition the severe cold and dry air.Keywords: membrane energy exchanger, cold climate, energy efficient building, HVAC
Procedia PDF Downloads 3262671 Investigation of Magnetic Resonance Wireless Charger Efficiency for Mobile Device
Authors: SeungHee Ryu, Junil Moon
Abstract:
The magnetic resonance wireless power transfer system is widely researched due to its benefits such as spatial freedom. In this paper, power transmitting unit and power receiving unit of wireless battery charger for mobile devices is presented. Power transmitting unit efficiency is measured under different test conditions with power receiving units.Keywords: magnetic resonance coupling, wireless power transfer, power transfer efficiency.
Procedia PDF Downloads 5112670 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG
Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil
Abstract:
A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.Keywords: brain activity, categorization, dense EEG, evoked responses, spatio-temporal analysis, SVM, time perception
Procedia PDF Downloads 4222669 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djemeleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force
Procedia PDF Downloads 4742668 Gas Flotation Unit in Kuwait Oil Company Operations
Authors: Homoud Bourisli, Haitham Safar
Abstract:
Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure.Keywords: Kuwait oil company, dissolved gas flotation unit, induced gas flotation unit, oil-water separation
Procedia PDF Downloads 5742667 Review of Sulfur Unit Capacity Expansion Options
Authors: Avinashkumar Karre
Abstract:
Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates.Keywords: Claus process, oxygen enrichment, sulfur recovery unit, tail gas treatment unit
Procedia PDF Downloads 1252666 Preparation and Evaluation of Multiple Unit Tablets of Aceclofenac
Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan
Abstract:
The present research is aimed at fabrication of multiple-unit controlled-release tablet formulation of aceclofenac by employing acrylic polymers as the release controlling excipients for drug multi-particulates to achieve the desired objectives of maintaining the same controlled release characteristics as that prior to their compression into tablet. Various manufacturers are successfully manufacturing and marketing aceclofenac controlled release tablet by applying directly coating materials on the tablet. The basic idea behind development of such formulations was to employ aqueous acrylics polymers dispersion as an alternative to the existing approaches, wherein the forces of compression may cause twist of drug pellets, but do not have adverse effects on the drug release properties. Thus, the study was undertaken to illustrate manufacturing of controlled release aceclofenac multiple-unit tablet formulation.Keywords: aceclofenac, multiple-unit tablets, acrylic polymers, controlled-release
Procedia PDF Downloads 4422665 Techno-Economic Analysis of the Production of Aniline
Authors: Dharshini M., Hema N. S.
Abstract:
The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.Keywords: aniline, nitrobenzene, economic analysis, unit production cost
Procedia PDF Downloads 1082664 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry
Procedia PDF Downloads 3642663 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests
Authors: Huseyin Guler, Cigdem Kosar
Abstract:
The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.Keywords: bridge estimators, HEGY test, model selection, seasonal unit root
Procedia PDF Downloads 3402662 Observation on the Performance of Heritage Structures in Kathmandu Valley, Nepal during the 2015 Gorkha Earthquake
Authors: K. C. Apil, Keshab Sharma, Bigul Pokharel
Abstract:
Kathmandu Valley, capital city of Nepal houses numerous historical monuments as well as religious structures which are as old as from the 4th century A.D. The city alone is home to seven UNESCO’s world heritage sites including various public squares and religious sanctums which are often regarded as living heritages by various historians and archeological explorers. Recently on April 25, 2015, the capital city including other nearby locations was struck with Gorkha earthquake of moment magnitude (Mw) 7.8, followed by the strongest aftershock of moment magnitude (Mw) 7.3 on May 12. This study reports structural failures and collapse of heritage structures in Kathmandu Valley during the earthquake and presents preliminary findings as to the causes of failures and collapses. Field reconnaissance was carried immediately after the main shock and the aftershock, in major heritage sites: UNESCO world heritage sites, a number of temples and historic buildings in Kathmandu Durbar Square, Patan Durbar Square, and Bhaktapur Durbar Square. Despite such catastrophe, a significant number of heritage structures stood high, performing very well during the earthquake. Preliminary reports from archeological department suggest that 721 of such structures were severely affected, whereas numbers within the valley only were 444 including 76 structures which were completely collapsed. This study presents recorded accelerograms and geology of Kathmandu Valley. Structural typology and architecture of the heritage structures in Kathmandu Valley are briefly described. Case histories of damaged heritage structures, the patterns, and the failure mechanisms are also discussed in this paper. It was observed that performance of heritage structures was influenced by the multiple factors such as structural and architecture typology, configuration, and structural deficiency, local ground site effects and ground motion characteristics, age and maintenance level, material quality etc. Most of such heritage structures are of masonry type using bricks and earth-mortar as a bonding agent. The walls' resistance is mainly compressive, thus capable of withstanding vertical static gravitational load but not horizontal dynamic seismic load. There was no definitive pattern of damage to heritage structures as most of them behaved as a composite structure. Some structures were extensively damaged in some locations, while structures