Search results for: weather prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2968

Search results for: weather prediction

1528 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 535
1527 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus

Authors: Majid Forghani, Michael Khachay

Abstract:

In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.

Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition

Procedia PDF Downloads 156
1526 Tourism Area Development Optimation Based on Solar-Generated Renewable Energy Technology at Karimunjawa, Central Java Province, Indonesia

Authors: Yanuar Tri Wahyu Saputra, Ramadhani Pamapta Putra

Abstract:

Karimunjawa is one among Indonesian islands which is lacking of electricity supply. Despite condition above, Karimunjawa is an important tourism object in Indonesia's Central Java Province. Solar Power Plant is a potential technology to be applied in Karimunjawa, in order to fulfill the island's electrical supply need and to increase daily life and tourism quality among tourists and local population. This optimation modeling of Karimunjawa uses HOMER software program. The data we uses include wind speed data in Karimunjawa from BMKG (Indonesian Agency for Meteorology, Climatology and Geophysics), annual weather data in Karimunjawa from NASA, electricity requirements assumption data based on number of houses and business infrastructures in Karimunjawa. This modeling aims to choose which three system categories offer the highest financial profit with the lowest total Net Present Cost (NPC). The first category uses only PV with 8000 kW of electrical power and NPC value of $6.830.701. The second category uses hybrid system which involves both 1000 kW PV and 100 kW generator which results in total NPC of $6.865.590. The last category uses only generator with 750 kW of electrical power that results in total NPC of $ 16.368.197, the highest total NPC among the three categories. Based on the analysis above, we can conclude that the most optimal way to fulfill the electricity needs in Karimunjawa is to use 8000 kW PV with lower maintenance cost.

Keywords: Karimunjawa, renewable energy, solar power plant, HOMER

Procedia PDF Downloads 467
1525 A Comparative Study on Compliment Response between Indonesian EFL Students and English Native Speakers

Authors: Maria F. Seran

Abstract:

In second language interaction, an EFL student always carries his knowledge of targeted language and sometimes gets influenced by his first language cultures which makes him transfer his utterances from the first language to the second language. The influence of L1 cultures somehow can lead to face-threatening act when it comes to responding on speech act, for instance, compliment. A speaker praises a compliment to show gratitude, and in return, he expects for compliment respond uttered by the hearer. While Western people use more acceptance continuum on compliment response, Indonesians utter more denial continuum which can somehow put the speakers into a face-threating situation and offense. This study investigated compliment response employed by EFL students and English native speakers. The study was distinct as none compliment response studies had been conducted to compare the compliment response between English native speakers and two different Indonesian EFL proficiency groups in which this research sought to meet this need. This study was significant for EFL teachers because it gave insight on cross-cultural understanding and brought pedagogical implication on explicit pragmatic instruction. Two research questions were set, 1. How do Indonesian EFL students and English native speakers respond compliments? 2. Is there any correlation between Indonesia EFL students’ proficiency and their compliment response use in English? The study involved three groups of participants; 5 English native speakers, 10 high-proficiency and 10 low-proficiency Indonesian EFL university students. The research instruments used in this study were as follows, an online TOEFL prediction test, focusing on grammar skill which was modified from Barron TOEFL exercise test, and a discourse completion task (DCT), consisting of 10 compliment respond items. Based on the research invitation, 20 second-year university students majoring in English education at Widya Mandira Catholic University, Kupang, East Nusa Tenggara, Indonesia who willingly participated in the research took the TOEFL prediction test online from the link provided. Students who achieved score 75-100 in test were categorized as high-proficiency students, while, students who attained score below 74 were considered as low-proficiency students. Then, the DCT survey was administered to these EFL groups and the native speaker group. Participants’ responses were coded and analyzed using categories of compliment response framework proposed by Tran. The study found out that 5 native speakers applied more compliment upgrades and appreciation token in compliment response, whereas, Indonesian EFL students combined some compliment response strategies in their utterance, such as, appreciation token, return and compliment downgrade. There is no correlation between students’ proficiency level and their CR responds as most EFL students in both groups produced less varied compliment responses and only 4 Indonesian high-proficiency students uttered more varied and were similar to the native speakers. The combination strategies used by EFL students can be explained as the influence of pragmatic transfer from L1 to L2; therefore, EFL teachers should explicitly teach more compliment response strategies to raise students’ awareness on English culture and elaborate their speaking to be more competence as close to native speakers as possible.

Keywords: compliment response, English native speakers, Indonesian EFL students, speech acts

Procedia PDF Downloads 148
1524 Planning and Urban Climate Change Adaptation: Italian Literature Review

Authors: Mara Balestrieri

Abstract:

Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.

