Search results for: cosmic intelligence
190 Abilitest Battery: Presentation of Tests and Psychometric Properties
Authors: Sylwia Sumińska, Łukasz Kapica, Grzegorz Szczepański
Abstract:
Introduction: Cognitive skills are a crucial part of everyday functioning. Cognitive skills include perception, attention, language, memory, executive functions, and higher cognitive skills. With the aging of societies, there is an increasing percentage of people whose cognitive skills decline. Cognitive skills affect work performance. The appropriate diagnosis of a worker’s cognitive skills reduces the risk of errors and accidents at work which is also important for senior workers. The study aimed to prepare new cognitive tests for adults aged 20-60 and assess the psychometric properties of the tests. The project responds to the need for reliable and accurate methods of assessing cognitive performance. Computer tests were developed to assess psychomotor performance, attention, and working memory. Method: Two hundred eighty people aged 20-60 will participate in the study in 4 age groups. Inclusion criteria for the study were: no subjective cognitive impairment, no history of severe head injuries, chronic diseases, psychiatric and neurological diseases. The research will be conducted from February - to June 2022. Cognitive tests: 1) Measurement of psychomotor performance: Reaction time, Reaction time with selective attention component; 2) Measurement of sustained attention: Visual search (dots), Visual search (numbers); 3) Measurement of working memory: Remembering words, Remembering letters. To assess the validity and the reliability subjects will perform the Vienna Test System, i.e., “Reaction Test” (reaction time), “Signal Detection” (sustained attention), “Corsi Block-Tapping Test” (working memory), and Perception and Attention Test (TUS), Colour Trails Test (CTT), Digit Span – subtest from The Wechsler Adult Intelligence Scale. Eighty people will be invited to a session after three months aimed to assess the consistency over time. Results: Due to ongoing research, the detailed results from 280 people will be shown at the conference separately in each age group. The results of correlation analysis with the Vienna Test System will be demonstrated as well.Keywords: aging, attention, cognitive skills, cognitive tests, psychomotor performance, working memory
Procedia PDF Downloads 105189 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload
Authors: Frank Fan
Abstract:
PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning
Procedia PDF Downloads 61188 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence
Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur
Abstract:
To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.Keywords: cognition, deep learning, drawing behavior, interpretability
Procedia PDF Downloads 165187 Spanish Language Violence Corpus: An Analysis of Offensive Language in Twitter
Authors: Beatriz Botella-Gil, Patricio Martínez-Barco, Lea Canales
Abstract:
The Internet and ICT are an integral element of and omnipresent in our daily lives. Technologies have changed the way we see the world and relate to it. The number of companies in the ICT sector is increasing every year, and there has also been an increase in the work that occurs online, from sending e-mails to the way companies promote themselves. In social life, ICT’s have gained momentum. Social networks are useful for keeping in contact with family or friends that live far away. This change in how we manage our relationships using electronic devices and social media has been experienced differently depending on the age of the person. According to currently available data, people are increasingly connected to social media and other forms of online communication. Therefore, it is no surprise that violent content has also made its way to digital media. One of the important reasons for this is the anonymity provided by social media, which causes a sense of impunity in the victim. Moreover, it is not uncommon to find derogatory comments, attacking a person’s physical appearance, hobbies, or beliefs. This is why it is necessary to develop artificial intelligence tools that allow us to keep track of violent comments that relate to violent events so that this type of violent online behavior can be deterred. The objective of our research is to create a guide for detecting and recording violent messages. Our annotation guide begins with a study on the problem of violent messages. First, we consider the characteristics that a message should contain for it to be categorized as violent. Second, the possibility of establishing different levels of aggressiveness. To download the corpus, we chose the social network Twitter for its ease of obtaining free messages. We chose two recent, highly visible violent cases that occurred in Spain. Both of them experienced a high degree of social media coverage and user comments. Our corpus has a total of 633 messages, manually tagged, according to the characteristics we considered important, such as, for example, the verbs used, the presence of exclamations or insults, and the presence of negations. We consider it necessary to create wordlists that are present in violent messages as indicators of violence, such as lists of negative verbs, insults, negative phrases. As a final step, we will use automatic learning systems to check the data obtained and the effectiveness of our guide.Keywords: human language technologies, language modelling, offensive language detection, violent online content
