Search results for: Bayes’ rule
790 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm
Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali
Abstract:
Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir
Procedia PDF Downloads 266789 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining
Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong
Abstract:
This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery
Procedia PDF Downloads 404788 Conflict Resolution in Fuzzy Rule Base Systems Using Temporal Modalities Inference
Authors: Nasser S. Shebka
Abstract:
Fuzzy logic is used in complex adaptive systems where classical tools of representing knowledge are unproductive. Nevertheless, the incorporation of fuzzy logic, as it’s the case with all artificial intelligence tools, raised some inconsistencies and limitations in dealing with increased complexity systems and rules that apply to real-life situations and hinders the ability of the inference process of such systems, but it also faces some inconsistencies between inferences generated fuzzy rules of complex or imprecise knowledge-based systems. The use of fuzzy logic enhanced the capability of knowledge representation in such applications that requires fuzzy representation of truth values or similar multi-value constant parameters derived from multi-valued logic, which set the basis for the three t-norms and their based connectives which are actually continuous functions and any other continuous t-norm can be described as an ordinal sum of these three basic ones. However, some of the attempts to solve this dilemma were an alteration to fuzzy logic by means of non-monotonic logic, which is used to deal with the defeasible inference of expert systems reasoning, for example, to allow for inference retraction upon additional data. However, even the introduction of non-monotonic fuzzy reasoning faces a major issue of conflict resolution for which many principles were introduced, such as; the specificity principle and the weakest link principle. The aim of our work is to improve the logical representation and functional modelling of AI systems by presenting a method of resolving existing and potential rule conflicts by representing temporal modalities within defeasible inference rule-based systems. Our paper investigates the possibility of resolving fuzzy rules conflict in a non-monotonic fuzzy reasoning-based system by introducing temporal modalities and Kripke's general weak modal logic operators in order to expand its knowledge representation capabilities by means of flexibility in classifying newly generated rules, and hence, resolving potential conflicts between these fuzzy rules. We were able to address the aforementioned problem of our investigation by restructuring the inference process of the fuzzy rule-based system. This is achieved by using time-branching temporal logic in combination with restricted first-order logic quantifiers, as well as propositional logic to represent classical temporal modality operators. The resulting findings not only enhance the flexibility of complex rule-base systems inference process but contributes to the fundamental methods of building rule bases in such a manner that will allow for a wider range of applicable real-life situations derived from a quantitative and qualitative knowledge representational perspective.Keywords: fuzzy rule-based systems, fuzzy tense inference, intelligent systems, temporal modalities
Procedia PDF Downloads 92787 Directors’ Duties, Civil Liability, and the Business Judgment Rule under the Portuguese Legal Framework
Authors: Marisa Catarina da Conceição Dinis
Abstract:
The commercial companies’ management has suffered an important material and legal transformation in the last years, mainly related to the changes in the Portuguese legal framework and because of the fact they were recently object of great expansion. In fact, next to the smaller family businesses, whose management is regularly assumed by partners, companies with social investment highly scattered, whose owners are completely out from administration, are now arising. In those particular cases, the business transactions are much more complex and require from the companies’ managers a highly technical knowledge and some specific professionals’ skills and abilities. This kind of administration carries a high-level risk that can both result in great success or in great losses. Knowing that the administration performance can result in important losses to the companies, the Portuguese legislator has created a legal structure to impute them some responsibilities and sanctions. The main goal of this study is to analyze the Portuguese law and some jurisprudence about companies’ management rules and about the conflicts between the directors and the company. In order to achieve these purposes we have to consider, on the one hand, the legal duties directly connected to the directors’ functions and on the other hand the disrespect for those same rules. The Portuguese law in this matter, influenced by the common law, determines that the directors’ attitude should be guided by loyalty and honesty. Consequently, we must reflect in