Search results for: cadmium telluride
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 299

Search results for: cadmium telluride

179 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 99
178 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials

Authors: G. Anusha, J. Raja Murugadoss

Abstract:

In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.

Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis

Procedia PDF Downloads 428
177 Assessment of Heavy Metals in Vegetables Grown on Irrigated Land in Butura, Bokkos LGA, Plateau State, Nigeria

Authors: Ogbole Alexandra Simi, Wuyep Solomon Zitta, Monday Seri Nentok, Boilif Yilni Edward, Ocheri Maxwell Idoko

Abstract:

Vegetables have positive antioxidative properties and are abundant in vitamins, minerals, and fiber. However, if consumed in large quantities, it may be harmful to human health. Therefore, this study assessed the effects of heavy metals on irrigated pepper, cabbage, and Irish potatoes grown in Butura. Atomic absorption spectrophotometry (AA240FS) was used to analyze cadmium (Cd), cobalt (Co), nickel (Ni), lead (Pb), zinc (Zn), copper (Cu), chromium (Cr), and arsenic (As) levels. Three samples were selected from each of the vegetables grown on nine selected farms at distances of 0 m, 10 m, and 30 m. This forms a composite sample of vegetables at each farm. The study showed that the concentrations of cobalt, chromium, cadmium, copper, arsenic, zinc and nickel were within the standard limits set by the FAO/WHO, except for lead, which is higher than the allowable limits for vegetables. These may have behavioral problems, neurological complications, and hematologic disorders for consumers. Thus, these findings could lead to a risk for the human population consuming these vegetables. It is recommended that irrigation water and agricultural soils be constantly monitored to determine the concentration of metals accumulated by crop plants to ensure that crop plants are safe for consumption by humans.

Keywords: vegetable, cabbage, heavy metals, irrigated, Irish potato, Bokkos, pepper

Procedia PDF Downloads 22
176 Cd1−xMnxSe Thin Films Preparation by Cbd: Aspect on Optical and Electrical Properties

Authors: Jaiprakash Dargad

Abstract:

CdMnSe dilute semiconductor or semimagnetic semiconductors have become the focus of intense research due to their interesting combination of magnetic and semiconducting properties, and are employed in a variety of devices including solar cells, gas sensors etc. A series of thin films of this material, Cd1−xMnxSe (0 ≤ x ≤ 0.5), were therefore synthesized onto precleaned amorphous glass substrates using a solution growth technique. The sources of cadmium (Cd2+) and manganese (Mn2+) were aqueous solutions of cadmium sulphate and manganese sulphate, and selenium (Se2−) was extracted from a reflux of sodium selenosulphite. The different deposition parameters such as temperature, time of deposition, speed of mechanical churning, pH of the reaction mixture etc were optimized to yield good quality deposits. The as-grown samples were thin, relatively uniform, smooth and tightly adherent to the substrate support. The colour of the deposits changed from deep red-orange to yellowish-orange as the composition parameter, x, was varied from 0 to 0.5. The terminal layer thickness decreased with increasing value of, x. The optical energy gap decreased from 1.84 eV to 1.34 eV for the change of x from 0 to 0.5. The coefficient of optical absorption is of the order of 10-4 - 10-5 cm−1 and the type of transition (m = 0.5) is of the band-to-band direct type. The dc electrical conductivities were measured at room temperature and in the temperature range 300 K - 500 K. It was observed that the room temperature electrical conductivity increased with the composition parameter x up to 0.1, gradually decreasing thereafter. The thermo power measurements showed n-type conduction in these films.