Procedia PDF Downloads 131186 Digital Transformation and Digitalization of Public Administration
Authors: Govind Kumar
Abstract:
The concept of ‘e-governance’ that was brought about by the new wave of reforms, namely ‘LPG’ in the early 1990s, has been enabling governments across the globe to digitally transform themselves. Digital transformation is leading the governments with qualitative decisions, optimization in rational use of resources, facilitation of cost-benefit analyses, and elimination of redundancy and corruption with the help of ICT-based applications interface. ICT-based applications/technologies have enormous potential for impacting positive change in the social lives of the global citizenry. Supercomputers test and analyze millions of drug molecules for developing candidate vaccines to combat the global pandemic. Further, e-commerce portals help distribute and supply household items and medicines, while videoconferencing tools provide a visual interface between the clients and hosts. Besides, crop yields are being maximized with the help of drones and machine learning, whereas satellite data, artificial intelligence, and cloud computing help governments with the detection of illegal mining, tackling deforestation, and managing freshwater resources. Such e-applications have the potential to take governance an extra mile by achieving 5 Es (effective, efficient, easy, empower, and equity) of e-governance and six Rs (reduce, reuse, recycle, recover, redesign and remanufacture) of sustainable development. If such digital transformation gains traction within the government framework, it will replace the traditional administration with the digitalization of public administration. On the other hand, it has brought in a new set of challenges, like the digital divide, e-illiteracy, technological divide, etc., and problems like handling e-waste, technological obsolescence, cyber terrorism, e-fraud, hacking, phishing, etc. before the governments. Therefore, it would be essential to bring in a rightful mixture of technological and humanistic interventions for addressing the above issues. This is on account of the reason that technology lacks an emotional quotient, and the administration does not work like technology. Both are self-effacing unless a blend of technology and a humane face are brought in into the administration. The paper will empirically analyze the significance of the technological framework of digital transformation within the government set up for the digitalization of public administration on the basis of the synthesis of two case studies undertaken from two diverse fields of administration and present a future framework of the study.Keywords: digital transformation, electronic governance, public administration, knowledge framework
Procedia PDF Downloads 99185 Handy EKG: Low-Cost ECG For Primary Care Screening In Developing Countries
Authors: Jhiamluka Zservando Solano Velasquez, Raul Palma, Alejandro Calderon, Servio Paguada, Erick Marin, Kellyn Funes, Hana Sandoval, Oscar Hernandez
Abstract:
Background: Screening cardiac conditions in primary care in developing countries can be challenging, and Honduras is not the exception. One of the main limitations is the underfunding of the Healthcare System in general, causing conventional ECG acquisition to become a secondary priority. Objective: Development of a low-cost ECG to improve screening of arrhythmias in primary care and communication with a specialist in secondary and tertiary care. Methods: Design a portable, pocket-size low-cost 3 lead ECG (Handy EKG). The device is autonomous and has Wi-Fi/Bluetooth connectivity options. A mobile app was designed which can access online servers with machine learning, a subset of artificial intelligence to learn from the data and aid clinicians in their interpretation of readings. Additionally, the device would use the online servers to transfer patient’s data and readings to a specialist in secondary and tertiary care. 50 randomized patients volunteer to participate to test the device. The patients had no previous cardiac-related conditions, and readings were taken. One reading was performed with the conventional ECG and 3 readings with the Handy EKG using different lead positions. This project was possible thanks to the funding provided by the National Autonomous University of Honduras. Results: Preliminary results show that the Handy EKG performs readings of the cardiac activity similar to those of a conventional electrocardiograph in lead I, II, and III depending on the position of the leads at a lower cost. The wave and segment duration, amplitude, and morphology of the readings were similar to the conventional ECG, and interpretation was possible to conclude whether there was an arrhythmia or not. Two cases of prolonged PR segment were found in both ECG device readings. Conclusion: Using a Frugal innovation approach can allow lower income countries to develop innovative medical devices such as the Handy EKG to fulfill unmet needs at lower prices without compromising effectiveness, safety, and quality. The Handy EKG provides a solution for primary care screening at a much lower cost and allows for convenient storage of the readings in online servers where clinical data of patients can then be accessed remotely by Cardiology specialists.Keywords: low-cost hardware, portable electrocardiograph, prototype, remote healthcare