with similar configuration at nearby location had little or no damage. Out of major heritage structures, Dome, Pagoda (2, 3 or 5 tiered temples) and Shikhara structures were studied with similar variables. Studying varying degrees of damages in such structures, it was found that Shikhara structures were most vulnerable one where Dome structures were found to be the most stable one, followed by Pagoda structures. The seismic performance of the masonry-timber and stone masonry structures were slightly better than that of the masonry structures. Regular maintenance and periodic seismic retrofitting seems to have played pivotal role in strengthening seismic performance of the structure. The study also recommends some key functions to strengthen the seismic performance of such structures through study based on structural analysis, building material behavior and retrofitting details. The result also recognises the importance of documentation of traditional knowledge and its revised transformation in modern technology.Keywords: Gorkha earthquake, field observation, heritage structure, seismic performance, masonry building
Procedia PDF Downloads 1512661 Feasibility of Using Bike Lanes in Conjunctions with Sidewalks for Ground Drone Applications in Last Mile Delivery for Dense Urban Areas
Authors: N. Bazyar Shourabi, K. Nyarko, C. Scott, M. Jeihnai
Abstract:
Ground drones have the potential to reduce the cost and time of making last-mile deliveries. They also have the potential to make a huge impact on human life. Despite this potential, little work has gone into developing a suitable feasibility model for ground drone delivery in dense urban areas. Today, most of the experimental ground delivery drones utilize sidewalks only, with just a few of them starting to use bike lanes, which a significant portion of some urban areas have. This study works on the feasibility of using bike lanes in conjunction with sidewalks for ground drone applications in last-mile delivery for dense urban areas. This work begins with surveying bike lanes and sidewalks within the city of Boston using Geographic Information System (GIS) software to determine the percentage of coverage currently available within the city. Then six scenarios are examined. Based on this research, a mathematical model is developed. The daily cost of delivering packages using each scenario is calculated by the mathematical model. Comparing the drone delivery scenarios with the traditional method of package delivery using trucks will provide essential information concerning the feasibility of implementing routing protocols that combine the use of sidewalks and bike lanes. The preliminary results of the model show that ground drones that can travel via sidewalks or bike lanes have the potential to significantly reduce delivery cost.Keywords: ground drone, intelligent transportation system, last-mile delivery, sidewalk robot
Procedia PDF Downloads 1442660 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis
Authors: Pragyan Paramita Das, Vishwas N. Khatri
Abstract:
By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.Keywords: bearing capacity, conic programming, finite elements, seismic forces
Procedia PDF Downloads 1702659 Valorisation of Polyethylene and Plastic Bottle Wastes as Pavement Blocks
Authors: Babagana Mohammed, Fidelis Patrick Afangide
Abstract:
This research investigated the possibility of using waste low-dense polyethylene and waste plastic bottles for the production of interlock pavement blocks. In many parts of the world, interlock pavement block is used widely as modern day solution to outdoor flooring applications and the blocks have different shapes, sizes and colours suiting the imagination of landscape architects. Using suitable and conventional mould having a 220 x 135 x 50 mm³ shape, the interlock blocks were produced. The material constituents of the produced blocks were waste low-dense polyethylene and waste plastic bottles mixed in varying, respective percentage-weight proportions of; 100%+0%, 75%+25%, 50%+50% and 25%+75%. The blocks were then tested for unconfined compressive strength and water absorption properties. The test results compared well with those of conventional concrete interlock blocks and the research demonstrates the possibility of value recovery from the waste streams which are currently dumped in open-spaces thereby affecting the environment.Keywords: pavement blocks, polyethylene, plastic bottle, wastes, valorization
Procedia PDF Downloads 4042658 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna
Authors: Amit Kumar Baghel, Sisir Kumar Nayak
Abstract:
The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.Keywords: metamaterial, side lobe level, front to back ratio, beam forming
Procedia PDF Downloads 2742657 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves
Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau
Abstract:
Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure
Procedia PDF Downloads 4922656 Investigation of Dispersion of Carbon Nanoparticles in Polymer Melt for the Fabrication of Functional Filaments
Authors: Merle Bischoff, Thomas Gries, Gunnar Seide
Abstract:
Nanocomposites have become more and more important as the implementation of nanoparticles in polymer allows additional functions in common industrial parts. Especially in the fabrication of filaments or fibres nanomodification is important, as only very small fillers can be added to the very fine fibres (common diameter is 20 µm, fine filament are 1 µm). Discharging fibres, conductive fibres, and many other functional fibres raise in their importance nowadays. Especially the dispersion quality is essential for the final enhancement of the filament propertied. In this paper, the dispersion of carbon nanoparticles in polymer melt is enhanced by a newly developed sonication unit of ITA and BANDELIN electronic GmbH & Co. KG. The first development steps of the unit fabrication, as well as the first experimental results of the modification of the dispersion, are shown. Special focus will be laid on the sealing of the new sonication unit as well as the positioning and equipment size when being implemented in an existing melt spinning unit. Furthermore, the influence on the thereby manufactured nano-modified filaments will be shown.Keywords: dispersion, sonication, carbon nanoparticles, filaments