which cases the administrators should respond to losses that they might cause to companies as a result of their duties’ disrespect. In this way is necessary to study the business judgment rule wich is a rule that refers to a liability exclusion rule. We intend, in the same way, to evaluate if the civil liability that results from the directors’ duties disrespect can extend itself to those who have elected them ignoring or even knowing that they don´t have the necessary skills or appropriate knowledge to the position they hold. To charge directors’, without ruining entrepreneurship, charging, in the same way, those who select them reinforces the need for more responsible and cautious attitudes which will lead consequently to more confidence in the markets.Keywords: business judgment rule, civil liability of directors, duty of care, duty of care, Portuguese legal framework
Procedia PDF Downloads 347786 Law and its Implementation and Consequences in Pakistan
Authors: Amir Shafiq, Asif Shahzad, Shabbar Mehmood, Muhammad Saeed, Hamid Mustafa
Abstract:
Legislation includes the law or the statutes which is being reputable by a sovereign authority and generally can be implemented by the courts of law time to time to accomplish the objectives. Historically speaking upon the emergence of Pakistan in 1947, the intact laws of the British Raj remained effective after ablution by Islamic Ideology. Thus, there was an intention to begin the statutes book afresh for Pakistan's legal history. In consequence thereof, the process of developing detailed plans, procedures and mechanisms to ensure legislative and regulatory requirements are achieved began keeping in view the cultural values and the local customs. This article is an input to the enduring discussion about implementing rule of law in Pakistan whereas; the rule of law requires the harmony of laws which is mostly in the arrangement of codified state laws. Pakistan has legal plural civilizations where completely different and independent systems of law like the Mohammadan law, the state law and the traditional law exist. The prevailing practiced law in Pakistan is actually the traditional law though the said law is not acknowledged by the State. This caused the main problem of the rule of law in the difference between the state laws and the cultural values. These values, customs and so-called traditional laws are the main obstacle to enforce the State law in true letter and spirit which has caused dissatisfaction of the masses and distrust upon the judicial system of the country.Keywords: consequences, implement, law, Pakistan
Procedia PDF Downloads 433785 Alternative Futures for the Middle East
Authors: Dorsa Bakhshandehgeyazdi
Abstract:
This paper examines elective future of security in the Middle East trying to find a way that could take the district from a shaky past to a more secure future. Taking a gander at five situations about the eventual future of world legislative issues, in particular, globalization, fragmentation, conflict of civilizations, majority rule peace and the development of a security group, the paper contends that albeit every situation has its qualities (and in addition shortcomings), it is the situation that predicts the foundation of a security group that joins a more express thought for forming a more secure future for the Middle East.Keywords: Middle East, Globalization, Fragmentation, Conflict of civilizations, Majority rule peace, Development of a security group
Procedia PDF Downloads 294784 An Optimized Association Rule Mining Algorithm
Authors: Archana Singh, Jyoti Agarwal, Ajay Rana
Abstract:
Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph
Procedia PDF Downloads 421783 Rule-Based Mamdani Type Fuzzy Modeling of Performances of Anode Side of Proton Exchange Membrane Fuel Cell Spin-Coated with Yttria-Stabilized Zirconia
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input parameters voltage density (V/cm2), and current density (A/cm2), temperature (°C), time (s); output parameter power density (W/cm2) were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance of PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based Mamdani-type fuzzy (RMBTF) modeling, yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 363782 Judicial Institutions in a Post-Conflict Society: Gaining Legitimacy through a Holistic Reform
Authors: Abdul Salim Amin
Abstract:
This paper focuses on how judiciaries in post-conflict society gain legitimacy through reformation. Legitimacy plays a pivotal role in shaping peoples’ behavior to submit to the law and verifies the rightfulness of an organ for taking binding decisions. Among various dynamics, judicial independence, access to justice and behavioral changes of the judicial officials broadly contribute in legitimation of judiciary in general, and the court in particular. Increasing the independence of judiciary through reform limits the interference of governmental branches in judicial issues and protects basic rights of the citizens. Judicial independence does not only matter in institutional terms, individual independence also influences the impartiality and integrity of judges, which can be increased through education and better administration of justice. Finally, access to justice as an intertwined concept both at the legal and moral spectrum of judicial reform avails justice to the citizen and increases the level of public trust and confidence. Efficient legal decisions on fostering such elements through holistic reform create a rule of law atmosphere. Citizens do not accept illegitimate judiciary and do not trust its decisions. Lack of such tolerance and confidence deters the rule of law and, thus, undermines the democratic development of a society.Keywords: legitimacy, judicial reform, judicial independence, access to justice, legal training, informal justice, rule of law