Procedia PDF Downloads 180184 Inquiry on Regenerative Tourism in an Avian Destination: A Case Study of Kaliveli in Tamil Nadu, India
Authors: Anu Chandran, Reena Esther Rani
Abstract:
Background of the Study: Dotted with multiple Unique Destination Prepositions (UDPs), Tamil Nadu is an established tourism brand as regards leisure, MICE, culture, and ecological flavors. Albeit, the enchanting destination possesses distinctive attributes and resources yet to be tapped for better competitive advantage. Being a destination that allures an incredible variety of migratory birds, Tamil Nadu is deemed to be an ornithologist’s paradise. This study primarily explores the prospects of developing Kaliveli, recognized as a bird sanctuary in the Tindivanam forest division of the Villupuram district in the State. Kaliveli is an ideal nesting site for migratory birds and is currently apt for a prospective analysis of regenerative tourism. Objectives of the study: This research lays an accent on avian tourism as part and parcel of sustainable tourism ventures. The impacts of projects like the Ornithological Conservation Centre on tourists have been gauged in the present paper. It maps the futuristic proactive propositions linked to regenerative tourism on the site. How far technological innovations can do a world of good in Kaliveli through Artificial Intelligence, Smart Tourism, and similar latest coinages to entice real eco-tourists, have been conceptualized. The experiential dimensions of resource stewardship as regards facilitating tourists’ relish the offerings in a sustainable manner is at the crux of this work. Methodology: Modeled as a case study, this work tries to deliberate on the impact of existing projects attributed to avian fauna in Kalveli. Conducted in the qualitative research design mode, the case study method was adopted for the processing and presentation of study results drawn by applying thematic content analysis based on the data collected from the field. Result and discussion: One of the key findings relates to the kind of nature trails that can be a regenerative dynamic for eco-friendly tourism in Kaliveli. Field visits have been conducted to assess the niche tourism aspects which could be incorporated with the regenerative tourism model to be framed as part of the study.Keywords: regenerative tourism, Kaliveli bird sanctuary, sustainable development, resource Stewardship, Ornithology, Avian Fauna
Procedia PDF Downloads 79183 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 118182 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow
Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite
Abstract:
The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms
Procedia PDF Downloads 420181 Advancing Circular Economy Principles: Integrating AI Technology in Street Sanitation for Sustainable Urban Development
Authors: Xukai Fu
Abstract:
The concept of circular economy is interdisciplinary, intersecting environmental engineering, information technology, business, and social science domains. Over the course of its 15-year tenure in the sanitation industry, Jinkai has concentrated its efforts in the past five years on integrating artificial intelligence (AI) technology with street sanitation apparatus and systems. This endeavor has led to the development of various innovations, including the Intelligent Identification Sweeper Truck (Intelligent Waste Recognition and Energy-saving Control System), the Intelligent Identification Water Truck (Intelligent Flushing Control System), the intelligent food waste treatment machine, and the Intelligent City Road Sanitation Surveillance Platform. This study will commence with an examination of prevalent global challenges, elucidating how Jinkai effectively addresses each within the framework of circular economy principles. Utilizing a review and analysis of pertinent environmental management data, we will elucidate Jinkai's strategic approach. Following this, we will investigate how Jinkai utilizes the advantages of circular economy principles to guide the design of street sanitation machinery, with a focus on digitalization integration. Moreover, we will scrutinize Jinkai's sustainable practices throughout the invention and operation phases of street sanitation machinery, aligning with the triple bottom line theory. Finally, we will delve into the significance and enduring impact of corporate social responsibility (CSR) and environmental, social, and governance (ESG) initiatives. Special emphasis will be placed on Jinkai's contributions to community stakeholders, with a particular emphasis on human rights. Despite the widespread adoption of circular economy principles across various industries, achieving a harmonious equilibrium between environmental justice and social justice remains a formidable task. Jinkai acknowledges that the mere development of energy-saving technologies is insufficient for authentic circular economy implementation; rather, they serve as instrumental tools. To earnestly promote and embody circular economy principles, companies must consistently prioritize the UN Sustainable Development Goals and adapt their technologies to address the evolving exigencies of our world.Keywords: circular economy, core principles, benefits, the tripple bottom line, CSR, ESG, social justice, human rights, Jinkai
