Search results for: islamic work ethics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14850

Search results for: islamic work ethics

90 Seismic Stratigraphy of the First Deposits of the Kribi-Campo Offshore Sub-basin (Gulf of Guinea): Pre-cretaceous Early Marine Incursion and Source Rocks Modeling

Authors: Mike-Franck Mienlam Essi, Joseph Quentin Yene Atangana, Mbida Yem

Abstract:

The Kribi-Campo sub-basin belongs to the southern domain of the Cameroon Atlantic Margin in the Gulf of Guinea. It is the African homologous segment of the Sergipe-Alagoas Basin, located at the northeast side of the Brazil margin. The onset of the seafloor spreading period in the Southwest African Margin in general and the study area particularly remains controversial. Various studies locate this event during the Cretaceous times (Early Aptian to Late Albian), while others suggested that this event occurred during Pre-Cretaceous period (Palaeozoic or Jurassic). This work analyses 02 Cameroon Span seismic lines to re-examine the Early marine incursion period of the study area for a better understanding of the margin evolution. The methodology of analysis in this study is based on the delineation of the first seismic sequence, using the reflector’s terminations tracking and the analysis of its internal reflections associated to the external configuration of the package. The results obtained indicate from the bottom upwards that the first deposits overlie a first seismic horizon (H1) associated to “onlap” terminations at its top and underlie a second horizon which shows “Downlap” terminations at its top (H2). The external configuration of this package features a prograded fill pattern, and it is observed within the depocenter area with discontinuous reflections that pinch out against the basement. From east to west, this sequence shows two seismic facies (SF1 and SF2). SF1 has parallel to subparallel reflections, characterized by high amplitude, and SF2 shows parallel and stratified reflections, characterized by low amplitude. The distribution of these seismic facies reveals a lateral facies variation observed. According to the fundamentals works on seismic stratigraphy and the literature review of the geological context of the study area, particularly, the stratigraphical natures of the identified horizons and seismic facies have been highlighted. The seismic horizons H1 and H2 correspond to Top basement and “Downlap Surface,” respectively. SF1 indicates continental sediments (Sands/Sandstone) and SF2 marine deposits (shales, clays). Then, the prograding configuration observed suggests a marine regression. The correlation of these results with the lithochronostratigraphic chart of Sergipe-Alagoas Basin reveals that the first marine deposits through the study area are dated from Pre-Cretaceous times (Palaeozoic or Jurassic). The first deposits onto the basement represents the end of a cycle of sedimentation. The hypothesis of Mike.F. Mienlam Essi is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Joseph.Q. Yene Atangana is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Mbida Yem is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Cretaceous seafloor spreading through the study area is the onset of another cycle of sedimentation. Furthermore, the presence of marine sediments into the first deposits implies that this package could contain marine source rocks. The spatial tracking of these deposits reveals that they could be found in some onshore parts of the Kribi-Campo area or even in the northern side.

Keywords: cameroon span seismic, early marine incursion, kribi-campo sub-basin, pre-cretaceous period, sergipe-alagoas basin

Procedia PDF Downloads 107
89 Effect of Additives on Post-hydrogen Decompression Microstructure and Mechanical Behaviour of PA11 Involved in Type-IV Hydrogen Tank Liners

Authors: Mitia Ramarosaona, Sylvie Castagnet, Damien Halm, Henri-Alexandre Cayzac, Nicolas Dufaure, Philippe Papin

Abstract:

In light of the ongoing energy transition, 'Infrastructure developments' for hydrogen transportation and storage raise studies on the materials employed for hyperbaric vessels. Type IV tanks represent the most mature choice for gaseous hydrogen storage at high pressure – 70MPa. These tanks are made of a composite shell and an internal hydrogen-exposed polymer liner. High pressure conditions lead to severe mechanical loading requiring high resistance. Liner is in contact with hydrogen and undergoes compression – decompression cycles during system filling and emptying. Stresses induced by this loading, coupled with hydrogen diffusion, were found to cause microstructural changes and degradation of mechanical behaviour after decompression phase in some studies on HDPE. These phenomena are similar to those observed in elastomeric components like sealing rings, which can affect permeability and lead to their failure. They may lead to a hydrogen leak, compromising security and tightness of the tank. While these phenomena have been identified in elastomers, they remain less addressed in thermoplastics and consequences post-decompression damages on mechanical behaviour and to the best of author's knowledge was not studied either. Different additives are also included in liner formulation to improve its behaviour. This study aimed to better understand damage micro-mechanisms in PA11s exposed to hydrogen compression-decompression cycles and understand if additives influence their resistance. Samples of pure, plasticized and impact-modified PA11s are exposed to 1, 3 and 8 pressure cycles including hydrogen saturation at 70MPa followed by severe 15-second decompression. After hydrogen exposure and significantly later than full desorption, the residual mechanical behaviour is characterized through impact and monotonic tensile tests, on plain and notched samples. Several techniques of microstructure and micro-nano damage characterization are carried out to assess whether changes in macroscopic properties are driven by microstructural changes in the crystalline structure (SAXS-WAXS acquisitions and SEM micrographs). Thanks to WAXS acquisition and microscopic observation, the effects due to additives and pressure consequences can be decorrelated. Pure PA11 and PA11 with a low percentage of additives show an increase in stress level at the first yielding point after hydrogen cycles. The amplitude of the stress increase is more important in formulation with additives because of changes in PA11 matrix behavior and environment created by additives actions. Plasticizer modifies chain mobility leading to microstructure changes while other additives, more ductile than PA11, is able to cavitate inside PA11 matrix when undergoing decompression. On plasticized formulation, plasticizer migration are suspected to enhance impact of hydrogen cycling on mechanical behaviour. Compared to the literature on HDPE and elastomers, no damages like cavitation or cracking could be evidenced from SAXS experiments on every PA11 formulation tested. In perspectives, on all formulation, experimental work is underway to confirm influence of residual pressure level after decompression on post-decompression damages level, the aim is to better understand the factors affecting the mechanical behavior of thermoplastics subject to mechanical solicitation from decompression in hydrogen tank liners, not mechanical behaviour of liner in hydrogen tanks directly.

