Search results for: cable joints
471 Microstructure Analysis of TI-6AL-4V Friction Stir Welded Joints
Authors: P. Leo, E. Cerri, L. Fratini, G. Buffa
Abstract:
The Friction Stir Welding process uses an inert rotating mandrel and a force on the mandrel normal to the plane of the sheets to generate the frictional heat. The heat and the stirring action of the mandrel create a bond between the two sheets without melting the base metal. As matter of fact, the use of a solid state welding process limits the insurgence of defects, due to the presence of gas in melting bath, and avoids the negative effects of materials metallurgical transformation strictly connected with the change of phase. The industrial importance of Ti-6Al-4V alloy is well known. It provides an exceptional good balance of strength, ductility, fatigue and fracture properties together with good corrosion resistance and good metallurgical stability. In this paper, the authors analyze the microstructure of friction stir welded joints of Ti-6Al-4V processed at the same travel speed (35 mm/min) but at different rotation speeds (300-500 rpm). The microstructure of base material (BM), as result from both optical microscope and scanning electron microscope analysis is not homogenous. It is characterized by distorted α/β lamellar microstructure together with smashed zone of fragmented β layer and β retained grain boundary phase. The BM has been welded in the-as received state, without any previous heat treatment. Even the microstructure of the transverse and longitudinal sections of joints is not homogeneous. Close to the top of weld cross sections a much finer microstructure than the initial condition has been observed, while in the center of the joints the microstructure is less refined. Along longitudinal sections, the microstructure is characterized by equiaxed grains and lamellae. Both the length and area fraction of lamellas increases with distance from longitudinal axis. The hardness of joints is higher than that of BM. As the process temperature increases the average microhardness slightly decreases.Keywords: friction stir welding, microhardness, microstructure, Ti-6Al-4V
Procedia PDF Downloads 380470 Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry
Authors: Ajay Sidana, Kulbir Singh Sandhu, Balwinder Singh Sidhu
Abstract:
Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints.Keywords: aluminum alloys, magnesium alloys, friction stir welding, microstructure, mechanical properties
Procedia PDF Downloads 454469 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials
Authors: Aleš Florian, Lenka Ševelová
Abstract:
Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.Keywords: concrete, FEM, pavement, sensitivity, simulation
Procedia PDF Downloads 330468 Development of Under Water Autonomous Vertical Profiler: Unique Solution to Oceanographic Studies
Authors: I. K. Sharma
Abstract:
Over the years world over system are being developed by research labs continuously monitor under water parameters in the coastal waters of sea such as conductivity, salinity, pressure, temperature, chlorophyll and biological blooms at different levels of water column. The research institutions have developed profilers which are launched by ship connected through cable, glider type profilers following underwater trajectory, buoy any driven profilers, wire guided profilers etc. In all these years, the effect was to design autonomous profilers with no cable quality connection, simple operation and on line date transfer in terms accuracy, repeatability, reliability and consistency. Hence for the Ministry of Communication and Information Technology, India sponsored research project to National Institute of Oceanography, GOA, India to design and develop autonomous vertical profilers, it has taken system and AVP has been successfully developed and tested.Keywords: oceanography, water column, autonomous profiler, buoyancy
Procedia PDF Downloads 398467 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment
Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby
Abstract:
Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.Keywords: optical fiber, polarization mode dispersion, harsh environment, aging
Procedia PDF Downloads 383466 The Influence of Fiber Fillers on the Bonding Safety of Wood-Adhesive Interfaces: A Fracture Energetic Approach
Authors: M. H. Brandtner-Hafner
Abstract:
Adhesives have established themselves as an innovative joining technology in the wood industry. The strengths of adhesive bonding lie in the realization of lightweight designs, the avoidance of material weakening, and the joining of different types of materials. There is now a number of ways to positively influence the properties of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion, structural integrity, and fracture toughness. In this study, the effectiveness of fiber-modified adhesives for bonding wooden joints is reviewed. A series of experimental tests were performed using the fracture analytical GF-principle to study the adhesive bonding safety and performance of the wood-adhesive interface. Two different construction adhesives based on epoxy and PUR were modified with different fiber materials and applied to bond wooden joints. The results show that bonding efficiency by adding fibrous materials to the bonding matrix leads to significant improvements in structural material properties.Keywords: fiber-modified adhesives, bonding safety, wood-adhesive interfaces, fracture analysis