Keywords: dilute semiconductor, reflux, CBD, thin film

Procedia PDF Downloads 231
175 Assessment of the Physical and Chemical Characteristics of Ugbogui River, Edo State, Nigeria

Authors: Iyagbaye O. Rich, Omoigberale O. Michael, Iyagbaye A. Louis

Abstract:

The physical, chemical parameters and some trace contents of Ugbogui in Edo State, Nigeria were investigated from August 2015 to April 2016. Four stations were studied from upstream to downstream using standard methods. A total of thirty-three (33) physical and chemical characteristics and trace metal contents were examined; Air and water temperatures, depth, transparency, colour, turbidity, flow velocity, pH, total alkalinity, conductivity and dissolved solids etc. Other includes dissolved oxygen, oxygen saturation, biochemical oxygen demand, chloride, phosphate, sodium, nitrate, sulphate, potassium, calcium, magnesium, iron, lead, copper, zinc, nickel, cadmium, vanadium and chromium. Eleven (11) parameters exhibited clear seasonal variations. However, there were high significant differences (p < 0.01) in the values of depth, colour, total suspended solid, biochemical oxygen demand, chemical oxygen demand, chloride, bicarbonate, phosphate, sulphate, iron, manganese, zinc, copper, chromium and cadmium among the stations. The anthropogenic activities had negatively impacted at station 3 of the river, although most of the recorded values were still within permissible limits.

Keywords: anthropogenic activities, Nigeria, permissible limits, physical and chemical parameters, trace metal, water quality

Procedia PDF Downloads 126
174 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand

Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan

Abstract:

The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco-tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behaviour of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.

Keywords: sources of water supply, water quality, water supply, Thailand

Procedia PDF Downloads 295
173 Changes of Mitochondrial Potential in the Midgut Epithelium of Lithobius forficatus (Myriapoda, Chilopoda) Exposed to Cadmium Concentrated in Soil

Authors: Magdalena Rost-Roszkowska, Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Malgorzata Lesniewska

Abstract:

Lithobius forficatus, commonly known as the brown centipede, is a widespread European species, which lives in the upper layers of soil, under stones, litter, rocks, and leaves. As the soil organism, it is exposed to numerous stressors such as xenobiotics, including heavy metals, temperature, starvation, pathogens, etc. Heavy metals are treated as the environmental pollutants of the soil because of their toxic effects on plants, animals and human being. One of the heavy metals which is xenobiotic and can be taken up by plants or animals from the soil is cadmium. The digestive system of centipedes is composed of three distinct regions: fore-, mid- and hindgut. The salivary glands of centipedes are the organs which belong to the anterior region of the digestive system and take part in the synthesis, accumulation, and secretion of many substances. The middle region having contact with the food masses is treated as one of the barriers which protect the organism against any stressors which originate from the external environment, e.g., toxic metals. As the material for our studies, we chose two organs of the digestive system in brown centipede, the organs which take part in homeostasis maintenance: the salivary glands and the midgut. The main purpose of the project was to investigate the relationship between the percentage of depolarized mitochondria, mitophagy and ATP level in cells of mentioned above organs. The animals were divided into experimental groups: K – the control group, the animals cultured in a laboratory conditions in a horticultural soil and fed with Acheta domesticus larvae; Cd1 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 12 days – short-term exposure; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 45 days – long-term exposure. The studies were conducted using transmission electron microscopy (TEM), flow cytometry and confocal microscopy. Quantitative analysis revealed that regardless of the organ, a progressive increase in the percentage of cells with depolarized mitochondria was registered, but only in the salivary glands. These were statistically significant changes from the control. In both organs, there were no differences in the level of the analyzed parameter depending on the duration of exposure of individuals to cadmium. Changes in the ultrastructure of mitochondria have been observed. With the extension of the body's exposure time to metal, an increase in the ADP/ATP index was recorded. However, changes statistically significant to the control were demonstrated in the intestine and salivary glands. The size of this intestinal index and salivary glands in the Cd2 group was about thirty and twenty times higher, respectively than in control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, digestive system, ultrastructure, centipede

Procedia PDF Downloads 135
172 Low-Surface Roughness and High Optical Quality CdS Thin Film Grown by Modified Chemical Surface Deposition Method

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali

Abstract:

We report on deposition of smooth, pinhole-free, low-surface roughness ( < 4nm) and high optical quality cadmium sulfide (CdS) thin films on glass substrates using our new method based on chemical surface deposition principle. In this method, cadmium acetate and thiourea are used as reactants under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-vis transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. Interestingly, we found that XRD pattern of the deposited films has dramatically changed when the growth temperature was raised during the reaction. Namely, the XRD measurements reveal a structural change of CdS film from Cubic to Hexagonal phase upon increase in the growth temperature from 75 °C to 200 °C. Furthermore, the deposited films show high optical quality as confirmed from observation of both sharp edge in the transmittance spectra and strong PL intensity at room temperature. Also, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap and crystal structure of the deposited CdS films; can be utilized for tuning the electronic bands alignments between CdS and other light harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of all-solution processed solar cells devices based on these heterostructures.