Procedia PDF Downloads 47180 Shame and Pride in Moral Self-Improvement
Authors: Matt Stichter
Abstract:
Moral development requires learning from one’s failures, but that turnsout to be especially challenging when dealing with moral failures. The distress prompted by moral failure can cause responses ofdefensiveness or disengagement rather than attempts to make amends and work on self-change. The most potentially distressing response to moral failure is a shame. However, there appears to be two different senses of “shame” that are conflated in the literature, depending on whether the failure is appraised as the result of a global and unalterable self-defect, or a local and alterable self-defect. One of these forms of shame does prompt self-improvement in response to moral failure. This occurs if one views the failure as indicating only a specific (local) defect in one’s identity, where that’s something repairable, rather than asanoverall(orglobal)defectinyouridentity that can’t be fixed. So, if the whole of one’s identity as a morally good person isn’t being called into question, but only a part, then that is something one could work on to improve. Shame, in this sense, provides motivation for self-improvement to fix this part oftheselfinthe long run, and this would be important for moral development. One factor that looks to affect these different self-attributions in the wake of moral failure can be found in mindset theory, as reactions to moral failure in these two forms of shame are similar to how those with a fixed or growth mindset of their own abilities, such as intelligence, react to failure. People fall along a continuum with respect to how they view abilities – it is more of a fixed entity that you cannot do much to change, or it is malleable such that you can train to improve it. These two mindsets, ‘fixed’ versus ‘growth’, have different consequences for how we react to failure – a fixed mindset leads to maladaptive responses because of feelings of helplessness to do better; whereas a growth mindset leads to adaptive responses where a person puts forth effort to learn how to act better the next time. Here we can see the parallels between a fixed mindset of one’s own (im)morality, as the way people respond to shame when viewed as indicating a global and unalterable self-defect parallels the reactions people have to failure when they have a fixed mindset. In addition, it looks like there may be a similar structure to pride. Pride is, like shame, a self-conscious emotion that arises from internal attributions about the self as being the cause of some event. There are also paradoxical results from research on pride, where pride was found to motivate pro-social behavior in some cases but aggression in other cases. Research suggests that there may be two forms of pride, authentic and hubristic, that are also connected to different self-attributions, depending on whether one is feeling proud about a particular (local) aspect of the self versus feeling proud about the whole of oneself (global).Keywords: emotion, mindset, moral development, moral psychology, pride, shame, self-regulation
Procedia PDF Downloads 107179 The Impact of Artificial Intelligence on Medicine Production
Authors: Yasser Ahmed Mahmoud Ali Helal
Abstract:
The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed.Keywords: drug design, anti-viral drug, in-silicon drug design, hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication
Procedia PDF Downloads 83178 The Maps of Meaning (MoM) Consciousness Theory
Authors: Scott Andersen
Abstract:
Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.Keywords: consciousness, perception, prospection, embodiment
Procedia PDF Downloads 59177 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 26176 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges
Authors: V. Reyes, P. Ferreira
Abstract:
In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model
Procedia PDF Downloads 118175 The Effect of Articial Intelligence on Physical Education Analysis and Sports Science
Authors: Peter Adly Hamdy Fahmy
Abstract:
The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence
Procedia PDF Downloads 59174 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 131173 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 130172 The Personal Characteristics of Nurse Managers and the Personal and Professional Factors That Affect Them
Authors: Handan Alan, Ulkü Baykal
Abstract:
Personal characteristics help people understand and recognize both themselves and other people. They are also known to have direct effects on managerial behaviors. Managers’ personalities indicate how they think, perceive reality and relate to others, and affect their decision-making and problem-solving methods. This descriptive study aims to determine the personal characteristics of nurse managers and the personal and professional factors that affect them since sufficient data does not exist on personal characteristics despite the focus on the leadership and managerial characteristics in nursing. The study population consisted of nurses working in administrative positions at hospitals affiliated with the public hospitals union, research and practice hospitals affiliated with universities and private hospitals in cities in the Marmara Region. The study sample consisted of nurse managers working in the hospitals that permitted conducting the study (excluding private branch hospitals). The data were collected after obtaining the approval of the Clinical Research Ethics Committee of Çanakkale Onsekiz Mart University (Approval date: 1.7.2015, Decision No: 2015-01) and written official permissions from the administrations of the hospitals included in the study. The data analysis was carried out using means and standard deviations (SD) as descriptive statistics, one-way analysis of variance for inter-group comparisons and the independent samples t-test for paired group comparisons. A significance threshold of p < 0.05 was used to evaluate the findings. The data were collected using the Five Factor Personality Inventory. The study included 900 nurse managers, who obtained the highest mean score on the conscientiousness dimension (X=4.22 ±0.35). This dimension was followed by their mean scores on the agreeableness (X=4.06±0.40), intelligence (X=4.05±0.37), extroversion (X=3.50±0.43), and emotional instability (X=2.07±0.53) dimensions. Statistically significant differences were found between the independent variables of age, gender, marital status, education level, work institution, professional experience, institutional experience, managerial experience, administrative position, work unit and managerial education when compared using the five factor personality inventory (p < 0.05). In conclusion, the nurse managers described themselves having high conscientiousness. Statistically significant differences were found between the five factor personality inventory mean scores and their personal and professional characteristics.Keywords: nurse manager, personality, personal characteristics, professional characteristics
Procedia PDF Downloads 256171 The Thoughts and Feelings Associated with Goal Achievement
Authors: Lindsay Foreman
Abstract:
Introduction: Goals have become synonymous with the quest for the good life and the pursuit of happiness, with coaching and positive psychology gaining popularity as an approach in recent decades. And yet mental health is on the rise and the leading cause of disability, wellbeing is on the decline, stress is leading to 50-60% of workday absences and the need for action is indisputable and urgent. Purpose: The purpose of this study is to better understand two things we cannot see, but that play the most significant role in these outcomes - what we think and how we feel. With many working on the assumption that positive thinking and an optimistic outlook are necessary or valuable components of goal pursuit, this study uncovers the reality of the ‘inner-game’ from the coachee's perspective. Method: With a mixed methods design using a Q Method study of subjectivity to ‘make the unseen seen’. First, a wide-ranging universe of subjective thoughts and feelings experienced during goal pursuit are explored. These are generated from literature and a Qualtrics survey to create a Q-Set of 40 statements. Then 19 participants in professional and organisational settings offer their perspectives on these 40 Q-Set statements. Each rank them in a semi-forced distribution from ‘most like me’ to ‘least like me’ using Q-Sort software. From these individual perspectives, clusters of perspectives are identified using factor analysis and four distinct viewpoints have emerged. Findings: These Goal Pursuit Viewpoints offer insight into the states and self-talk experienced by coachees and may not reflect the assumption of positive thinking associated with achieving goals. The four Viewpoints are 1) the Optimistic View, 2) the Realistic View 3) The Dreamer View and 4) The Conflicted View. With only a quarter of the Dreamer View, and a third of the Optimistic view going on to achieve their goals, these assumptions need review. And with all the Realistic Views going on to achieve their goals, the role of self-doubt, overwhelm and anxiousness in goal achievement cannot be overlooked. Contribution: This study offers greater insight and understanding of people's inner experiences as they pursue goals and highlights the necessary and normal negative states associated with goal achievement. It also offers a practical tool of the Q-set statements to help coaches and coachees explore the current state and help navigate the journey towards goal achievement. It calls into question whether goals should always be part of coaching and if values, identity, and purpose may play a greater role than goals.Keywords: coaching, goals, positive psychology, mindset, leadership, mental health, beliefs, cognition, emotional intelligence
Procedia PDF Downloads 113170 Screening for Non-hallucinogenic Neuroplastogens as Drug Candidates for the Treatment of Anxiety, Depression, and Posttraumatic Stress Disorder
Authors: Jillian M. Hagel, Joseph E. Tucker, Peter J. Facchini
Abstract:
With the aim of establishing a holistic approach for the treatment of central nervous system (CNS) disorders, we are pursuing a drug development program rapidly progressing through discovery and characterization phases. The drug candidates identified in this program are referred to as neuroplastogens owing to their ability to mediate neuroplasticity, which can be beneficial to patients suffering from anxiety, depression, or posttraumatic stress disorder. These and other related neuropsychiatric conditions are associated with the onset of neuronal atrophy, which is defined as a reduction in the number and/or productivity of neurons. The stimulation of neuroplasticity results in an increase in the connectivity between neurons and promotes the restoration of healthy brain function. We have synthesized a substantial catalogue of proprietary indolethylamine derivatives based on the general structures of serotonin (5-hydroxytryptamine) and psychedelic molecules such as N,N-dimethyltryptamine (DMT) and psilocin (4-hydroxy-DMT) that function as neuroplastogens. A primary objective in our screening protocol is the identification of derivatives associated with a significant reduction in hallucination, which will allow administration of the drug at a dose that induces neuroplasticity and triggers other efficacious outcomes in the treatment of targeted CNS disorders but which does not cause a psychedelic response in the patient. Both neuroplasticity and hallucination are associated with engagement of the 5HT2A receptor, requiring drug candidates differentially coupled to these two outcomes at a molecular level. We use novel and proprietary artificial intelligence algorithms to predict the mode of binding to the 5HT2A receptor, which has been shown to correlate with the hallucinogenic response. Hallucination is tested using the mouse head-twitch response model, whereas mouse marble-burying and sucrose preference assays are used to evaluate anxiolytic and anti-depressive potential. Neuroplasticity is assays using dendritic outgrowth assays and cell-based ELISA analysis. Pharmacokinetics and additional receptor-binding analyses also contribute the selection of lead candidates. A summary of the program is presented.Keywords: neuroplastogen, non-hallucinogenic, drug development, anxiety, depression, PTSD, indolethylamine derivatives, psychedelic-inspired, 5-HT2A receptor, computational chemistry, head-twitch response behavioural model, neurite outgrowth assay
Procedia PDF Downloads 138169 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 144168 Interactive Garments: Flexible Technologies for Textile Integration
Authors: Anupam Bhatia
Abstract:
Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.Keywords: ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology
Procedia PDF Downloads 393167 A Cognitive Training Program in Learning Disability: A Program Evaluation and Follow-Up Study
Authors: Krisztina Bohacs, Klaudia Markus
Abstract:
To author’s best knowledge we are in absence of studies on cognitive program evaluation and we are certainly short of programs that prove to have high effect sizes with strong retention results. The purpose of our study was to investigate the effectiveness of a comprehensive cognitive training program, namely BrainRx. This cognitive rehabilitation program target and remediate seven core cognitive skills and related systems of sub-skills through repeated engagement in game-like mental procedures delivered one-on-one by a clinician, supplemented by digital training. A larger sample of children with learning disability were given pretest and post-test cognitive assessments. The experimental group completed a twenty-week cognitive training program in a BrainRx center. A matched control group received another twenty-week intervention with Feuerstein’s Instrumental Enrichment programs. A second matched control group did not receive training. As for pre- and post-test, we used a general intelligence test to assess IQ and a computer-based test battery for assessing cognition across the lifespan. Multiple regression analyses indicated that the experimental BrainRx treatment group had statistically significant higher outcomes in attention, working memory, processing speed, logic and reasoning, auditory processing, visual processing and long-term memory compared to the non-treatment control group with very large effect sizes. With the exception of logic and reasoning, the BrainRx treatment group realized significantly greater gains in six of the above given seven cognitive measures compared to the Feuerstein control group. Our one-year retention measures showed that all the cognitive training gains were above ninety percent with the greatest retention skills in visual processing, auditory processing, logic, and reasoning. The BrainRx program may be an effective tool to establish long-term cognitive changes in case of students with learning disabilities. Recommendations are made for treatment centers and special education institutions on the cognitive training of students with special needs. The importance of our study is that targeted, systematic, progressively loaded and intensive brain training approach may significantly change learning disabilities.Keywords: cognitive rehabilitation training, cognitive skills, learning disability, permanent structural cognitive changes