Keywords: adaptation, bibliometric literature, climate change, urban studies

Procedia PDF Downloads 74
1523 Fiber Orientation Measurements in Reinforced Thermoplastics

Authors: Ihsane Modhaffar

Abstract:

Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 532
1522 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City

Procedia PDF Downloads 352
1521 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 180
1520 Bulking Rate of Cassava Genotypes and Their Root Yield Relationship at Guinea Savannah and Forest Transition Agroecological Zone of Nigeria

Authors: Olusegun D. Badewa, E. K. Tsado, A. S. Gana, K. D. Tolorunse, R. U. Okechukwu, P. Iluebbey, S. Ibrahim

Abstract:

Farmers are faced with varying production challenges ranging from unstable weather due to climate change, low yield, malnutrition, cattle invasion, and bush fires that have always affected their livelihood. Research effort must therefore be centered on improving farmers’ livelihood, nutrition, and health by providing early bulking biofortified cassava varieties that could be harvested earlier with reasonable root yield and thereby preventing long stay of the crop on their farmland. This study evaluated cassava genotypes at different harvesting months of 3, 6, 9, and 12 months after planting in order to evaluate their bulking rate at different agroecology of Mokwa and Ubiaja. Data were collected on fresh storage root yield, Harvest index, and Dry matter content. It was shown from the study that traits FSRY, HI, and DM were significant for genotype and months after planting and variable among the genotype while location had no effect on the yield traits. Early bulking genotypes were not high yielding and showed discontinuity at some point across the months. The retrogression in yield performance across months had no effect on the highest yielding. Also, for all the genotypes and across evaluated months, FSRY reduces at 9 MAP due to a reduction in dry matter content during the same month, and the best performing genotype was the genotype IBA90581, followed by IBA120036, IBA130896, and IBA980581 while the least performing was genotype IBA130818.

Keywords: early bulking, dry mater, harvest index, high yielding, root yield

Procedia PDF Downloads 229
1519 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 149
1518 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: neural network, self-organizing map, rule extraction, rule insertion

Procedia PDF Downloads 172
1517 Statistical Analysis of Rainfall Change over the Blue Nile Basin

Authors: Hany Mustafa, Mahmoud Roushdi, Khaled Kheireldin

Abstract:

Rainfall variability is an important feature of semi-arid climates. Climate change is very likely to increase the frequency, magnitude, and variability of extreme weather events such as droughts, floods, and storms. The Blue Nile Basin is facing extreme climate change-related events such as floods and droughts and its possible impacts on ecosystem, livelihood, agriculture, livestock, and biodiversity are expected. Rainfall variability is a threat to food production in the Blue Nile Basin countries. This study investigates the long-term variations and trends of seasonal and annual precipitation over the Blue Nile Basin for 102-year period (1901-2002). Six statistical trend analysis of precipitation was performed with nonparametric Mann-Kendall test and Sen's slope estimator. On the other hands, four statistical absolute homogeneity tests: Standard Normal Homogeneity Test, Buishand Range test, Pettitt test and the Von Neumann ratio test were applied to test the homogeneity of the rainfall data, using XLSTAT software, which results of p-valueless than alpha=0.05, were significant. The percentages of significant trends obtained for each parameter in the different seasons are presented. The study recommends adaptation strategies to be streamlined to relevant policies, enhancing local farmers’ adaptive capacity for facing future climate change effects.

Keywords: Blue Nile basin, climate change, Mann-Kendall test, trend analysis

Procedia PDF Downloads 550
1516 Shock Compressibility of Iron Alloys Calculated in the Framework of Quantum-Statistical Models

Authors: Maxim A. Kadatskiy, Konstantin V. Khishchenko

Abstract:

Iron alloys are widespread components in various types of structural materials which are exposed to intensive thermal and mechanical loads. Various quantum-statistical cell models with the approximation of self-consistent field can be used for the prediction of the behavior of these materials under extreme conditions. The application of these models is even more valid, the higher the temperature and the density of matter. Results of Hugoniot calculation for iron alloys in the framework of three quantum-statistical (the Thomas–Fermi, the Thomas–Fermi with quantum and exchange corrections and the Hartree–Fock–Slater) models are presented. Results of quantum-statistical calculations are compared with results from other reliable models and available experimental data. It is revealed a good agreement between results of calculation and experimental data for terra pascal pressures. Advantages and disadvantages of this approach are shown.