Keywords: thin film, CdS, new method, optical properties

Procedia PDF Downloads 260
171 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy

Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar

Abstract:

We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.

Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide

Procedia PDF Downloads 114
170 Toxicological Standardization of Heavy Metals and Microbial Contamination Haematinic Herbal Formulations Marketed in India

Authors: A. V. Chandewar, Sanjay Bais

Abstract:

Backgound: In India, drugs of herbal origin have been used in traditional systems of medicines such as Unani and Ayurveda since ancient times. WHO limit for Escherichia coli is 101/gm cfu, for Staphylococus aureus 105/gm cfu, and for Pseudomonas aeruginosa 103/gm cfu and for Salmonella species nil cfu. WHO mentions maximum permissible limits in raw materials only for arsenic, cadmium, and lead, which amount to 1.0, 0.3, and 10 ppm, respectively. Aim: The main purpose of the investigation was to document evidence for the users, and practitioners of marketed haematinic herbal formulations. In the present study haematinic herbal formulations marketed in Yavatmal India were determined for the presence of microbial and heavy metal content. Method: The investigations were performed by using specific medias and atomic absorption spectrometry. Result: The present work indicates the presence of heavy metal contents in herbal formulations selected for study. It was found that arsenic content in formulations was below the permissible limit in all formulations. The cadmium and lead content in six formulations were above the permissible limits. Such formulations are injurious to health of patient if consumed regularly. The specific medias were used to determining the presence of Escherichia coli 4 samples, Staphylococcus aureus 3 samples, and P. aeruginosa 4 samples. The data indicated suggest that there is requirement of in process improvement to provide better quality for consumer health in order to be competitive in international markets. Summary/Conclusion: The presence of microbial and heavy metal content above WHO limits indicates that the GMP was not followed during manufacturing of herbal formulations marketed in India.

Keywords: toxicological standardization, heavy metals, microbial contamination, haematinic herbal formulations

Procedia PDF Downloads 448
169 Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment

Authors: A. E. Mukhametov, M. T. Yerbulekova, D. R. Dautkanova, G. A. Tuyakova, G. Aitkhozhayeva

Abstract:

The accumulation of heavy metals in food is a constant problem in many parts of the world. Vegetable oils are widely used, both for cooking and for processing in the food industry, meeting the main dietary requirements. One of the main chemical pollutants, heavy metals, is usually found in vegetable oils. These chemical pollutants are carcinogenic, teratogenic and immunotoxic, harmful to consumption and have a negative effect on human health even in trace amounts. Residues of these substances can easily accumulate in vegetable oil during cultivation, processing and storage. In this article, the content of the concentration of heavy metal ions in vegetable oils of Kazakhstan production is studied: sunflower, rapeseed, safflower and linseed oil. Heavy metals: arsenic, cadmium, lead and nickel, were determined in three repetitions by the method of flame atomic absorption. Analysis of vegetable oil samples revealed that the largest lead contamination (Pb) was determined to be 0.065 mg/kg in linseed oil. The content of cadmium (Cd) in the largest amount of 0.009 mg/kg was found in safflower oil. Arsenic (As) content was determined in rapeseed and safflower oils at 0.003 mg/kg, and arsenic (As) was not detected in linseed and sunflower oil. The nickel (Ni) content in the largest amount of 0.433 mg/kg was in linseed oil. The heavy metal contents in the test samples complied with the requirements of regulatory documents for vegetable oils. An assessment of the health risk of vegetable oils with a daily consumption of 36 g per day shows that all samples of vegetable oils produced in Kazakhstan are safe for consumption. But further monitoring is needed, since all these metals are toxic and their harmful effects become apparent only after several years of exposure.