Procedia PDF Downloads 202166 Knowledge Management Barriers: A Statistical Study of Hardware Development Engineering Teams within Restricted Environments
Authors: Nicholas S. Norbert Jr., John E. Bischoff, Christopher J. Willy
Abstract:
Knowledge Management (KM) is globally recognized as a crucial element in securing competitive advantage through building and maintaining organizational memory, codifying and protecting intellectual capital and business intelligence, and providing mechanisms for collaboration and innovation. KM frameworks and approaches have been developed and defined identifying critical success factors for conducting KM within numerous industries ranging from scientific to business, and for ranges of organization scales from small groups to large enterprises. However, engineering and technical teams operating within restricted environments are subject to unique barriers and KM challenges which cannot be directly treated using the approaches and tools prescribed for other industries. This research identifies barriers in conducting KM within Hardware Development Engineering (HDE) teams and statistically compares significance to barriers upholding the four KM pillars of organization, technology, leadership, and learning for HDE teams. HDE teams suffer from restrictions in knowledge sharing (KS) due to classification of information (national security risks), customer proprietary restrictions (non-disclosure agreement execution for designs), types of knowledge, complexity of knowledge to be shared, and knowledge seeker expertise. As KM evolved leveraging information technology (IT) and web-based tools and approaches from Web 1.0 to Enterprise 2.0, KM may also seek to leverage emergent tools and analytics including expert locators and hybrid recommender systems to enable KS across barriers of the technical teams. The research will test hypothesis statistically evaluating if KM barriers for HDE teams affect the general set of expected benefits of a KM System identified through previous research. If correlations may be identified, then generalizations of success factors and approaches may also be garnered for HDE teams. Expert elicitation will be conducted using a questionnaire hosted on the internet and delivered to a panel of experts including engineering managers, principal and lead engineers, senior systems engineers, and knowledge management experts. The feedback to the questionnaire will be processed using analysis of variance (ANOVA) to identify and rank statistically significant barriers of HDE teams within the four KM pillars. Subsequently, KM approaches will be recommended for upholding the KM pillars within restricted environments of HDE teams.Keywords: engineering management, knowledge barriers, knowledge management, knowledge sharing
Procedia PDF Downloads 279165 Liability of AI in Workplace: A Comparative Approach Between Shari’ah and Common Law
Authors: Barakat Adebisi Raji
Abstract:
In the workplace, Artificial Intelligence has, in recent years, emerged as a transformative technology that revolutionizes how organizations operate and perform tasks. It is a technology that has a significant impact on transportation, manufacturing, education, cyber security, robotics, agriculture, healthcare, and so many other organizations. By harnessing AI technology, workplaces can enhance productivity, streamline processes, and make more informed decisions. Given the potential of AI to change the way we work and its impact on the labor market in years to come, employers understand that it entails legal challenges and risks despite the advantages inherent in it. Therefore, as AI continues to integrate into various aspects of the workplace, understanding the legal and ethical implications becomes paramount. Also central to this study is the question of who is held liable where AI makes any defaults; the person (company) who created the AI, the person who programmed the AI algorithm or the person who uses the AI? Thus, the aim of this paper is to provide a detailed overview of how AI-related liabilities are addressed under each legal tradition and shed light on potential areas of accord and divergence between the two legal cultures. The objectives of this paper are to (i) examine the ability of Common law and Islamic law to accommodate the issues and damage caused by AI in the workplace and the legality of compensation for such injury sustained; (ii) to discuss the extent to which AI can be described as a legal personality to bear responsibility: (iii) examine the similarities and disparities between Common Law and Islamic Jurisprudence on the liability of AI in the workplace. The methodology adopted in this work was qualitative, and the method was purely a doctrinal research method where information is gathered from the primary and secondary sources of law, such as comprehensive materials found in journal articles, expert-authored books and online news sources. Comparative legal method was also used to juxtapose the approach of Islam and Common Law. The paper concludes that since AI, in its current legal state, is not recognized as a legal entity, operators or manufacturers of AI should be held liable for any damage that arises, and the determination of who bears the responsibility should be dependent on the circumstances surrounding each scenario. The study recommends the granting of legal personality to AI systems, the establishment of legal rights and liabilities for AI, the establishment of a holistic Islamic virtue-based AI ethics framework, and the consideration of Islamic ethics.Keywords: AI, health- care, agriculture, cyber security, common law, Shari'ah