Keywords: additives, hydrogen tank liner, microstructural analysis, PA11

Procedia PDF Downloads 45
88 Electromyographic Analysis of Biceps Brachii during Golf Swing and Review of Its Impact on Return to Play Following Tendon Surgery

Authors: Amin Masoumiganjgah, Luke Salmon, Julianne Burnton, Fahimeh Bagheri, Gavin Lenton, S. L. Ezekial Tan

Abstract:

Introduction: The incidence of proximal biceps tenodesis and acute distal biceps repair is increasing, and rehabilitation protocols following both are variable. Golf is a popular sport within Australia, and the Gold Coast has become a Mecca for golfers, with more courses per capita than anywhere else in the world. Currently, there are no clear guidelines regarding return to golf play following biceps procedures. The aim of this study was to determine biceps brachii activation during the golf swing through electromyographic analysis, and subsequently, aid in rehabilitation guidelines and return to golf following tenodesis and repair. Methods: Subjects were amateur golfers with no previous upper limb surgery. Surface electromyography (EMG) and high-speed video recording were used to analyse activation of the left and right biceps brachii and the anterior deltoid during the golf swing. Each participant’s maximum voluntary contraction (MVC) was recorded, and they were then required to hit a golf ball aiming for specific distances of 2, 50, 100 and 150 metres at a driving range. Noraxon myoResearch and Matlab were used for data analysis. Mean % MVC was calculated for leading and trailing arms during the full swing and its’ 4 phases: back-swing, acceleration, early follow-through and late follow-through. Results: 12 golfers (2 female and 10 male), participated in the study. Median age was 27 (25 – 38), with all being right handed. Over all distances, the mean activation of the short and long head of biceps brachii was < 10% through the full swing. When breaking down the 50, 100 and 150m swing into phases, mean MVC activation was lowest in backswing (5.1%), followed by acceleration (9.7%), early follow-through (9.2%), and late follow-through (21.4%). There was more variation and slightly higher activation in the right biceps (trailing arm) in backswing, acceleration, and early follow-through; with higher activation in the leading arm in late follow-through (25.4% leading, 17.3% trailing). 2m putts resulted in low MVC values (3.1% ) with little variation across swing phases. There was considerable individual variation in results – one tense subject averaged 11.0% biceps MVC through the 2m putting stroke and others recorded peak mean MVC biceps activations of 68.9% at 50m, 101.3% at 100m, and 111.3% at 150m. Discussion: Previous studies have investigated the role of rotator cuff, spine, and hip muscles during the golf swing however, to our knowledge, this is the first study that investigates the activation of biceps brachii. Many rehabilitation programs following a biceps tenodesis or repair allow active range against gravity and restrict strengthening exercises until 6 weeks, and this does not appear to be associated with any adverse outcome. Previous studies demonstrate a range of < 10% MVC is similar to the unloaded biceps brachii during walking(1), active elbow flexion with the hand positioned either in pronation or supination will produce MVC < 20% throughout range(2) and elbow flexion with a 4kg dumbbell can produce mean MVC’s of around 40%(3). Our study demonstrates that increasing activation is associated with the leading arm, increasing shot distance and the late follow-through phase. Although the cohort mean MVC of the biceps brachii is <10% through the full swing, variability is high and biceps activation reach peak mean MVC’s of over 100% in different swing phases for some individuals. Given these EMG values, caution is advised when advising patients post biceps procedures to return to long distance golf shots, particularly when the leading arm is involved. Even though it would appear that putting would be as safe as having an unloaded hand out of a sling following biceps procedures, the variability of activation patterns across different golfers would lead us to caution against accelerated golf rehabilitation in those who may be particularly tense golfers. The 50m short iron shot was too long to consider as a chip shot and more work can be done in this area to determine the safety of chipping.

Keywords: electromyographic analysis, biceps brachii rupture, golf swing, tendon surgery

Procedia PDF Downloads 81
87 The Effects of Science, Technology, Engineering and Math Problem-Based Learning on Native Hawaiians and Other Underrepresented, Low-Income, Potential First-Generation High School Students

Authors: Nahid Nariman

Abstract:

The prosperity of any nation depends on its ability to use human potential, in particular, to offer an education that builds learners' competencies to become effective workforce participants and true citizens of the world. Ever since the Second World War, the United States has been a dominant player in the world politically, economically, socially, and culturally. The rapid rise of technological advancement and consumer technologies have made it clear that science, technology, engineering, and math (STEM) play a crucial role in today’s world economy. Exploring the top qualities demanded from new hires in the industry—i.e., problem-solving skills, teamwork, dependability, adaptability, technical and communication skills— sheds light on the kind of path that is needed for a successful educational system to effectively support STEM. The focus of 21st century education has been to build student competencies by preparing them to acquire and apply knowledge, to think critically and creatively, to competently use information, be able to work in teams, to demonstrate intellectual and moral values as well as cultural awareness, and to be able to communicate. Many educational reforms pinpoint various 'ideal' pathways toward STEM that educators, policy makers, and business leaders have identified for educating the workforce of tomorrow. This study will explore how problem-based learning (PBL), an instructional strategy developed in the medical field and adopted with many successful results in K-12 through higher education, is the proper approach to stimulate underrepresented high school students' interest in pursuing STEM careers. In the current study, the effect of a problem-based STEM model on students' attitudes and career interests was investigated using qualitative and quantitative methods. The participants were 71 low-income, native Hawaiian high school students who would be first-generation college students. They were attending a summer STEM camp developed as the result of a collaboration between the University of Hawaii and the Upward Bound Program. The project, funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program, used PBL as an approach in challenging students to engage in solving hands-on, real-world problems in their communities. Pre-surveys were used before camp and post-surveys on the last day of the program to learn about the implementation of the PBL STEM model. A Career Interest Questionnaire provided a way to investigate students’ career interests. After the summer camp, a representative selection of students participated in focus group interviews to discuss their opinions about the PBL STEM camp. The findings revealed a significantly positive increase in students' attitudes towards STEM disciplines and STEM careers. The students' interview results also revealed that students identified PBL to be an effective form of instruction in their learning and in the development of their 21st-century skills. PBL was acknowledged for making the class more enjoyable and for raising students' interest in STEM careers, while also helping them develop teamwork and communication skills in addition to scientific knowledge. As a result, the integration of PBL and a STEM learning experience was shown to positively affect students’ interest in STEM careers.