Keywords: alloy, Hugoniot, iron, terapascal pressure

Procedia PDF Downloads 342
1515 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 355
1514 Effects of Storage Methods on Proximate Compositions of African Yam Bean (Sphenostylis stenocarpa) Seeds

Authors: Iyabode A. Kehinde, Temitope A. Oyedele, Clement G. Afolabi

Abstract:

One of the limitations of African yam bean (AYB) (Sphenostylis sternocarpa) is poor storage ability due to the adverse effect of seed-borne fungi. This study was conducted to examine the effects of storage methods on the nutritive composition of AYB seeds stored in three types of storage materials viz; Jute bags, Polypropylene bags, and Plastic Bowls. Freshly harvested seeds of AYB seeds were stored in all the storage materials for 6 months using 2 × 3 factorial (2 AYB cultivars and 3 storage methods) in 3 replicates. The proximate analysis of the stored AYB seeds was carried out at 3 and 6 months after storage using standard methods. The temperature and relative humidity of the storeroom was recorded monthly with Kestrel pocket weather tracker 4000. Seeds stored in jute bags gave the best values for crude protein (24.87%), ash (5.69%) and fat content (6.64%) but recorded least values for crude fibre (2.55%), carbohydrate (50.86%) and moisture content (12.68%) at the 6th month of storage. The temperature of the storeroom decreased from 32.9ºC - 28.3ºC, while the relative humidity increased from 78% - 86%. Decreased incidence of field fungi namely: Rhizopus oryzae, Aspergillus flavus, Geotricum candidum, Aspergillus fumigatus and Mucor meihei was accompanied by the increase in storage fungi viz: Apergillus niger, Mucor hiemalis, Penicillium espansum and Penicillium atrovenetum with prolonged storage. The study showed that of the three storage materials jute bag was more effective at preserving AYB seeds.

Keywords: storage methods, proximate composition, African Yam Bean, fungi

Procedia PDF Downloads 134
1513 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model

Procedia PDF Downloads 391
1512 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie

Authors: Xiaofang Wei

Abstract:

Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.

Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria

Procedia PDF Downloads 176
1511 Partially-Averaged Navier-Stokes for Computations of Flow Around Three-Dimensional Ahmed Bodies

Authors: Maryam Mirzaei, Sinisa Krajnovic´

Abstract:

The paper reports a study about the prediction of flows around simplified vehicles using Partially-Averaged Navier-Stokes (PANS). Numerical simulations are performed for two simplified vehicles: A slanted-back Ahmed body at Re=30 000 and a square back Ahmed body at Re=300 000. A comparison of the resolved and modeled physical flow scales is made with corresponding LES and experimental data for a better understanding of the performance of the PANS model. The PANS model is compared for coarse and fine grid resolutions and it is indicated that even a coarse-grid PANS simulation is able to produce fairly close flow predictions to those from a well-resolved LES simulation. The results indicate the possibility of improvement of the predictions by employing a finer grid resolution.

Keywords: partially-averaged Navier-Stokes, large eddy simulation, PANS, LES, Ahmed body

Procedia PDF Downloads 600
1510 Reliability of Cores Test Result at Elevated Temperature in Case of High Strength Concrete (HSC)

Authors: Waqas Ali

Abstract:

Concrete is broadly used as a structural material in the construction of buildings. When the concrete is exposed to elevated temperature, its strength evaluation is very necessary in the existing structure. In this study, the effect of temperature and the reliability of the core test has been evaluated. For this purpose, the cylindrical cores were extracted from High strength concrete (HSC) specimens that were exposed to the temperature ranging from 300 ℃ to 900 ℃ with a constant duration of 4 hr. This study compares the difference between the standard heated cylinders and the cores taken from them after curing of 90 days. The difference of cylindrical control and binary mix samples and extracted cores revealed that there is 12.19 and 12.38% difference at 300℃, while this difference was found to increase up to 12.89%, 13.03% at 500 ℃. Furthermore, this value is recorded as 12.99%, 13.57% and 14.40%, 14.38% at 700 ℃ and 900 ℃, respectively. A total of four equations were developed through a regression model for the prediction of the strength of concrete for both standard cylinders and extracted cores whose R square values were 0.9733, 0.9627 and 0.9473, 0.9452, respectively.

Keywords: high strength, temperature, core, reliability

Procedia PDF Downloads 73
1509 Applications of Drones in Infrastructures: Challenges and Opportunities

Authors: Jin Fan, M. Ala Saadeghvaziri

Abstract:

Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.