Procedia PDF Downloads 3012655 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 3742654 A Study on the Functional Safety Analysis of Stage Control System Based on International Electronical Committee 61508-2
Authors: Youn-Sung Kim, Hye-Mi Kim, Sang-Hoon Seo, Jaden Cha
Abstract:
This International standard IEC 61508 sets out a generic approach for all safety lifecycle activities for systems comprised of electrical/electronic/programmable electronic (E/E/PE) elements that are used to perform safety functions. The control unit in stage control system is safety related facilities to control state and speed for stage system running, and it performs safety-critical function by stage control system. The controller unit is part of safety loops corresponding to the IEC 61508 and classified as logic part in the safety loop. In this paper, we analyze using FMEDA (Failure Mode Effect and Diagnostic Analysis) to verification for fault tolerance methods and functional safety of control unit. Moreover, we determined SIL (Safety Integrity Level) for control unit according to the safety requirements defined in IEC 61508-2 based on an analyzed functional safety.Keywords: safety function, failure mode effect, IEC 61508-2, diagnostic analysis, stage control system
Procedia PDF Downloads 2782653 On Virtual Coordination Protocol towards 5G Interference Mitigation: Modelling and Performance Analysis
Authors: Bohli Afef
Abstract:
The fifth-generation (5G) wireless systems is featured by extreme densities of cell stations to overcome the higher future demand. Hence, interference management is a crucial challenge in 5G ultra-dense cellular networks. In contrast to the classical inter-cell interference coordination approach, which is no longer fit for the high density of cell-tiers, this paper proposes a novel virtual coordination based on the dynamic common cognitive monitor channel protocol to deal with the inter-cell interference issue. A tractable and flexible model for the coverage probability of a typical user is developed through the use of the stochastic geometry model. The analyses of the performance of the suggested protocol are illustrated both analytically and numerically in terms of coverage probability.Keywords: ultra dense heterogeneous networks, dynamic common channel protocol, cognitive radio, stochastic geometry, coverage probability
Procedia PDF Downloads 3252652 Preliminary Seismic Vulnerability Assessment of Existing Historic Masonry Building in Pristina, Kosovo
Authors: Florim Grajcevci, Flamur Grajcevci, Fatos Tahiri, Hamdi Kurteshi
Abstract:
The territory of Kosova is actually included in one of the most seismic-prone regions in Europe. Therefore, the earthquakes are not so rare in Kosova; and when they occurred, the consequences have been rather destructive. The importance of assessing the seismic resistance of existing masonry structures has drawn strong and growing interest in the recent years. Engineering included those of Vulnerability, Loss of Buildings and Risk assessment, are also of a particular interest. This is due to the fact that this rapidly developing field is related to great impact of earthquakes on the socioeconomic life in seismic-prone areas, as Kosova and Prishtina are, too. Such work paper for Prishtina city may serve as a real basis for possible interventions in historic buildings as are museums, mosques, old residential buildings, in order to adequately strengthen and/or repair them, by reducing the seismic risk within acceptable limits. The procedures of the vulnerability assessment of building structures have concentrated on structural system, capacity, and the shape of layout and response parameters. These parameters will provide expected performance of the very important existing building structures on the vulnerability and the overall behavior during the earthquake excitations. The structural systems of existing historical buildings in Pristina, Kosovo, are dominantly unreinforced brick or stone masonry with very high risk potential from the expected earthquakes in the region. Therefore, statistical analysis based on the observed damage-deformation, cracks, deflections and critical building elements, would provide more reliable and accurate results for the regional assessments. The analytical technique was used to develop a preliminary evaluation methodology for assessing seismic vulnerability of the respective structures. One of the main objectives is also to identify the buildings that are highly vulnerable to damage caused from inadequate seismic performance-response. Hence, the damage scores obtained from the derived vulnerability functions will be used to categorize the evaluated buildings as “stabile”, “intermediate”, and “unstable”. The vulnerability functions are generated based on the basic damage inducing parameters, namely number of stories (S), lateral stiffness (LS), capacity curve of total building structure (CCBS), interstory drift (IS) and overhang ratio (OR).Keywords: vulnerability, ductility, seismic microzone, ductility, energy efficiency
Procedia PDF Downloads 4072651 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking
Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao
Abstract:
Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.Keywords: dense suspension, instability, self-organization, density wave
Procedia PDF Downloads 882650 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)
Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud
Abstract:
Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.Keywords: electric vehicle, redox flow battery, packaging, vanadium
Procedia PDF Downloads 4332649 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure
Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru
Abstract:
On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.Keywords: modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response
Procedia PDF Downloads 319