Keywords: vegetable oil, sunflower oil, linseed oil, safflower oil, toxic metals, food safety, rape oil

Procedia PDF Downloads 133
168 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery

Authors: Atef Y. Shenouda, Anton A. Momchilov

Abstract:

Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.

Keywords: CdO, graphene, negative electrode, lithium battery

Procedia PDF Downloads 161
167 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent

Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali

Abstract:

Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.

Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide

Procedia PDF Downloads 168
166 Study of the Physicochemical Characteristics of Liquid Effluents from the El Jadida Wastewater Treatment Plant

Authors: Aicha Assal, El Mostapha Lotfi

Abstract:

Rapid industrialization and population growth are currently the main causes of energy and environmental problems associated with wastewater treatment. Wastewater treatment plants (WWTPs) aim to treat wastewater before discharging it into the environment, but they are not yet capable of treating non-biodegradable contaminants such as heavy metals. Toxic heavy metals can disrupt biological processes in WWTPs. Consequently, it is crucial to combine additional physico-chemical treatments with WWTPs to ensure effective wastewater treatment. In this study, the authors examined the pretreatment process for urban wastewater generated by the El Jadida WWTP in order to assess its treatment efficiency. Various physicochemical and spatiotemporal parameters of the WWTP's raw and treated water were studied, including temperature, pH, conductivity, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen, and total phosphorus. The results showed an improvement in treatment yields, with measured performance values of 77% for BOD5, 63% for COD, and 66% for TSS. However, spectroscopic analyses revealed persistent coloration in wastewater samples leaving the WWTP, as well as the presence of heavy metals such as Zn, cadmium, chromium, and cobalt, detected by inductively coupled plasma optical emission spectroscopy (ICP-OES). To remedy these staining problems and reduce the presence of heavy metals, a new low-cost, environmentally-friendly eggshell-based solution was proposed. This method eliminated most heavy metals such as cobalt, beryllium, silver, and copper and significantly reduced the amount of cadmium, lead, chromium, manganese, aluminium, and Zn. In addition, the bioadsorbent was able to decolorize wastewater by up to 84%. This adsorption process is, therefore, of great interest for ensuring the quality of wastewater and promoting its reuse in irrigation.

Keywords: WWTP, wastewater, heavy metals, decoloration, depollution, COD, BOD5

Procedia PDF Downloads 64
165 The Effects of Heavy Metal and Aromatic Hydrocarbon Pollution on Bees

Authors: Katarzyna Zięba, Hajnalka Szentgyörgyi, Paweł Miśkowiec, Agnieszka Moos-Matysik

Abstract:

Bees are effective pollinators of plants using by humans. However, there is a concern about the fate different species due to their recently decline. Pollution of the environment is described in the literature as one of the causes of this phenomenon. Due to human activities, heavy metals and aromatic hydrocarbons can occur in bee organisms in high concentrations. The presented study aims to provide information on how pollution affects bee quality, taking into account, also the biological differences between various groups of bees. Understanding the consequences of environmental pollution on bees can help to create and promote bee friendly habitats and actions. The analyses were carried out using two contamination gradients with 5 sites on each. The first, mainly heavy metal polluted gradient is stretching approx. 30km from the Bukowno Zinc smelter near Olkusz in the Lesser Poland Voivodship, to the north. The second cuts through the agglomeration of Kraków up to the southern borders of the Ojców National Park. The gradient near Olkusz is a well-described pollution gradient contaminated mainly by zinc, lead, and cadmium. The second gradient cut through the agglomeration of Kraków and end below the Ojców National Park. On each gradient, two bee species were installed: red mason bees (Osmia bicornis) and honey bees (Apis mellifera). Red mason bee is a polylectic, solitary bee species, widely distributed in Poland. Honey bees are a highly social species of bees, with clearly defined casts and roles in the colony. Before installing the bees in the field, samples of imagos of red mason bees and samples of pollen and imagos from each honey bee colony were analysed for zinc, lead cadmium, polycyclic and monocyclic hydrocarbons levels. After collecting the bees from the field, samples of bees and pollen samples for each site were prepared for heavy metal, monocyclic hydrocarbon, and polycyclic hydrocarbon analysis. Analyses of aromatic hydrocarbons were performed with gas chromatography coupled with a headspace sampler (HP 7694E) and mass spectrometer (MS) as detector. Monocyclic compounds were injected into column with headspace sampler while polycyclic ones with manual injector (after solid-liquid extraction with hexane). The heavy metal content (zinc, lead and cadmium) was assessed with flame atomic absorption spectroscopy (FAAS AAnalyst 300 Perkin Elmer spectrometer) according to the methods for honey and bee products described in the literature. Pollution levels found in bee bodies and imago body masses in both species, and proportion of sex in case of red mason bees were correlated with pollution levels found in pollen for each site and colony or trap nest. An attempt to pinpoint the most important form of contamination regarding bee health was also be undertaken based on the achieved results.