Procedia PDF Downloads 500781 Chinese Event Detection Technique Based on Dependency Parsing and Rule Matching
Authors: Weitao Lin
Abstract:
To quickly extract adequate information from large-scale unstructured text data, this paper studies the representation of events in Chinese scenarios and performs the regularized abstraction. It proposes a Chinese event detection technique based on dependency parsing and rule matching. The method first performs dependency parsing on the original utterance, then performs pattern matching at the word or phrase granularity based on the results of dependent syntactic analysis, filters out the utterances with prominent non-event characteristics, and obtains the final results. The experimental results show the effectiveness of the method.Keywords: natural language processing, Chinese event detection, rules matching, dependency parsing
Procedia PDF Downloads 141780 An Enhanced MEIT Approach for Itemset Mining Using Levelwise Pruning
Authors: Tanvi P. Patel, Warish D. Patel
Abstract:
Association rule mining forms the core of data mining and it is termed as one of the well-known methodologies of data mining. Objectives of mining is to find interesting correlations, frequent patterns, associations or casual structures among sets of items in the transaction databases or other data repositories. Hence, association rule mining is imperative to mine patterns and then generate rules from these obtained patterns. For efficient targeted query processing, finding frequent patterns and itemset mining, there is an efficient way to generate an itemset tree structure named Memory Efficient Itemset Tree. Memory efficient IT is efficient for storing itemsets, but takes more time as compare to traditional IT. The proposed strategy generates maximal frequent itemsets from memory efficient itemset tree by using levelwise pruning. For that firstly pre-pruning of items based on minimum support count is carried out followed by itemset tree reconstruction. By having maximal frequent itemsets, less number of patterns are generated as well as tree size is also reduced as compared to MEIT. Therefore, an enhanced approach of memory efficient IT proposed here, helps to optimize main memory overhead as well as reduce processing time.Keywords: association rule mining, itemset mining, itemset tree, meit, maximal frequent pattern
Procedia PDF Downloads 372779 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.Keywords: association rules, FP-growth, multiple minimum supports, Weka tool
Procedia PDF Downloads 486778 Ontology-Based Representation of Islamic Rules to Perform Salah
Authors: Hamza Zafar, Quratulain Rajput
Abstract:
Salah (نماز ) is one of five pillars of Islam and obligatory for every Muslims. However, due to the lack of Islamic knowledge it might be very difficult for a layperson to perform it correctly. This paper presents an ontology based representation of Islamic rules to perform Salah. The Salah ontology has been built under the guidance of domain expert in light of Quran and Hadith. The ontology consists of basic concepts as well as relationship among concepts and constraints on them. The basic concepts include cleanness, body cover, Salah timing and steps to perform Salah. The SWRL rule language has been used to represent rule to determine whether the Salah performed correctly or it should be repeated. Finally, we evaluate the use of the Salat ontology through user’s example queries using SPARQL queries.Keywords: prayer, salah, ontology, SPARQL queries, reasoning
Procedia PDF Downloads 418777 Development of a French to Yorùbá Machine Translation System
Authors: Benjamen Nathaniel, Eludiora Safiriyu Ijiyemi, Egume Oneme Lucky
Abstract:
A review on machine translation systems shows that a lot of computational artefacts has been carried out to translate written or spoken texts from a source language to Yorùbá language through Machine Translation systems. However, there are no work on French to Yorùbá language machine translation system; hence, the study investigated the process involved in the translation of French-to-Yorùbá language equivalent with the view to adopting a rule- based MT approach to build a Machine Translation framework from simple sentences administered through questionnaire. Articles and relevant textbooks were reviewed with key speakers of both languages interviewed to find out the processes involved in the translation of French language and their equivalent in Yorùbálanguage simple sentences