Procedia PDF Downloads 97465 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance
Authors: Binnur Sagbas
Abstract:
Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.Keywords: artificial joints, plasma surface modification, UHMWPE, vitamin E, wear
Procedia PDF Downloads 306464 Parametric Study of Ball and Socket Joint for Bio-Mimicking Exoskeleton
Authors: Mukesh Roy, Basant Singh Sikarwar, Ravi Prakash, Priya Ranjan, Ayush Goyal
Abstract:
More than 11% of people suffer from weakness in the bone resulting in inability in walking or climbing stairs or from limited upper body and limb immobility. This motivates a fresh bio-mimicking solution to the design of an exo-skeleton to support human movement in the case of partial or total immobility either due to congenital or genetic factors or due to some accident or due to geratological factors. A deeper insight and detailed understanding is required into the workings of the ball and socket joints. Our research is to mimic ball and socket joints to design snugly fitting exoskeletons. Our objective is to design an exoskeleton which is comfortable and the presence of which is not felt if not in use. Towards this goal, a parametric study is conducted to provide detailed design parameters to fabricate an exoskeleton. This work builds up on real data of the design of the exoskeleton, so that the designed exo-skeleton will be able to provide required strength and support to the subject.Keywords: bio-mimicking, exoskeleton, ball joint, socket joint, artificial limb, patient rehabilitation, joints, human-machine interface, wearable robotics
Procedia PDF Downloads 293463 Determining Factors of Suspended Glass Systems with Pre-Stress Cable Truss
Authors: Cemil Atakara, Hüseyin Eryaman
Abstract:
The use of glass as an envelope of a building has been increasing in the twentieth century. For more transparency and dematerialization new glass facade types have emerged in the past two decades which depends on point fixed glazing system (PFGS). The aim of this study is to analyze of the PFGS systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. This new system is desired because it enhances the transparency of the façade and it minimizes the component of the frames or of the profiles. This PFGS led to new structural elements which use cables, rods, trusses when designing a glass building facades, this structural element called the suspended glass system with pre-stressed cable truss (SGSPCT) which has been used for the first time in 1980 in Serres building. The twenty glass buildings which are designed in different systems have been analyzed during this study. After these analyses five selected SGSPCT building analyzed deeply and one skeletal frame building selected from Lefkosa redesigned according to the analysis results. These selected buildings have been included of various cable-truss system typologies and degree. The methodology of this study is building analysis method and literature survey with the help of books, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings and case building have been detailed analyzed with their architectural drawings, photographs and details. A gridshell structure can be compared with a shell structure; it consists of discrete members connecting nodal points. As these nodal points lie on the surface of an imaginary shell, their shapes function almost identically. Difference between shell and gridshell structures can be found in the fact that, due to their free-form and thus, due to the presence of bending forces, gridshells are required to resist loading through their cross-section. This research is divided into parts. A general study about the glass building and cable-glass and grid shell system will be done in the first chapters. Structural analyses and detailed analyses with schematic drawings with the plans, sections of the selected buildings will be explained in the second part. The third part it consists of the advantages and disadvantages of the use of the SGSPCT and Grid Shell in architecture. The study consists of four chapters including the introduction chapter. The general information of the SGSPCT and glazing system has been mentioned in the first chapter. Structural features, typologies, transparency principle and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of case building have been done according to their schematic drawings with the plans, sections in the third chapter. After third chapter SGSPCT discussed on to the case building and selected buildings. SGSPCT systems have been compared with their advantages and disadvantages to the other systems. Advantages of cable-truss systems and SGSPCT have been concluded that the use of glass substrates in the last chapter.Keywords: cable truss, glass, grid shell, transparency
Procedia PDF Downloads 411462 Study of Therapeutic Potential of Dodonaea Viscosa Against Rheumatoid Arthritis in Collagen Induced Arthritic Mouse Model
Authors: Peter John, Zainab Ali, Attya Bhatti
Abstract:
Rheumatoid Arthritis (RA) is a systemic autoimmune inflammatory disease that primarily affects the joints. RA is caused in many cases by the interaction between genes and environmental factors, including tobacco, that primarily involves synovial joints. It typically starts in small peripheral joints, is usually symmetric, and progresses to involve proximal joints if left untreated. The prevalence of rheumatoid arthritis varies substantially around the globe, ranging from 0·25% to 1%.3. Rheumatoid arthritis can affect individuals of any age, with an increased incidence in people older than 40 years. Women are affected two to three times more frequently than men. The present work involved evaluating the toxicity and therapeutic potential of Dodonaea viscosa in a collagen-induced arthritic mouse model. Chemical analysis exhibited that Dodonaea viscosa has high levels of beneficial compounds, including phenols, flavonoids, and other phytochemicals. The Dodonaea viscosa showed significant antioxidant, anti-inflammatory, and anti-arthritic potential without toxic effects. Arthritic mice treated with Dodonaea viscosa showed reduced levels of rheumatoid factor and paw edema, while no significant effects on spleen indices and radiological examination of paws were found compared to control untreated arthritic mice. In summary, the Dodonaea viscosa treatment results in improvement in Arthritic Mice Model for which further studies are required.Keywords: rheumatoid arthritis, dodonaea viscisa, anti-inflammatory, anti-rheumatic
Procedia PDF Downloads 22461 Microgrid: An Alternative of Electricity Supply to an Island in Thailand
Authors: Pawitchaya Srijaiwong, Surin Khomfoi
Abstract:
There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction.Keywords: energy storage, islanding, microgrid, renewable energy
Procedia PDF Downloads 327460 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method
Authors: Murat Demir Aydin, Elanur Celebi
Abstract:
Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)
Procedia PDF Downloads 321459 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 189458 Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints
Authors: Bintao Wu, Xiangfang Xu, Yugang Miao,Duanfeng Han
Abstract:
Joining of 1 mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti、TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking.Keywords: bypass-current MIG welding-brazed, Al alloy, Ti alloy, joint characteristics, mechanical properties
Procedia PDF Downloads 263457 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove
Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar
Abstract:
The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW
Procedia PDF Downloads 405456 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames
Authors: Kyung-Suk Choi, Hyung-Joon Kim
Abstract:
Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. Their structural design is usually carried out under the assumption that the load-carrying mechanism is similar to that of a traditional steel moment-resisting system. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities, and their joints are classified into semi-rigid connections.Keywords: unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation
Procedia PDF Downloads 618455 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression
Authors: Ruiyang Bi
Abstract:
Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation
Procedia PDF Downloads 65454 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7
Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam
Abstract:
Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints
Procedia PDF Downloads 323453 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance
Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow
Abstract:
This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.Keywords: cable direct driven robot, haptics, parallel plates, bone drilling
Procedia PDF Downloads 258452 Magnetic Simulation of the Underground Electric Cable in the Presence of a Short Circuit and Harmonics
Authors: Ahmed Nour El Islam Ayad, Wafa Krika, Abdelghani Ayad, Moulay Larab, Houari Boudjella, Farid Benhamida
Abstract:
The purpose of this study is to evaluate the magnetic emission of underground electric cable of high voltage, because these power lines generate electromagnetic interaction with other objects near to it. The aim of this work shows a numerical simulation of the magnetic field of buried 400 kV line in three cases: permanent and transient states of short circuit and the last case with the presence of the harmonics at different positions as a function of time variation, with finite element resolution using Comsol Multiphysics software. The results obtained showed that the amplitude and distribution of the magnetic flux density change in the transient state and the presence of harmonics. The results of this work calculate the magnetic field generated by the underground lines in order to evaluate and know their impact on ecology and health.Keywords: underground, electric power cables, cables crossing, harmonic, emission
Procedia PDF Downloads 229451 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
Authors: Guang Zou, Kian Banisoleiman, Arturo González
Abstract:
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.Keywords: crack initiation, fatigue reliability, inspection planning, welded joints