Keywords: heavy metals, aromatic hydrocarbons, bees, pollution

Procedia PDF Downloads 508
164 Enhanced Ripening Behaviour of Manganese Doped Cadmium Selenide Quantum Dots (Mn-doped CdSe QDs)

Authors: N. A. Hamizi, M. R. Johan, Y. H. Hor, A. N. Sabri, Y. Y. A. Yong

Abstract:

In this research, Mn-doped CdSe QDs is synthesized by using paraffin liquid as the reacting solvent and oleic acid as the ligands for Cd in order to produce Mn-doped CdSe QDs in zinc-blende crystal structure. Characterization studies for synthesized Mn-doped CdSe QDs are carried out using UV-visible and photoluminescence spectroscopy. The absorption wavelengths in UV-vis test and emission wavelengths in PL test were increase with the increases in the ripening temperature and time respectively.

Keywords: semiconductor, chemical synthesis, optical properties, ripening

Procedia PDF Downloads 365
163 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 297
162 Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor

Authors: Manish Chand, Subhrojit Bagchi, R. Kumar

Abstract:

A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization.

Keywords: neutron flux, neutron activation analysis, neutron flux shape factor, MCNP, Monte Carlo N-Particle Code

Procedia PDF Downloads 163
161 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru

Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve

Abstract:

The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.

Keywords: mining companies, campesino community, water, socio-environmental conflict

Procedia PDF Downloads 198
160 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary

Abstract:

The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.

Keywords: chemical deposition, CdS, optical properties, surface, thin film

Procedia PDF Downloads 162
159 Quantum Confinement in LEEH Capped CdS Nanocrystalline

Authors: Mihir Hota, Namita Jena, S. N. Sahu

Abstract:

LEEH (L-cysteine ethyl ester hydrochloride) capped CdS semiconductor nanocrystals are grown at 800C using a simple chemical route. Photoluminescence (PL), Optical absorption (UV) and Transmission Electron Microscopy (TEM) have been carried out to evaluate the structural and optical properties of the nanocrystal. Optical absorption studies have been carried out to optimize the sample. XRD and TEM analysis shows that the nanocrystal belongs to FCC structure having average size of 3nm while a bandgap of 2.84eV is estimated from Photoluminescence analysis. The nanocrystal emits bluish light when excited with 355nm LASER.

Keywords: cadmium sulphide, nanostructures, luminescence, optical properties

Procedia PDF Downloads 396
158 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami

Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe

Abstract:

Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.

Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements

Procedia PDF Downloads 191
157 Cadmium Accumulation and Depuration Characteristics through Food Source of Cage-Cultivated Fish after Accidental Pollution in Longjiang River

Authors: Qianli Ma, Xuemin Zhao, Lingai Yao, Zhencheng Xu, Li Wang

Abstract:

Heavy metal pollution accidents, frequently happened in this decade in China, severely threaten aquatic ecosystem and economy. In January 2012, a basin-scale accidental Cd pollution happened in Longjiang River in southwest China. Although water quality was recovered in short period by emergency treatment with flocculants, a large amount of contaminated cage-cultivated fish were left with the task of preventing or mitigating Cd contamination of fish. In this study, unpolluted Ctenopharyngodon idellus were fed by Cd-contaminated macrophytes for assessing the effect of Cd accumulation through food exposure, and the contaminated C. idellus were fed with Cd-free macrophytes for assessing the ability of Cd depuration. The on-site cultivation experiments were done in two sites of Lalang (S1, accidental Cd pollution originated) and Sancha (S2, a large amount of flocculants were added to accelerate Cd precipitation) in Longjiang river. Results showed that Cd content in fish muscle presented an increasing trend in the accumulation experiment. In S1, Cd content of fish muscle rose sharply from day 8 to day 18 with higher average Cd content in macrophytes and sediment, and kept in the range of 0.208-0.308 mg/kg afterward. In S2, Cd content of fish muscle rose gradually throughout the experiment and reached the maximum level of 0.285 mg/kg on day 76. The results of the depuration experiment showed that Cd content in fish muscle decreased and significant changes were observed in the first half time of the experiment. Meanwhile, fish with lower initial Cd content presented higher elimination constant. In S1, Cd content of fish significantly decreased from 0.713 to 0.304 mg/kg in 18 days and kept decreasing to 0.110 mg/kg in the end, and 84.6% of Cd content was eliminated. While in S2, there was a sharp decrease of Cd content of fish in 0-8 days from 0.355 mg/kg to 0.069 mg/kg. The total elimination percentage was 93.8% and 80.6% of which appeared in day 0-8. The elimination constant of fish in S2 was 0.03 which was higher than 0.02 in S1. Collectively, our results showed Cd could be absorbed through food exposure and accumulate in fish muscle, and the accumulated Cd in fish muscle can be excreted after isolated from the polluted food sources. This knowledge allows managers to assess health risk of Cd contaminated fish and minimize aquaculture loss when considering fish cultivation after accidental pollution.

Keywords: accidental pollution, cadmium accumulation and depuration, cage-cultivated fish, environmental management, river

Procedia PDF Downloads 253
156 Electrochemical Synthesis of ZnTe and Cu-ZnTe Thin Films for Low Resistive Ohmic Back Contact for CdS/CdTe Solar Cells

Authors: Shivaji M. Sonawane, N. B. Chaure

Abstract:

ZnTe is direct band gap, the P-type semiconductor with the high absorption coefficient of the order of 104cm-1 is suitable for solar cell development. It can be used as a low resistive ohmic contact to CdS/CdTe or tandem solar cell application. ZnTe and Cu-ZnTe thin film have been electrochemically synthesized on to fluorine-doped tin oxide coated glass substrates using three electrode systems containing Ag/AgCl, graphite and FTO as reference, counter and working electrode respectively were used to deposit the thin films. The aqueous electrolytic solution consist of 0.5M TeO2, 0.2M ZnSO4, and 0.1M Na3C6H5O7:2H2O, 0.1MC6H8O7:H2O and 0.1mMCuSO4 with PH 2.5 at room temperature was used. The reaction mechanism is studied in the cyclic voltammetry to identify the deposition potentials of ZnTe and Cu-ZnTe.The potential was optimized in the range -0,9 to -1,1 V. Vs Ag/AgCl reference electrode. The effect of deposition potential on the structural properties was studied by using X-ray diffraction. The X-ray diffraction result reveled cubic crystal structure of ZnTe with preferential (111) orientation with cubic structure. The surface morphology and film composition were analyzed by means of Scanning electron microscopy (SEM) and Energy Dispersive Analysis of X- Rays (EDAX). The optical absorption measurement has been analyzed for the band gap determination of deposited layers about 2.26 eV by UV-Visible spectroscopy. The drastic change in resistivity has been observed due to incorporation of copper probably due to the diffusion of Cu into grain boundaries.

Keywords: ohmic back contact, zinc telluride, electrodeposition, photovoltaic devices

Procedia PDF Downloads 228
155 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.