using home domain terminologies. Achieving this, a model was formulated using phrase grammar structure, re-write rule, parse tree, automata theory- based techniques, designed and implemented respectively with unified modeling language (UML) and python programming language. Analysing the result, it was observed when carrying out the result that, the Machine Translation system performed 18.45% above Experimental Subject Respondent and 2.7% below Linguistics Expert when analysed with word orthography, sentence syntax and semantic correctness of the sentences. And, when compared with Google Machine Translation system, it was noticed that the developed system performed better on lexicons of the target language.Keywords: machine translation (MT), rule-based, French language, Yoru`ba´ language
Procedia PDF Downloads 77776 An Adaptive Distributed Incremental Association Rule Mining System
Authors: Adewale O. Ogunde, Olusegun Folorunso, Adesina S. Sodiya
Abstract:
Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.Keywords: adaptivity, data mining, distributed association rule mining, incremental mining, mobile agents
Procedia PDF Downloads 393775 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 66774 Federalism, Dual Sovereignty, and the Supreme Court of Nigeria
Authors: Edoba Bright Omoregie
Abstract:
Nigeria became a federation in 1954 six years before it gained independence away from British colonial rule. The country has remained a federation since then despite the challenging circumstances of military rule and civil strife which have tasked its federal credentials. Since 1961, when it first decided a federalism dispute, cases over vertical and horizontal powers have inundated the country’s Supreme Court. In its current practice of federalism after democratic rule was resumed in 1999, the country has witnessed a spell of intergovernmental disputes over a good number of federalism issues. Such conflicts have eventually found their way to the Supreme Court for resolution, not as a final appellate court (which it is in other non-federal matters) but as a court of first and final instance following the constitutional provision granting the court such power. However, in April 2014 one of such disputes was denied hearing by the court when it declined original jurisdiction to determine the matter. The suit was instituted by one state of the federation against the federal government and the other 35 states challenging the collection of value added tax (a consumption tax)on certain goods and services within the state. The paper appraises the rationale of the court’s decision and reason that its decision to decline jurisdiction is the result of an avoidable misunderstanding of the dual sovereignty instituted by the federal system of Nigeria as well as a misconception of the role which the court is constitutionally assigned to play in resolving intergovernmental schisms in the federal system.Keywords: dual sovereignty, federalism, intergovernmental conflict, Supreme Court
Procedia PDF Downloads 555773 Democracy and Security Challenge in Nigeria, 1999, Till Date
Authors: Abdulsalami M. Deji
Abstract:
Prolonged military incursion in Nigeria politics which favored the oligarchy brought agitation for democratic rule it exacerbated ethnicity integration of minority for fear of domination. The advent of democracy ushered in new breath of life to Nigerians from the shackle of military oppression to democratic governance. Democratic rule became a mirage as a result of prevalent insecurity in Nigeria; effort to bring lasting peace to all sections of the country had not yielded positive result till date. In the process of struggling for democracy among ethnic groups in Nigeria, they had instituted various militia groups defending the interest of their identity due to unequal distribution of wealth by military junta. When democracy came on board, these various militia groups became demons hunting democratic institutions. Quest by the successful government to find lasting solution has proved abortive. The security of politics which guaranteed stability is not visible in Nigeria, what we have now is politics of security. The unrest in Nigeria today has cripple socio-political and economy of the nation; the growth of economy favored elites without meaningful impact on the common man. This paper focus on the effects of democracy on Nigerians and, how security under democratic rule has hindered dividends of democracy since 1999-till date and way forward. The source is strictly base on secondary source from textbook, newspapers, internet, and journals.Keywords: democracy, interest, militia, security
Procedia PDF Downloads 336772 Externalizing Behavior Problems Influencing Social Behavior in Early Adolescence
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