Keywords: problem-based learning, science education, STEM, underrepresented students

Procedia PDF Downloads 124
86 Teaching Young Children Social and Emotional Learning through Shared Book Reading: Project GROW

Authors: Stephanie Al Otaiba, Kyle Roberts

Abstract:

Background and Significance Globally far too many students read below grade level; thus improving literacy outcomes is vital. Research suggests that non-cognitive factors, including Social and Emotional Learning (SEL) are linked to success in literacy outcomes. Converging evidence exists that early interventions are more effective than later remediation; therefore teachers need strategies to support early literacy while developing students’ SEL and their vocabulary, or language, for learning. This presentation describe findings from a US federally-funded project that trained teachers to provide an evidence-based read-aloud program for young children, using commercially available books with multicultural characters and themes to help their students “GROW”. The five GROW SEL themes include: “I can name my feelings”, “I can learn from my mistakes”, “I can persist”, “I can be kind to myself and others”, and “I can work toward and achieve goals”. Examples of GROW vocabulary (from over 100 words taught across the 5 units) include: emotions, improve, resilient, cooperate, accomplish, responsible, compassion, adapt, achieve, analyze. Methodology This study used a mixed methods research design, with qualitative methods to describe data from teacher feedback surveys (regarding satisfaction, feasibility), observations of fidelity of implementation, and with quantitative methods to assess the effect sizes for student vocabulary growth. GROW Intervention and Teacher Training Procedures Researchers trained classroom teachers to implement GROW. Each thematic unit included four books, vocabulary cards with images of the vocabulary words, and scripted lessons. Teacher training included online and in-person training; researchers incorporated virtual reality videos of instructors with child avatars to model lessons. Classroom teachers provided 2-3 20 min lessons per week ranging from short-term (8 weeks) to longer-term trials for up to 16 weeks. Setting and Participants The setting for the study included two large urban charter schools in the South. Data was collected across two years; during the first year, participants included 7 kindergarten teachers and 108 and the second year involved an additional set of 5 kindergarten and first grade teachers and 65 students. Initial Findings The initial qualitative findings indicate teachers reported the lessons to be feasible to implement and they reported that students enjoyed the books. Teachers found the vocabulary words to be challenging and important. They were able to implement lessons with fidelity. Quantitative analyses of growth for each taught word suggest that students’ growth on taught words ranged from large (ES = .75) to small (<.20). Researchers will contrast the effects for more and less successful books within the GROW units. Discussion and Conclusion It is feasible for teachers of young students to effectively teach SEL vocabulary and themes during shared book reading. Teachers and students enjoyed the books and students demonstrated growth on taught vocabulary. Researchers will discuss implications of the study and about the GROW program for researchers in learning sciences, will describe some limitations about research designs that are inherent in school-based research partnerships, and will provide some suggested directions for future research and practice.

Keywords: early literacy, learning science, language and vocabulary, social and emotional learning, multi-cultural

Procedia PDF Downloads 43
85 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia

Authors: Yetti Marlida, Syukri Arif, Nadirman Haska

Abstract:

Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013

Keywords: oil palm trunk, enzymatic hydrolysis, saccharification

Procedia PDF Downloads 514
84 Psoriasis Diagnostic Test Development: Exploratory Study

Authors: Salam N. Abdo, Orien L. Tulp, George P. Einstein

Abstract:

The purpose of this exploratory study was to gather the insights into psoriasis etiology, treatment, and patient experience, for developing psoriasis and psoriatic arthritis diagnostic test. Data collection methods consisted of a comprehensive meta-analysis of relevant studies and psoriasis patient survey. Established meta-analysis guidelines were used for the selection and qualitative comparative analysis of psoriasis and psoriatic arthritis research studies. Only studies that clearly discussed psoriasis etiology, treatment, and patient experience were reviewed and analyzed, to establish a qualitative data base for the study. Using the insights gained from meta-analysis, an existing psoriasis patient survey was modified and administered to collect additional data as well as triangulate the results. The hypothesis is that specific types of psoriatic disease have specific etiology and pathophysiologic pattern. The following etiology categories were identified: bacterial, environmental/microbial, genetic, immune, infectious, trauma/stress, and viral. Additional results, obtained from meta-analysis and confirmed by patient survey, were the common age of onset (early to mid-20s) and type of psoriasis (plaque; mild; symmetrical; scalp, chest, and extremities, specifically elbows and knees). Almost 70% of patients reported no prescription drug use due to severe side effects and prohibitive cost. These results will guide the development of psoriasis and psoriatic arthritis diagnostic test. The significant number of medical publications classified psoriatic arthritis disease as inflammatory of an unknown etiology. Thus numerous meta-analyses struggle to report any meaningful conclusions since no definitive results have been reported to date. Therefore, return to the basics is an essential step to any future meaningful results. To date, medical literature supports the fact that psoriatic disease in its current classification could be misidentifying subcategories, which in turn hinders the success of studies conducted to date. Moreover, there has been an enormous commercial support to pursue various immune-modulation therapies, thus following a narrow hypothesis/mechanism of action that is yet to yield resolution of disease state. Recurrence and complications may be considered unacceptable in a significant number of these studies. The aim of the ongoing study is to focus on a narrow subgroup of patient population, as identified by this exploratory study via meta-analysis and patient survey, and conduct an exhaustive work up, aiming at mechanism of action and causality before proposing a cure or therapeutic modality. Remission in psoriasis has been achieved and documented in medical literature, such as immune-modulation, phototherapy, various over-the-counter agents, including salts and tar. However, there is no psoriasis and psoriatic arthritis diagnostic test to date, to guide the diagnosis and treatment of this debilitating and, thus far, incurable disease. Because psoriasis affects approximately 2% of population, the results of this study may affect the treatment and improve the quality of life of a significant number of psoriasis patients, potentially millions of patients in the United States alone and many more millions worldwide.