Keywords: heavy metal, orchard, pollution and monitoring, sediment

Procedia PDF Downloads 385
154 Chemical Pollution of Water: Waste Water, Sewage Water, and Pollutant Water

Authors: Nabiyeva Jamala

Abstract:

We divide water into drinking, mineral, industrial, technical and thermal-energetic types according to its use and purpose. Drinking water must comply with sanitary requirements and norms according to organoleptic devices and physical and chemical properties. Mineral water - must comply with the norms due to some components having therapeutic properties. Industrial water must fulfill its normative requirements by being used in the industrial field. Technical water should be suitable for use in the field of agriculture, household, and irrigation, and the normative requirements should be met. Heat-energy water is used in the national economy, and it consists of thermal and energy water. Water is a filter-accumulator of all types of pollutants entering the environment. This is explained by the fact that it has the property of dissolving compounds of mineral and gaseous water and regular water circulation. Environmentally clean, pure, non-toxic water is vital for the normal life activity of humans, animals and other living beings. Chemical pollutants enter water basins mainly with wastewater from non-ferrous and ferrous metallurgy, oil, gas, chemical, stone, coal, pulp and paper and forest materials processing industries and make them unusable. Wastewater from the chemical, electric power, woodworking and machine-building industries plays a huge role in the pollution of water sources. Chlorine compounds, phenols, and chloride-containing substances have a strong lethal-toxic effect on organisms when mixed with water. Heavy metals - lead, cadmium, mercury, nickel, copper, selenium, chromium, tin, etc. water mixed with ingredients cause poisoning in humans, animals and other living beings. Thus, the mixing of selenium with water causes liver diseases in people, the mixing of mercury with the nervous system, and the mixing of cadmium with kidney diseases. Pollution of the World's ocean waters and other water basins with oil and oil products is one of the most dangerous environmental problems facing humanity today. So, mixing even the smallest amount of oil and its products in drinking water gives it a bad, unpleasant smell. Mixing one ton of oil with water creates a special layer that covers the water surface in an area of 2.6 km2. As a result, the flood of light, photosynthesis and oxygen supply of water is getting weak and there is a great danger to the lives of living beings.

Keywords: chemical pollutants, wastewater, SSAM, polyacrylamide

Procedia PDF Downloads 73
153 Heavy Metals among Female Adolescents Attending Secondary Schools in Kano, Nigeria

Authors: I. Yunusa, M. A. Ibrahim, A. H. Yakasai, L. U. S. Ezeanyika

Abstract:

This study was conducted to examine the level of heavy metals among 192 apparently healthy female adolescents randomly selected from three different boarding secondary schools in the urban area of the most populated city in north-western part of Nigeria. Atomic absorption spectrometry (AAS) was used to determine the plasma levels of the heavy metals which include cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn). Our findings revealed the following mean±SD values for each of the heavy metal; 0.11±0.01µg Cd/L, 0.09 ± 0.02µg Co/L, 0.19 ± 0.02 µg Cr/L, 0.91 ± 0.02 µg Cu/L, 1.53 ± 0.31 µg Fe/L, 0.01 ± 0.04 µg Mn/L, 0.3.8 ± 0.04µg Mo/L, 0.04±0.01µg Ni/L, 0.04 ± 0.01µg Pb/L and 2.80 ± 0.24µg Zn/L respectively. It was concluded that toxicity from heavy metals did not exist among female adolescents.

Keywords: heavy metals, female, adolescents, Nigeria

Procedia PDF Downloads 389
152 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand

Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee

Abstract:

Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.