Procedia PDF Downloads 353450 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets
Authors: S. D. El Wakil
Abstract:
The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.Keywords: fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joints
Procedia PDF Downloads 232449 Experimental Model of the Behaviour of Bolted Angles Connections with Stiffeners
Authors: Abdulkadir Cuneyt Aydin, Mahyar Maali, Mahmut Kılıç, Merve Sağıroğlu
Abstract:
The moment-rotation curves of semi-rigid connections are the visual expressions of the actual behaviour discovered in beam-to-column connections experiments. This research was to determine the behaviour of the connection using full-scale experiments under statically loaded. The stiffeners which are typically attached to beams web or flanges to control local buckling and to increase shear capacity in a beam web are almost always used in modern designs. They must also provide sufficient moment of inertia to control out of plane deformations. This study was undertaken to analyse the influence of stiffeners in the angles and beams on the behaviour of the beam-to-column joints. In addition, the aim was to provide necessary data to improve the Eurocode 3. The main parameters observed are the evolution of the resistance, the stiffness, the rotation capacity, the ductility of a joint and the Energy Dissipation. Experimental tests show that the plastic flexural resistance and the energy dissipation increased when thickness of stiffener beam, thickness of stiffener angles were increased in the test specimens. And also, while stiffness of joints, the bending moment capacity and the maximum bending moment increased with the increasing thickness of stiffener beam, these values decreased with the increasing thickness of stiffener angles. So, it is observed that the beam stiffener of angles are important in improving resistance moment of beam-to-column semi-rigid joints.Keywords: bolted angles connection, semi-rigid joints, ductility of a joint, angles and beams stiffeners
Procedia PDF Downloads 460448 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis
Procedia PDF Downloads 342447 Determination of Weld Seam Thickness in Welded Connection Subjected to Local Buckling Effects
Authors: Tugrul Tulunay, Iyas Devran Celik
Abstract:
When the materials used in structural steel industry are evaluated, box beam profiles are considerably preferred. As a result of the cross-sectional properties that these profiles possess, the connection of these profiles to each other and to profiles having different types of cross sections is becoming viable by means of additional measures. An important point to note in such combinations is continuous transfer of internal forces from element to element. At the beginning to ensure this continuity, header plate is needed to use. The connection of the plates to the elements works mainly through welds. In this study, it is aimed to determine the ideal welding thickness in box beam under bending effect and the joints exposed to local buckles that will form in the column. The connection with box column and box beam designed in this context was made by means of corner and circular filler welds. Corner welds of different thickness and analysis by types with different lengths depending on plate dimensions in numerical models were made with the help of ANSYS Workbench program and examined behaviours.Keywords: welding thickness, box beam-column joints, design of steel structures, calculation and construction principles 2016, welded joints under local buckling
Procedia PDF Downloads 167446 Determination of Resistance to Freezing of Bonded Façade Joint
Authors: B. Nečasová, P. Liška, J. Šlanhof
Abstract:
Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.Keywords: adhesive system, bonded joints, wooden lightweight façade, timber substructure
Procedia PDF Downloads 391445 Numerical Analysis Of Stainless Steel Beam To Column Joints With Bolted Flush End Plates
Authors: Takwiir Tahriim Khan, Tausif Khalid, Mohammad Redwan Ahamed, Md Soebur Rahman
Abstract:
The mutual connection in joints has a significant impact on the safe and cost-effective design of steel structures. Generally, the end plates are welded at the end of the beam and columns are bolted with the end plates. Thus, the moment will be transferred at the interface, which is a critical segment at the connection. 3-D Finite Element Models (FEM) has been developed using ABAQUS 2017 software to predict the yield capacity of the end plate connections. The parameters used in this study are the depth, width, and thickness of the end plate, dimensions of the bolt, sectional and material properties of beams and columns. The influence width, depth, and thicknesses of the end plate connection on yield capacity were investigated through parametric studies. The results showed that, for increasing plate thickness from 0.3 inch to 0.8 inch by an increment of 0.1 inch the yield capacity increased by 2.85% on average, for decreasing the end plate depth from 13 inch to 11 inch the yield capacity increased by 25.4 %, and for decreasing the end plate width from 6.5 inch to 5.75 inch the yield capacity increased by 35.4%. Variation in yield capacity was also found by changing the beam and column section. Besides, the numerical results showed a good agreement with published experimental literature with an average variation of less than 8.3 % in yield capacity. So the study allows for a more effective combination of beam, column, and end plate dimensions.Keywords: steel beam-column joints, finite element analysis, yield moment capacity, parametric study, ABAQUS, bolted joints, flush end plates, moment vs rotation curves