This study focuses on early adolescent externalizing behavioral problems which specifically concentrate on rule breaking behavior and aggressive behavior using the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose was to analyze the relationships between the externalizing behavioral problems and relevant background variables such as sports activities, hobbies, chores and the number of close friends. The stratified sampling method was used to collect data from 1975 participants. The results indicated that several background variables as predictors could significantly predict rule breaking behavior and aggressive behavior. Further, a hierarchical modeling method was used to explore the causal relations among background variables, breaking behavior variables and aggressive behavior variables.Keywords: aggressive behavior, breaking behavior, early adolescence, externalizing problem
Procedia PDF Downloads 508771 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model
Authors: Donatella Giuliani
Abstract:
In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation
Procedia PDF Downloads 217770 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization
Procedia PDF Downloads 437769 Forecasting Unusual Infection of Patient Used by Irregular Weighted Point Set
Authors: Seema Vaidya
Abstract:
Mining association rule is a key issue in data mining. In any case, the standard models ignore the distinction among the exchanges, and the weighted association rule mining does not transform on databases with just binary attributes. This paper proposes a novel continuous example and executes a tree (FP-tree) structure, which is an increased prefix-tree structure for securing compacted, discriminating data about examples, and makes a fit FP-tree-based mining system, FP enhanced capacity algorithm is used, for mining the complete game plan of examples by illustration incessant development. Here, this paper handles the motivation behind making remarkable and weighted item sets, i.e. rare weighted item set mining issue. The two novel brightness measures are proposed for figuring the infrequent weighted item set mining issue. Also, the algorithm are handled which perform IWI which is more insignificant IWI mining. Moreover we utilized the rare item set for choice based structure. The general issue of the start of reliable definite rules is troublesome for the grounds that hypothetically no inciting technique with no other person can promise the rightness of influenced theories. In this way, this framework expects the disorder with the uncommon signs. Usage study demonstrates that proposed algorithm upgrades the structure which is successful and versatile for mining both long and short diagnostics rules. Structure upgrades aftereffects of foreseeing rare diseases of patient.Keywords: association rule, data mining, IWI mining, infrequent item set, frequent pattern growth
Procedia PDF Downloads 399768 Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam
Authors: L. Dahmani, S. Drizi, M. Djemai, A. Boudjemia, M. O. Mechiche
Abstract:
Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3.Keywords: ANSYS, Eurocode 3, finite element method, lateral torsional buckling, steel channel beam
Procedia PDF Downloads 386767 Anti-Corruption in Adverse Contexts: A Strategic Approach
Authors: Mushtaq H. Khan, Antonio Andreoni, Pallavi Roy
Abstract:
Developing countries are characterized by political settlements where formal rules are generally weakly enforced and widely violated. Conventional anti-corruption strategies that focus on improving the general enforcement of a rule of law and raising the costs of corruption facing individual public officials have typically delivered poor results in these contexts. Our alternative approach is to identify anti-corruption strategies that have a high impact and that are feasible to implement in these contexts. Our alternative approach identifies anti-corruption strategies from the bottom up. This involves identifying the characteristics of the corruption constraining particular development outcomes. By drawing on theories of rents and rent seeking, and theories of political settlements, we can assess the developmental impact of particular anti-corruption strategies and the feasibility of implementing these strategies. We argue that feasible anti-corruption in these contexts cannot be solely based on conventional anti-corruption strategies. In societies that have widespread rule violations, high-impact anti-corruption is only likely to be feasible if the overall strategy succeeds in aligning the interests and capabilities of powerful organizations at the sectoral level to support the enforcement of particular sets of rules. We examine four related strategies for changing these incentives and capabilities of critical stakeholders at the local or sectoral level, and we argue that this can provide a framework for organizing research on the impact and feasibility of anti-corruption activities in different priority areas in particular countries.Keywords: anti-corruption, development, political settlements analysis, rule of law
Procedia PDF Downloads 421766 A New Assessment of the Chronology of the Vouni Palace
Authors: Seren Sevim Öğmen, Ömer Özyiğit
Abstract:
Vouni Palace is a Persian palace built on a rocky hill in the Lefke district of Cyprus. The palace is one of the limited number of architectures identified, which prove the existence of a Persian period on the island. Since the excavations on the palace were held a very long time ago, there is a need to re-date the cultural layers within the palace using new archaeological evidence and recent studies. The existing chronology has been reviewed and a new chronology has been created according to its architectural structure, floor findings such as ceramics and sculptures and the stratigraphic layer of Room 59 where the Vouni Treasure was found. This work dates the palace in Vouni between the periods of c. 520 BC, deduced from the early period sculptures, and c. 330 BC by the late period floor ceramics. Some earlier dated archaic sculptures are identified in Room 122 – which takes part in the temenos area of the palace, and correspondingly the construction of the palace is dated c. 520 BC. The comparison between Vouni Palace and Persian palaces built in Iran, shows similarities with palaces built during the rule of Darius. It is evident that two main building periods of the palace which are previously identified, represent Persian influence according to its architectural structure and findings. Several floor potteries show that there must be other layer or layers after Vouni Treasure dated 390/380 BC, which was considered as the destruction date of the palace. At this point the forenamed date can indicate the end of a stage, not the end of the period because the palace was still in use until c. 330 BC. The results of the study, in addition to dating the layers of Vouni Palace, enlightens the administrative function of the Palace within the Persian rule in Cyprus.Keywords: administrative, chronology, cyprus, persian rule, vouni palace
Procedia PDF Downloads 117765 A Study on the Nostalgia Contents Analysis of Hometown Alumni in the Online Community
Authors: Heejin Yun, Juanjuan Zang
Abstract:
This study aims to analyze the text terms posted on an online community of people from the same hometown and to understand the topic and trend of nostalgia composed online. For this purpose, this study collected 144 writings which the natives of Yeongjong Island, Incheon, South-Korea have posted on an online community. And it analyzed association relations. As a result, online community texts means that just defining nostalgia as ‘a mind longing for hometown’ is not an enough explanation. Second, texts composed online have abstractness rather than persons’ individual stories. This study figured out the relationship that had the most critical and closest mutual association among the terms that constituted nostalgia through literature research and association rule concerning nostalgia. The result of this study has a characteristic that it summed up the core terms and emotions related to nostalgia.Keywords: nostalgia, cultural memory, data mining, association rule
Procedia PDF Downloads 229764 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change
Authors: Ermias A. Tegegn, Million Meshesha
Abstract:
Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model
Procedia PDF Downloads 142763 Commodity Price Shocks and Monetary Policy
Authors: Faisal Algosair
Abstract:
We examine the role of monetary policy in the presence of commodity price shocks using a Dynamic stochastic general equilibrium (DSGE) model with price and wage rigidities. The model characterizes a commodity exporter by its degree of export diversification, and explores the following monetary regimes: flexible domestic inflation targeting; flexible Consumer Price Index inflation targeting; exchange rate peg; and optimal rule. An increase in the degree of diversification is found to mitigate responses to commodity shocks. The welfare comparison suggests that a flexible exchange rate regime under the optimal rule is preferred to an exchange rate peg. However, monetary policy provides limited stabilization effects in an economy with low degree of export diversification.Keywords: business cycle, commodity price, exchange rate, global financial cycle
Procedia PDF Downloads 97762 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance
Authors: Abdullah Al Farwan, Ya Zhang
Abstract:
In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance
Procedia PDF Downloads 167761 An Ontology for Investment in Chinese Steel Company
Authors: Liming Chen, Baoxin Xu, Zhaoyun Ding, Bin Liu, Xianqiang Zhu
Abstract:
In the era of big data, public investors are faced with more complicated information related to investment decisions than ever before. To survive in the fierce competition, it has become increasingly urgent for investors to combine multi-source knowledge and evaluate the companies’ true value efficiently. For this, a rule-based ontology reasoning method is proposed to support steel companies’ value assessment. Considering the delay in financial disclosure and based on cost-benefit analysis, this paper introduces the supply chain enterprises financial analysis and constructs the ontology model used to value the value of steel company. In addition, domain knowledge is formally expressed with the help of Web Ontology Language (OWL) language and SWRL (Semantic Web Rule Language) rules. Finally, a case study on a steel company in China proved the effectiveness of the method we proposed.Keywords: financial ontology, steel company, supply chain, ontology reasoning
Procedia PDF Downloads 134