Keywords: e-waste, environmental contamination, informal recycling, metals

Procedia PDF Downloads 362
151 Monitoring the Pollution Status of the Goan Coast Using Genotoxicity Biomarkers in the Bivalve, Meretrix ovum

Authors: Avelyno D'Costa, S. K. Shyama, M. K. Praveen Kumar

Abstract:

The coast of Goa, India receives constant anthropogenic stress through its major rivers which carry mining rejects of iron and manganese ores from upstream mining sites and petroleum hydrocarbons from shipping and harbor-related activities which put the aquatic fauna such as bivalves at risk. The present study reports the pollution status of the Goan coast by the above xenobiotics employing genotoxicity studies. This is further supplemented by the quantification of total petroleum hydrocarbons (TPHs) and various trace metals (iron, manganese, copper, cadmium, and lead) in gills of the estuarine clam, Meretrix ovum as well as from the surrounding water and sediment, over a two-year sampling period, from January 2013 to December 2014. Bivalves were collected from a probable unpolluted site at Palolem and a probable polluted site at Vasco, based upon the anthropogenic activities at these sites. Genotoxicity was assessed in the gill cells using the comet assay and micronucleus test. The quantity of TPHs and trace metals present in gill tissue, water and sediments were analyzed using spectrofluorometry and atomic absorption spectrophotometry (AAS), respectively. The statistical significance of data was analyzed employing Student’s t-test. The relationship between DNA damage and pollutant concentrations was evaluated using multiple regression analysis. Significant DNA damage was observed in the bivalves collected from Vasco which is a region of high industrial activity. Concentrations of TPHs and trace metals (iron, manganese, and cadmium) were also found to be significantly high in gills of the bivalves collected from Vasco compared to those collected from Palolem. Further, the concentrations of these pollutants were also found to be significantly high in the water and sediments at Vasco compared to that of Palolem. This may be due to the lack of industrial activity at Palolem. A high positive correlation was observed between the pollutant levels and DNA damage in the bivalves collected from Vasco suggesting the genotoxic nature of these pollutants. Further, M. ovum can be used as a bioindicator species for monitoring the level of pollution of the estuarine/coastal regions by TPHs and trace metals.

Keywords: comet assay, metals, micronucleus test, total petroleum Hydrocarbons

Procedia PDF Downloads 237
150 Study on the Effects of Indigenous Biological Face Treatment

Authors: Saron Adisu Gezahegn

Abstract:

Commercial cosmetic has been affecting human health due to their contents and dosage composition. Chemical base cosmetics exposes users to unnecessary health problems and financial cost. Some of the cosmetics' interaction with the environment has negative impacts on health such as burning, cracking, coloring, and so on. The users are looking for a temporary service without evaluating the side effects of cosmetics that contain chemical compositions that result in irritation, burning, allergies, cracking, and the nature of the face. Every cosmetic contains a heavy metal such as lead, zinc, cadmium, silicon, and other heavy cosmetics materials. The users may expose at the end of the day to untreatable diseases like cancer. The objective of the research is to study the effects of indigenous biological face treatment without any additives like chemicals. In ancient times this thought was highly tremendous in the world but things were changing bit by bit and reached chemical base cosmetics to maintain the beauty of hair, skin, and faces. The side effects of the treatment on the face were minimum and the side effects with the interaction of the environment were almost nil. But this thought is changed and replaces the indigenous substances with chemical substances by adding additives like heavy chemical lead and cadmium in the sense of preservation, pigments, dye, and shining. Various studies indicated that cosmetics have dangerous side effects that expose users to health problems and expensive financial loss. This study focuses on a local indigenous plant called Kulkual. Kulkual is available everywhere in a study area and sustainable products can harvest to use as indigenous face treatment materials.25 men and 25 women were selected as a sample population randomly to conduct the study effectively.The plant is harvested from the guard in the productive season. The plant was exposed to the sun dry for a week. Then the peel was removed from the plant fruit and the peels were taken to a bath filled with water to soak for three days. Then the flesh of the peel was avoided from the fruit and ready to use as a face treatment. The fleshy peel was smeared on each sample for almost a week and continued for a week. The result indicated that the effects of the treatment were a positive response with minimum cost and minimum side effects due to the environment. The beauty shines, smoothness, and color are better than chemical base cosmetics. Finally, the study is recommended that all users prefer a biological method of treatment with minimum cost and minimums side effects on health with the interaction of the environment.

Keywords: cosmetic, indigneous, heavymetals, toxic

Procedia PDF Downloads 104