Keywords: biologics, early diagnosis, etiology, immune disease, immune modulation therapy, inflammation skin disorder, phototherapy, plaque psoriasis, psoriasis, psoriasis classification, psoriasis disease marker, psoriasis diagnostic test, psoriasis marker, psoriasis mechanism of action, psoriasis treatment, psoriatic arthritis, psoriatic disease, psoriatic disease marker, psoriatic patient experience, psoriatic patient quality of life, remission, salt therapy, targeted immune therapy

Procedia PDF Downloads 118
83 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.

Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon

Procedia PDF Downloads 229
82 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices

Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett

Abstract:

Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.

Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor

Procedia PDF Downloads 219
81 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
80 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide

Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar

Abstract:

Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.

Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite

Procedia PDF Downloads 285
79 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia PDF Downloads 154
78 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem

Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis

Abstract:

Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile

Procedia PDF Downloads 259
77 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
76 A Comparative Evaluation of Cognitive Load Management: Case Study of Postgraduate Business Students

Authors: Kavita Goel, Donald Winchester

Abstract:

In a world of information overload and work complexities, academics often struggle to create an online instructional environment enabling efficient and effective student learning. Research has established that students’ learning styles are different, some learn faster when taught using audio and visual methods. Attributes like prior knowledge and mental effort affect their learning. ‘Cognitive load theory’, opines learners have limited processing capacity. Cognitive load depends on the learner’s prior knowledge, the complexity of content and tasks, and instructional environment. Hence, the proper allocation of cognitive resources is critical for students’ learning. Consequently, a lecturer needs to understand the limits and strengths of the human learning processes, various learning styles of students, and accommodate these requirements while designing online assessments. As acknowledged in the cognitive load theory literature, visual and auditory explanations of worked examples potentially lead to a reduction of cognitive load (effort) and increased facilitation of learning when compared to conventional sequential text problem solving. This will help learner to utilize both subcomponents of their working memory. Instructional design changes were introduced at the case site for the delivery of the postgraduate business subjects. To make effective use of auditory and visual modalities, video recorded lectures, and key concept webinars were delivered to students. Videos were prepared to free up student limited working memory from irrelevant mental effort as all elements in a visual screening can be viewed simultaneously, processed quickly, and facilitates greater psychological processing efficiency. Most case study students in the postgraduate programs are adults, working full-time at higher management levels, and studying part-time. Their learning style and needs are different from other tertiary students. The purpose of the audio and visual interventions was to lower the students cognitive load and provide an online environment supportive to their efficient learning. These changes were expected to impact the student’s learning experience, their academic performance and retention favourably. This paper posits that these changes to instruction design facilitates students to integrate new knowledge into their long-term memory. A mixed methods case study methodology was used in this investigation. Primary data were collected from interviews and survey(s) of students and academics. Secondary data were collected from the organisation’s databases and reports. Some evidence was found that the academic performance of students does improve when new instructional design changes are introduced although not statistically significant. However, the overall grade distribution of student’s academic performance has changed and skewed higher which shows deeper understanding of the content. It was identified from feedback received from students that recorded webinars served as better learning aids than material with text alone, especially with more complex content. The recorded webinars on the subject content and assessments provides flexibility to students to access this material any time from repositories, many times, and this enhances students learning style. Visual and audio information enters student’s working memory more effectively. Also as each assessment included the application of the concepts, conceptual knowledge interacted with the pre-existing schema in the long-term memory and lowered student’s cognitive load.

Keywords: cognitive load theory, learning style, instructional environment, working memory

Procedia PDF Downloads 145
75 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers

Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie

Abstract:

As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.

Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth

Procedia PDF Downloads 65
74 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

Authors: Martin Alexander Eder, Sergei Semenov

Abstract:

Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.

Keywords: adhesive, fatigue, interface, multiaxial stress

Procedia PDF Downloads 169
73 Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes

Authors: Mohsen Abdelrazek Khorshid Ali Selim

Abstract:

Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning.

Keywords: earthquake resistant buildings, earthquake resistant concrete constructions, new technology for reinforcement of concrete buildings, new technology in concrete reinforcement

Procedia PDF Downloads 64
72 Laying the Proto-Ontological Conditions for Floating Architecture as a Climate Adaptation Solution for Rising Sea Levels: Conceptual Framework and Definition of a Performance Based Design

Authors: L. Calcagni, A. Battisti, M. Hensel, D. S. Hensel

Abstract:

Since the beginning of the 21st century, we have seen a dynamic growth of water-based (WB) architecture, mainly due to the increasing threat of floods caused by sea level rise and heavy rains, all correlated with climate change. At the same time, the shortage of land available for urban development also led architects, engineers, and policymakers to reclaim the seabed or to build floating structures. Furthermore, the drive to produce energy from renewable resources has expanded the sector of offshore research, mining, and energy industry which seeks new types of WB structures. In light of these considerations, the time is ripe to consider floating architecture as a full-fledged building typology. Currently, there is no universally recognized academic definition of a floating building. Research on floating architecture lacks a proper, commonly shared vocabulary and typology distinction. Moreover, there is no global international legal framework for urban development on water, and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, first of all, the research intends to overcome the semantic and typological issues through the conceptualization of floating architecture, laying the proto-ontological conditions for floating development, and secondly to identify the parameters to be considered in the definition of a specific PBBD framework, setting the scene for national planning strategies. The theoretical overview and re-semanticization process involve the attribution of a new meaning to the term floating architecture. This terminological work of semantic redetermination is carried out through a systematic literature review and involves quantitative and historical research as well as logical argumentation methods. As it is expected that floating urban development is most likely to take place as an extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than to those of the offshore industry. Therefore, the identification and categorization of parameters –looking towards the potential formation of a PBBD framework for floating development– takes the urban and architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics (i.e. stability and buoyancy) from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of regulatory systems that are effective in different countries around the world, addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, inhabiting water is proposed not only as a viable response to the problem of rising sea levels, thus as a resilient frontier for urban development, but also as a response to energy insecurity, clean water, and food shortages, environmental concerns, and urbanization, in line with Blue Economy principles and the Agenda 2030. This review shows how floating architecture is to all intents and purposes, an urban adaptation measure and a solution towards self-sufficiency and energy-saving objectives. Moreover, the adopted methodology is, to all extents, open to further improvements and integrations, thus not rigid and already completely determined. Along with new designs and functions that will come into play in the practice field, eventually, life on water will seem no more unusual than life on land, especially by virtue of the multiple advantages it provides not only to users but also to the environment.

Keywords: adaptation measures, building typology, floating architecture, performance based building design, rising sea levels

Procedia PDF Downloads 97
71 Auditory Rehabilitation via an VR Serious Game for Children with Cochlear Implants: Bio-Behavioral Outcomes

Authors: Areti Okalidou, Paul D. Hatzigiannakoglou, Aikaterini Vatou, George Kyriafinis

Abstract:

Young children are nowadays adept at using technology. Hence, computer-based auditory training programs (CBATPs) have become increasingly popular in aural rehabilitation for children with hearing loss and/or with cochlear implants (CI). Yet, their clinical utility for prognostic, diagnostic, and monitoring purposes has not been explored. The purposes of the study were: a) to develop an updated version of the auditory rehabilitation tool for Greek-speaking children with cochlear implants, b) to develop a database for behavioral responses, and c) to compare accuracy rates and reaction times in children differing in hearing status and other medical and demographic characteristics, in order to assess the tool’s clinical utility in prognosis, diagnosis, and progress monitoring. The updated version of the auditory rehabilitation tool was developed on a tablet, retaining the User-Centered Design approach and the elements of the Virtual Reality (VR) serious game. The visual stimuli were farm animals acting in simple game scenarios designed to trigger children’s responses to animal sounds, names, and relevant sentences. Based on an extended version of Erber’s auditory development model, the VR game consisted of six stages, i.e., sound detection, sound discrimination, word discrimination, identification, comprehension of words in a carrier phrase, and comprehension of sentences. A familiarization stage (learning) was set prior to the game. Children’s tactile responses were recorded as correct, false, or impulsive, following a child-dependent set up of a valid delay time after stimulus offset for valid responses. Reaction times were also recorded, and the database was in Εxcel format. The tablet version of the auditory rehabilitation tool was piloted in 22 preschool children with Νormal Ηearing (ΝΗ), which led to improvements. The study took place in clinical settings or at children’s homes. Fifteen children with CI, aged 5;7-12;3 years with post-implantation 0;11-5;1 years used the auditory rehabilitation tool. Eight children with CI were monolingual, two were bilingual and five had additional disabilities. The control groups consisted of 13 children with ΝΗ, aged 2;6-9;11 years. A comparison of both accuracy rates, as percent correct, and reaction times (in sec) was made at each stage, across hearing status, age, and also, within the CI group, based on presence of additional disability and bilingualism. Both monolingual Greek-speaking children with CI with no additional disabilities and hearing peers showed high accuracy rates at all stages, with performances falling above the 3rd quartile. However, children with normal hearing scored higher than the children with CI, especially in the detection and word discrimination tasks. The reaction time differences between the two groups decreased in language-based tasks. Results for children with CI with additional disability or bilingualism varied. Finally, older children scored higher than younger ones in both groups (CI, NH), but larger differences occurred in children with CI. The interactions between familiarization of the software, age, hearing status and demographic characteristics are discussed. Overall, the VR game is a promising tool for tracking the development of auditory skills, as it provides multi-level longitudinal empirical data. Acknowledgment: This work is part of a project that has received funding from the Research Committee of the University of Macedonia under the Basic Research 2020-21 funding programme.

Keywords: VR serious games, auditory rehabilitation, auditory training, children with cochlear implants

Procedia PDF Downloads 89
70 Urban Ecosystem Health and Urban Agriculture

Authors: Mahbuba Kaneez Hasna

Abstract:

Introductory Statement outlining the background: Little has been written about political ecology of urban gardening, such as a network of knowledge generation, technologies of food production and distribution, food consumption practices, and the regulation of ‘agricultural activities. For urban food gardens to sustain as a long-term food security enterprise, we will need to better understand the anthropological, ecological, political, and institutional factors influencing their development, management, and ongoing viability. Significance of the study: Dhaka as one of the fastest growing city. There are currently no studies regards to Bangladesh on how urban slum dwellerscope with the changing urban environment in the city, where they overcome challenges, and how they cope with the urban ecological cycle of food and vegetable production. It is also essential to understand the importance of their access to confined spaces in the slums they apply their indigenous knowledge. These relationships in nature are important factors in community and conservation ecology. Until now, there has been no significant published academic work on relationships between urban and environmental anthropology, urban planning, geography, ecology, and social anthropology with a focus on urban agriculture and how this contributes to the moral economies, indigenous knowledge, and government policies in order to improve the lives and livelihoods of slum dwellers surrounding parks and open spaces in Dhaka, Bangladesh. Methodology: it have applied participant observation, semi-structured questionnaire-based interviews, and focus group discussions to collect social data. Interviews were conducted with the urban agriculture practitioners who are slum dwellers who carry out their urban agriculture activities. Some of the interviews were conducted with non-government organisations (NGOs) and local and state government officials, using semi-structured interviews. Using these methods developed a clearer understanding of how green space cultivation, local economic self-reliance, and urban gardening are producing distinctive urban ecologies in Dhaka and their policy-implications on urban sustainability. Major findings of the study: The research provided an in-depth knowledge on the challenges that slum dwellers encounter in establishing and maintaining urban gardens, such as the economic development of the city, conflicting political agendas, and environmental constraints in areas within which gardening activities take place. The research investigated (i) How do slum dwellers perform gardening practices from rural areas to open spaces in the city? (ii) How do men and women’s ethno-botanical knowledge contribute to urban biodiversity; (iii) And how do slum dwellers navigate complex constellations of land use policy, competing political agendas, and conflicting land and water tenures to meet livelihood functions provided by their gardens. Concluding statement: Lack of infrastructure facilities such as water supply and sanitation, micro-drains and waste disposal areas, and poor access to basic health care services increase the misery of people in the slum areas. Lack of environmental health awareness information for farmers, such as the risks from the use of chemical pesticides in gardens and from grazing animals in contaminated fields or cropping and planting trees or vegetable in contaminated dumping grounds, can all cause high health risk to humans and their environment.

Keywords: gender, urban agriculture, ecosystem health, urban slum systems

Procedia PDF Downloads 84
69 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel

Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon

Abstract:

The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.

Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling

Procedia PDF Downloads 84
68 IEEE802.15.4e Based Scheduling Mechanisms and Systems for Industrial Internet of Things

Authors: Ho-Ting Wu, Kai-Wei Ke, Bo-Yu Huang, Liang-Lin Yan, Chun-Ting Lin

Abstract:

With the advances in advanced technology, wireless sensor network (WSN) has become one of the most promising candidates to implement the wireless industrial internet of things (IIOT) architecture. However, the legacy IEEE 802.15.4 based WSN technology such as Zigbee system cannot meet the stringent QoS requirement of low powered, real-time, and highly reliable transmission imposed by the IIOT environment. Recently, the IEEE society developed IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) access mode to serve this purpose. Furthermore, the IETF 6TiSCH working group has proposed standards to integrate IEEE 802.15.4e with IPv6 protocol smoothly to form a complete protocol stack for IIOT. In this work, we develop key network technologies for IEEE 802.15.4e based wireless IIoT architecture, focusing on practical design and system implementation. We realize the OpenWSN-based wireless IIOT system. The system architecture is divided into three main parts: web server, network manager, and sensor nodes. The web server provides user interface, allowing the user to view the status of sensor nodes and instruct sensor nodes to follow commands via user-friendly browser. The network manager is responsible for the establishment, maintenance, and management of scheduling and topology information. It executes centralized scheduling algorithm, sends the scheduling table to each node, as well as manages the sensing tasks of each device. Sensor nodes complete the assigned tasks and sends the sensed data. Furthermore, to prevent scheduling error due to packet loss, a schedule inspection mechanism is implemented to verify the correctness of the schedule table. In addition, when network topology changes, the system will act to generate a new schedule table based on the changed topology for ensuring the proper operation of the system. To enhance the system performance of such system, we further propose dynamic bandwidth allocation and distributed scheduling mechanisms. The developed distributed scheduling mechanism enables each individual sensor node to build, maintain and manage the dedicated link bandwidth with its parent and children nodes based on locally observed information by exchanging the Add/Delete commands via two processes. The first process, termed as the schedule initialization process, allows each sensor node pair to identify the available idle slots to allocate the basic dedicated transmission bandwidth. The second process, termed as the schedule adjustment process, enables each sensor node pair to adjust their allocated bandwidth dynamically according to the measured traffic loading. Such technology can sufficiently satisfy the dynamic bandwidth requirement in the frequently changing environments. Last but not least, we propose a packet retransmission scheme to enhance the system performance of the centralized scheduling algorithm when the packet delivery rate (PDR) is low. We propose a multi-frame retransmission mechanism to allow every single network node to resend each packet for at least the predefined number of times. The multi frame architecture is built according to the number of layers of the network topology. Performance results via simulation reveal that such retransmission scheme is able to provide sufficient high transmission reliability while maintaining low packet transmission latency. Therefore, the QoS requirement of IIoT can be achieved.

Keywords: IEEE 802.15.4e, industrial internet of things (IIOT), scheduling mechanisms, wireless sensor networks (WSN)

Procedia PDF Downloads 160
67 Implementing Equitable Learning Experiences to Increase Environmental Awareness and Science Proficiency in Alabama’s Schools and Communities

Authors: Carly Cummings, Maria Soledad Peresin

Abstract:

Alabama has a long history of racial injustice and unsatisfactory educational performance. In the 1870s Jim Crow laws segregated public schools and disproportionally allocated funding and resources to white institutions across the South. Despite the Supreme Court ruling to integrate schools following Brown vs. the Board of Education in 1954, Alabama’s school system continued to exhibit signs of segregation, compounded by “white flight” and the establishment of exclusive private schools, which still exist today. This discriminatory history has had a lasting impact of the state’s education system, reflected in modern school demographics and achievement data. It is well known that Alabama struggles with education performance, especially in science education. On average, minority groups scored the lowest in science proficiency. In Alabama, minority populations are concentrated in a region known as the Black Belt, which was once home to countless slave plantations and was the epicenter of the Civil Rights Movement. Today the Black Belt is characterized by a high density of woodlands and plays a significant role in Alabama’s leading economic industry-forest products. Given the economic importance of forestry and agriculture to the state, environmental science proficiency is essential to its stability; however, it is neglected in areas where it is needed most. To better understand the inequity of science education within Alabama, our study first investigates how geographic location, demographics and school funding relate to science achievement scores using ArcGIS and Pearson’s correlation coefficient. Additionally, our study explores the implementation of a relevant, problem-based, active learning lesson in schools. Relevant learning engages students by connecting material to their personal experiences. Problem-based active learning involves real-world problem-solving through hands-on experiences. Given Alabama’s significant woodland coverage, educational materials on forest products were developed with consideration of its relevance to students, especially those located in the Black Belt. Furthermore, to incorporate problem solving and active learning, the lesson centered around students using forest products to solve environmental challenges, such as water pollution- an increasing challenge within the state due to climate change. Pre and post assessment surveys were provided to teachers to measure the effectiveness of the lesson. In addition to pedagogical practices, community and mentorship programs are known to positively impact educational achievements. To this end, our work examines the results of surveys measuring educational professionals’ attitudes toward a local mentorship group within the Black Belt and its potential to address environmental and science literacy. Additionally, our study presents survey results from participants who attended an educational community event, gauging its effectiveness in increasing environmental and science proficiency. Our results demonstrate positive improvements in environmental awareness and science literacy with relevant pedagogy, mentorship, and community involvement. Implementing these practices can help provide equitable and inclusive learning environments and can better equip students with the skills and knowledge needed to bridge this historic educational gap within Alabama.

Keywords: equitable education, environmental science, environmental education, science education, racial injustice, sustainability, rural education

Procedia PDF Downloads 68
66 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 56
65 Observing Teaching Practices Through the Lenses of Self-Regulated Learning: A Study Within the String Instrument Individual Context

Authors: Marija Mihajlovic Pereira

Abstract:

Teaching and learning a musical instrument is challenging for both teachers and students. Teachers generally use diverse strategies to resolve students' particular issues in a one-to-one context. Considering individual sessions as a supportive educational context, the teacher can play a decisive role in stimulating and promoting self-regulated learning strategies, especially with beginning learners. The teachers who promote self-controlling behaviors, strategic monitoring, and regulation of actions toward goals could expect their students to practice more qualitatively and consciously. When encouraged to adopt self-regulation habits, students' could benefit from greater productivity on a longer path. Founded on Bary Zimmerman's cyclical model that comprehends three phases - forethought, performance, and self-reflection, this work aims to articulate self-regulated and music learning. Self-regulated learning appeals to the individual's attitude in planning, controlling, and reflecting on their performance. Furthermore, this study aimed to present an observation grid for perceiving teaching instructions that encourage students' controlling cognitive behaviors in light of the belief that conscious promotion of self-regulation may motivate strategic actions toward goals in musical performance. The participants, two teachers, and two students have been involved in the social inclusion project in Lisbon (Portugal). The author and one independent inter-observer analyzed six video-recorded string instrument lessons. The data correspond to three sessions per teacher lectured to one (different) student. Violin (f) and violoncello (m) teachers hold a Master's degree in music education and approximately five years of experience. In their second year of learning an instrument, students have acquired reasonable skills in musical reading, posture, and sound quality until then. The students also manifest positive learning behaviors, interest in learning a musical instrument, although their study habits are still inconsistent. According to the grid's four categories (parent codes), in-class rehearsal frames were coded using MaxQda software, version 20, according to the grid's four categories (parent codes): self-regulated learning, teaching verbalizations, teaching strategies, and students' in-class performance. As a result, selected rehearsal frames qualitatively describe teaching instructions that might promote students' body and hearing awareness, such as "close the eyes while playing" or "sing to internalize the pitch." Another analysis type, coding the short video events according to the observation grid's subcategories (child codes), made it possible to perceive the time teachers dedicate to specific verbal or non-verbal strategies. Furthermore, a coding overlay analysis indicated that teachers tend to stimulate. (i) Forethought – explain tasks, offer feedback and ensure that students identify a goal, (ii) Performance – teach study strategies and encourage students to sing and use vocal abilities to ensure inner audition, (iii) Self-reflection – frequent inquiring and encouraging the student to verbalize their perception of performance. Although developed in the context of individual string instrument lessons, this classroom observation grid brings together essential variables in a one-to-one lesson. It may find utility in a broader context of music education due to the possibility to organize, observe and evaluate teaching practices. Besides that, this study contributes to cognitive development by suggesting a practical approach to fostering self-regulated learning.

Keywords: music education, observation grid, self-regulated learning, string instruments, teaching practices

Procedia PDF Downloads 98
64 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study

Authors: Ankur Chaudhuri, Sibani Sen Chakraborty

Abstract:

In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.

Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation

Procedia PDF Downloads 131
63 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case

Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.

Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe

Procedia PDF Downloads 105
62 An Innovation Decision Process View in an Adoption of Total Laboratory Automation

Authors: Chia-Jung Chen, Yu-Chi Hsu, June-Dong Lin, Kun-Chen Chan, Chieh-Tien Wang, Li-Ching Wu, Chung-Feng Liu

Abstract:

With fast advances in healthcare technology, various total laboratory automation (TLA) processes have been proposed. However, adopting TLA needs quite high funding. This study explores an early adoption experience by Taiwan’s large-scale hospital group, the Chimei Hospital Group (CMG), which owns three branch hospitals (Yongkang, Liouying and Chiali, in order by service scale), based on the five stages of Everett Rogers’ Diffusion Decision Process. 1.Knowledge stage: Over the years, two weaknesses exists in laboratory department of CMG: 1) only a few examination categories (e.g., sugar testing and HbA1c) can now be completed and reported within a day during an outpatient clinical visit; 2) the Yongkang Hospital laboratory space is dispersed across three buildings, resulting in duplicated investment in analysis instruments and inconvenient artificial specimen transportation. Thus, the senior management of the department raised a crucial question, was it time to process the redesign of the laboratory department? 2.Persuasion stage: At the end of 2013, Yongkang Hospital’s new building and restructuring project created a great opportunity for the redesign of the laboratory department. However, not all laboratory colleagues had the consensus for change. Thus, the top managers arranged a series of benchmark visits to stimulate colleagues into being aware of and accepting TLA. Later, the director of the department proposed a formal report to the top management of CMG with the results of the benchmark visits, preliminary feasibility analysis, potential benefits and so on. 3.Decision stage: This TLA suggestion was well-supported by the top management of CMG and, finally, they made a decision to carry out the project with an instrument-leasing strategy. After the announcement of a request for proposal and several vendor briefings, CMG confirmed their laboratory automation architecture and finally completed the contracts. At the same time, a cross-department project team was formed and the laboratory department assigned a section leader to the National Taiwan University Hospital for one month of relevant training. 4.Implementation stage: During the implementation, the project team called for regular meetings to review the results of the operations and to offer an immediate response to the adjustment. The main project tasks included: 1) completion of the preparatory work for beginning the automation procedures; 2) ensuring information security and privacy protection; 3) formulating automated examination process protocols; 4) evaluating the performance of new instruments and the instrument connectivity; 5)ensuring good integration with hospital information systems (HIS)/laboratory information systems (LIS); and 6) ensuring continued compliance with ISO 15189 certification. 5.Confirmation stage: In short, the core process changes include: 1) cancellation of signature seals on the specimen tubes; 2) transfer of daily examination reports to a data warehouse; 3) routine pre-admission blood drawing and formal inpatient morning blood drawing can be incorporated into an automatically-prepared tube mechanism. The study summarizes below the continuous improvement orientations: (1) Flexible reference range set-up for new instruments in LIS. (2) Restructure of the specimen category. (3) Continuous review and improvements to the examination process. (4) Whether installing the tube (specimen) delivery tracks need further evaluation.

Keywords: innovation decision process, total laboratory automation, health care

Procedia PDF Downloads 419
61 Burkholderia Cepacia ST 767 Causing a Three Years Nosocomial Outbreak in a Hemodialysis Unit

Authors: Gousilin Leandra Rocha Da Silva, Stéfani T. A. Dantas, Bruna F. Rossi, Erika R. Bonsaglia, Ivana G. Castilho, Terue Sadatsune, Ary Fernandes Júnior, Vera l. M. Rall

Abstract:

Kidney failure causes decreased diuresis and accumulation of nitrogenous substances in the body. To increase patient survival, hemodialysis is used as a partial substitute for renal function. However, contamination of the water used in this treatment, causing bacteremia in patients, is a worldwide concern. The Burkholderia cepacia complex (Bcc), a group of bacteria with more than 20 species, is frequently isolated from hemodialysis water samples and comprises opportunistic bacteria, affecting immunosuppressed patients, due to its wide variety of virulence factors, in addition to innate resistance to several antimicrobial agents, contributing to the permanence in the hospital environment and to the pathogenesis in the host. The objective of the present work was to characterize molecularly and phenotypically Bcc isolates collected from the water and dialysate of the Hemodialysis Unit and from the blood of patients at a Public Hospital in Botucatu, São Paulo, Brazil, between 2019 and 2021. We used 33 Bcc isolates, previously obtained from blood cultures from patients with bacteremia undergoing hemodialysis treatment (2019-2021) and 24 isolates obtained from water and dialysate samples in a Hemodialysis Unit (same period). The recA gene was sequenced to identify the specific species among the Bcc group. All isolates were tested for the presence of some genes that encode virulence factors such as cblA, esmR, zmpA and zmpB. Considering the epidemiology of the outbreak, the Bcc isolates were molecularly characterized by Multi Locus Sequence Type (MLST) and by pulsed-field gel electrophoresis (PFGE). The verification and quantification of biofilm in a polystyrene microplate were performed by submitting the isolates to different incubation temperatures (20°C, average water temperature and 35°C, optimal temperature for group growth). The antibiogram was performed with disc diffusion tests on agar, using discs impregnated with cefepime (30µg), ceftazidime (30µg), ciprofloxacin (5µg), gentamicin (10µg), imipenem (10µg), amikacin 30µg), sulfametazol/trimethoprim (23.75/1.25µg) and ampicillin/sulbactam (10/10µg). The presence of ZmpB was identified in all isolates, while ZmpA was observed in 96.5% of the isolates, while none of them presented the cblA and esmR genes. The antibiogram of the 33 human isolates indicated that all were resistant to gentamicin, colistin, ampicillin/sulbactam and imipenem. 16 (48.5%) isolates were resistant to amikacin and lower rates of resistance were observed for meropenem, ceftazidime, cefepime, ciprofloxacin and piperacycline/tazobactam (6.1%). All isolates were sensitive to sulfametazol/trimethoprim, levofloxacin and tigecycline. As for the water isolates, resistance was observed only to gentamicin (34.8%) and imipenem (17.4%). According to PFGE results, all isolates obtained from humans and water belonged to the same pulsotype (1), which was identified by recA sequencing as B. cepacia¸, belonging to sequence type ST-767. By observing a single pulse type over three years, one can observe the persistence of this isolate in the pipeline, contaminating patients undergoing hemodialysis, despite the routine disinfection of water with peracetic acid. This persistence is probably due to the production of biofilm, which protects bacteria from disinfectants and, making this scenario more critical, several isolates proved to be multidrug-resistant (resistance to at least three groups of antimicrobials), turning the patient care even more difficult.

Keywords: hemodialysis, burkholderia cepacia, PFGE, MLST, multi drug resistance

Procedia PDF Downloads 99