Keywords: bridge, construction, drones, infrastructure, information

Procedia PDF Downloads 124
1508 AI-Driven Strategies for Sustainable Electronics Repair: A Case Study in Energy Efficiency

Authors: Badiy Elmabrouk, Abdelhamid Boujarif, Zhiguo Zeng, Stephane Borrel, Robert Heidsieck

Abstract:

In an era where sustainability is paramount, this paper introduces a machine learning-driven testing protocol to accurately predict diode failures, merging reliability engineering with failure physics to enhance repair operations efficiency. Our approach refines the burn-in process, significantly curtailing its duration, which not only conserves energy but also elevates productivity and mitigates component wear. A case study from GE HealthCare’s repair center vividly demonstrates the method’s effectiveness, recording a high prediction of diode failures and a substantial decrease in energy consumption that translates to an annual reduction of 6.5 Tons of CO2 emissions. This advancement sets a benchmark for environmentally conscious practices in the electronics repair sector.

Keywords: maintenance, burn-in, failure physics, reliability testing

Procedia PDF Downloads 68
1507 Urban Dust Influence on the Foliar Surface and Biochemical Constituents of Selected Plants in the National Capital Region of Delhi, India

Authors: G. P. Gupta, B. Kumar, S. Singh, U. C. Kulshrestha

Abstract:

Very high loadings of atmospheric dust in the Indian region contribute to remarkably higher levels of particulate matter. During dry weather conditions which prevail most of the year, dustfall is deposited onto the foliar surfaces affecting their morphology, stomata and biochemical constituents. This study reports chemical characteristics of dustfall, its effect on foliar morphology and biochemical constituents of two medicinal plants i.e. Morus (Morus alba) and Arjun (Terminalia arjuna) in the urban environment of National Capital Region (NCR) of Delhi at two sites i.e. Jawaharlal Nehru University (residential) and Sahibabad (industrial). Atmospheric dust was characterized for major anions (F-, Cl-, NO3-, SO4--) and cations (Na+, NH4+, K+, Mg++, Ca++) along with the biochemical parameters Chl a, Chl b, total chlorophyll, carotenoid, total soluble sugar, relative water content (RWC), pH, and ascorbic acid. The results showed that the concentrations of major ions in dustfall were higher at the industrial site as compared to the residential site due to the higher level of anthropogenic activities. Both the plant species grown at industrial site had significantly lower values of chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll, carotenoid but relatively higher values of total soluble sugar and ascorbic acid indicating stressful conditions due to industrial and vehicular emissions.

Keywords: dustfall, urban environment, biochemical constituents, atmospheric dust

Procedia PDF Downloads 305
1506 Testing of Infill Walls with Joint Reinforcement Subjected to in Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frame subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed-joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. A confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame and the aspect ratio of the wall. All cases included tie-columns and tie-beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frame with identical characteristic to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls: this type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, Infill wall, Infilled frame, masonry wall

Procedia PDF Downloads 77
1505 Insights into Particle Dispersion, Agglomeration and Deposition in Turbulent Channel Flow

Authors: Mohammad Afkhami, Ali Hassanpour, Michael Fairweather

Abstract:

The work described in this paper was undertaken to gain insight into fundamental aspects of turbulent gas-particle flows with relevance to processes employed in a wide range of applications, such as oil and gas flow assurance in pipes, powder dispersion from dry powder inhalers, and particle resuspension in nuclear waste ponds, to name but a few. In particular, the influence of particle interaction and fluid phase behavior in turbulent flow on particle dispersion in a horizontal channel is investigated. The mathematical modeling technique used is based on the large eddy simulation (LES) methodology embodied in the commercial CFD code FLUENT, with flow solutions provided by this approach coupled to a second commercial code, EDEM, based on the discrete element method (DEM) which is used for the prediction of particle motion and interaction. The results generated by LES for the fluid phase have been validated against direct numerical simulations (DNS) for three different channel flows with shear Reynolds numbers, Reτ = 150, 300 and 590. Overall, the LES shows good agreement, with mean velocities and normal and shear stresses matching those of the DNS in both magnitude and position. The research work has focused on the prediction of those conditions favoring particle aggregation and deposition within turbulent flows. Simulations have been carried out to investigate the effects of particle size, density and concentration on particle agglomeration. Furthermore, particles with different surface properties have been simulated in three channel flows with different levels of flow turbulence, achieved by increasing the Reynolds number of the flow. The simulations mimic the conditions of two-phase, fluid-solid flows frequently encountered in domestic, commercial and industrial applications, for example, air conditioning and refrigeration units, heat exchangers, oil and gas suction and pressure lines. The particle size, density, surface energy and volume fractions selected are 45.6, 102 and 150 µm, 250, 1000 and 2159 kg m-3, 50, 500, and 5000 mJ m-2 and 7.84 × 10-6, 2.8 × 10-5, and 1 × 10-4, respectively; such particle properties are associated with particles found in soil, as well as metals and oxides prevalent in turbulent bounded fluid-solid flows due to erosion and corrosion of inner pipe walls. It has been found that the turbulence structure of the flow dominates the motion of the particles, creating particle-particle interactions, with most of these interactions taking place at locations close to the channel walls and in regions of high turbulence where their agglomeration is aided both by the high levels of turbulence and the high concentration of particles. A positive relationship between particle surface energy, concentration, size and density, and agglomeration was observed. Moreover, the results derived for the three Reynolds numbers considered show that the rate of agglomeration is strongly influenced for high surface energy particles by, and increases with, the intensity of the flow turbulence. In contrast, for lower surface energy particles, the rate of agglomeration diminishes with an increase in flow turbulence intensity.