Procedia PDF Downloads 107444 Study of Structural Health Monitoring System for Vam Cong Cable-Stayed Bridge
Authors: L. M. Chinh
Abstract:
Vam Cong Bridge beside Can Tho Bridge is the next cable-stayed bridge spanning the Hau River, connecting Lap Vo district with Thot Not district. After construction by the end of 2018, the Vam Cong Bridge with Cao Lanh Bridge will help to improve the road network in this region of Mekong Delta. For this bridge, the SHM system also had designed for two stages – construction stage and exploitation stage. At the moment over 65% of the bridge construction had completed, and the bridge will be completed at the end of 2018. During the construction stage, the SHM system had been install to monitor behaviors of the bridge. Based on the study of the design documentation of the SHM system of the Vam Cong Bridge and site visit during construction work, many designs and installation errors have been detected. In this paper author thoroughly analyzed the pros and cons of this SHM system, simultaneously make conclusions and recommendations for this system. Specially concentrated on the possibility of implementing the acoustic emission method (AE) into this SHM system, which is an alternative to the further development of the system, enabling a full and cost-effective solution for the bridge management, which is of utmost importance for the service life and safe operation of the bridge.Keywords: SHM system, design and installation, Vam Cong bridge, construction stage, acoustic emission method (AE)
Procedia PDF Downloads 236443 BER of the Leaky Feeder under Rayleigh Fading Multichannel Reception with Imperfect Phase Estimation
Authors: Hasan Farahneh, Xavier Fernando
Abstract:
Leaky Feeder (LF) has been a proven technology for many decades and its promises broadband wireless access in short range but being overlooked until now. The LF is a natural MIMO transceiver ideal for micro and pico cells. In this work, the LF is considered as a linear antenna array MultiInput-Single-Output (MISO) and derive the average bit error rate (BER) in Rayleigh fading channel considering ideal and independent paths (iid) which consider there is no correlation and mutual coupling between transmit antennas (slots) or receiver antenna considering QPSK modulation with imperfect phase estimation. We consider maximal ratio transmission (MRT) at the transmit end and maximal ratio combining (MRC) at the receiving end. Analytical expressions are derived for the BER with radiating cable transmitters. The effects of slot spacing and carrier frequency on the BER are also studied. Numerical evaluations show the radiating cable transmitter offer much lower BER than a single antenna transmitter with same SNR.Keywords: leaky feeder, BER, QPSK, rayleigh fading, channel gain, phase mismatch
Procedia PDF Downloads 381442 Obesity and Bone Mineral Density in Patients with Large Joint Osteoarthritis
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Zaverukha, Roksolana Povoroznyuk
Abstract:
Along with the global aging of population, the number of people with somatic diseases is increasing, including such interrelated pathologies as obesity, osteoarthritis (OA) and osteoporosis (OP). The objective of the study is to examine the connection between body mass index (BMI), OA and bone mineral density (BMD) of lumbar spine, femoral neck and trabecular bone score (TBS) in postmenopausal women with OA. We have observed 359 postmenopausal women (50-89 years old) and divided them into four groups by age: 50-59 yrs, 60-69 yrs, 70-79 yrs and over 80 years old. In addition, according to the American College of Rheumatology (ACR) Clinical classification criteria for knee and hip OA, we divided them into 2 groups: group I – 117 females with symptomatic OA (including 89 patients with knee OA, 28 patients with hip OA) and group II –242 women with a normal functional activity of large joints. Analysis of data was performed taking into account their BMI, classified by World Health Organization (WHO). Diagnosis of obesity was established when BMI was above 30 kg/m2. In woman with obesity, a symptomatic OA was detected in 44 postmenopausal women (41.1%), a normal functional activity of large joints - in 63 women (58.9%). However, in women with normal BMI – 73 women, who account for 29.0% of cases, a symptomatic OA was detected. According to a chi-squared (χ2) test, a significantly higher level of BMI was detected in postmenopausal women with OA (χ2 = 5.05, p = 0.02). Women with a symptomatic OA had a significantly higher BMD of lumbar spine compared with women who had a normal functional activity of large joints. No significant differences of BMD of femoral necks or TBS were detected in either the group with OA or with a normal functional activity of large joints.Keywords: bone mineral density, body mass index, obesity, overweight, postmenopausal women, osteoarthritis
Procedia PDF Downloads 124