Keywords: agglomeration, channel flow, DEM, LES, turbulence

Procedia PDF Downloads 317
1504 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
1503 Evolution of Textiles in the Indian Subcontinent

Authors: Ananya Mitra Pramanik, Anjali Agrawal

Abstract:

The objective of this paper is to trace the origin and evolution of clothing in the Indian Subcontinent. The paper seeks to understand the need for mankind to shed his natural state and adopt clothing as an inseparable accessory for his body. It explores the various theories of the origin of clothing. The known journey of clothing of this region started from the Indus Valley Civilisation which dates back to 2500 BC. Due to the weather conditions of the region, few actual samples have survived, and most of the knowledge of textiles is derived from the sculptures and other remains from this era. The understanding of textiles of the period after the Indus Valley Civilisation (2500-1500 BC) till the Mauryan and the Sunga Period (321-72 BC) comes from literary sources, e.g., Vedas, Smritis, the eminent Indian epics of the Ramayana and the Mahabharata, forest books, etc. Textile production was one of the most important economic activities of this region. It was next only to agriculture. While attempting to trace the history of clothing the paper draws the evolution of Indian traditional fashion through the change of rulers of this region and the development of the modern Indian traditional dress, i.e., sari, salwar kamiz, dhoti, etc. The major aims of the study are to define the different time periods chronologically and to inspect the major changes in textile fashion, manufacturing, and materials that took place. This study is based on secondary research. It is founded on data taken primarily from books and journals. Not much of visuals are added in the paper as actual fabric references are near nonexistent. It gives a brief history of the ancient textiles of India from the time frame of 2500 BC-8th C AD.

Keywords: evolution, history, origin, textiles

Procedia PDF Downloads 181
1502 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method

Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan

Abstract:

Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.

Keywords: hotforging, engine valve, fracture, tooling

Procedia PDF Downloads 279
1501 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake

Authors: Daniel S. Brox

Abstract:

Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.

Keywords: seismic activation, statistical physics, geodynamics, signal processing

Procedia PDF Downloads 17
1500 Strengthening National Salt Industry through Cultivation Upgrading and Product Diversification

Authors: Etty Soesilowati

Abstract:

This research was intended to: (1) designing production systems that produce high quality salt and (2) diversification of salt products. This research used qualitative and quantitative approaches which Garam Mas Ltd. as the research site. The data were analyzed interactively and subjected to laboratory tests. The analyses showed that salt production system using HDPE geomembranes produced whiter and cleaner salts than those produced by conventional methods without HDPE geomembranes. High quality consumption salt contained 97% NaCl and a maximum of 0.05% water, in the form of white minute crystals and usually used for table salt of food and snack seasoning, souses and cheese and vegetable oil industries. Medium grade salt contained 94.7%-97% NaCl and 3%-7% water and usually used for kitchen salt, soy sauce, tofu industries and cattle feeding. Low quality salt contained 90%-94.7% NaCl and 5%-10% water, with dull white color and usually used for fish preservation and agriculture. The quality and quantity of salts production were influenced by temperatures, weather, water concentrations used during production processes and the discipline of salt farmers itself. The use of water temperature less than 23 °Be during the production processes produced low quality salts. Optimizing cultivation of the production process from raw material to end product (consumption salt) should be attempted to produce quality salt that fulfills the Indonesian National Standard. Therefore, the integrated policies among stakeholders are really needed to build strong institutional base at salt farmer level. This might be achieved through the establishment of specific region for salt production.

Keywords: cultivation system, diversification, salt products, high quality salt

Procedia PDF Downloads 401
1499 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation

Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian

Abstract:

The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.

Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction

Procedia PDF Downloads 99