Procedia PDF Downloads 37164 MOVIDA.polis: Physical Activity mHealth Based Platform
Authors: Rui Fonseca-Pinto, Emanuel Silva, Rui Rijo, Ricardo Martinho, Bruno Carreira
Abstract:
The sedentary lifestyle is associated to the development of chronic noncommunicable diseases (obesity, hypertension, Diabetes Mellitus Type 2) and the World Health Organization, given the evidence that physical activity is determinant for individual and collective health, defined the Physical Activity Level (PAL) as a vital signal. Strategies for increasing the practice of physical activity in all age groups have emerged from the various social organizations (municipalities, universities, health organizations, companies, social groups) by increasingly developing innovative strategies to promote motivation strategies and conditions to the practice of physical activity. The adaptation of cities to the new paradigms of sustainable mobility has provided the adaptation of urban training circles and mobilized citizens to combat sedentarism. This adaptation has accompanied the technological evolution and makes possible the use of mobile technology to monitor outdoor training programs and also, through the network connection (IoT), use the training data to make personalized recommendations. This work presents a physical activity counseling platform to be used in the physical maintenance circuits of urban centers, the MOVIDA.polis. The platform consists of a back office for the management of circuits and training stations, and for a mobile application for monitoring the user performance during workouts. Using a QRcode, each training station is recognized by the App and based on the individual performance records (effort perception, heart rate variation) artificial intelligence algorithms are used to make a new personalized recommendation. The results presented in this work were obtained during the proof of concept phase, which was carried out in the PolisLeiria training circuit in the city of Leiria (Portugal). It was possible to verify the increase in adherence to the practice of physical activity, as well as to decrease the interval between training days. Moreover, the AI-based recommendation acts as a partner in the training and an additional challenging factor. The platform is ready to be used by other municipalities in order to reduce the levels of sedentarism and approach the weekly goal of 150 minutes of moderate physical activity. Acknowledgments: This work was supported by Fundação para a Ciência e Tecnologia FCT- Portugal and CENTRO2020 under the scope of MOVIDA project: 02/SAICT/2016 – 23878.Keywords: physical activity, mHealth, urban training circuits, health promotion
Procedia PDF Downloads 172163 Ecological Crisis: A Buddhist Approach
Authors: Jaharlal Debbarma
Abstract:
The ecological crisis has become a threat to earth’s well-being. Man’s ambitious desire of wealth, pleasure, fame, longevity and happiness has extracted natural resources so vastly that it is unable to sustain a healthy life. Man’s greed for wealth and power has caused the setting up of vast factories which further created the problem of air, water and noise pollution, which have adversely affected both fauna and flora.It is no secret that man uses his inherent powers of reason, intelligence and creativity to change his environment for his advantage. But man is not aware that the moral force he himself creates brings about corresponding changes in his environment to his weal or woe whether he likes it or not. As we are facing the global warming and the nature’s gift such as air and water has been so drastically polluted with disastrous consequences that man seek for a ways and means to overcome all this pollution problem as his health and life sustainability has been threaten and that is where man try to question about the moral ethics and value.It is where Buddhist philosophy has been emphasized deeply which gives us hope for overcoming this entire problem as Buddha himself emphasized in eradicating human suffering and Buddhism is the strongest form of humanism we have. It helps us to learn to live with responsibility, compassion, and loving kindness.It teaches us to be mindful in our action and thought as the environment unites every human being. If we fail to save it we will perish. If we can rise to meet the need to all which ecology binds us - humans, other species, other everything will survive together.My paper will look into the theory of Dependent Origination (Pratītyasamutpāda), Buddhist understanding of suffering (collective suffering), and Non-violence (Ahimsa) and an effort will be made to provide a new vision to Buddhist ecological perspective. The above Buddhist philosophy will be applied to ethical values and belief systems of modern society. The challenge will be substantially to transform the modern individualistic and consumeristic values. The stress will be made on the interconnectedness of the nature and the relation between human and planetary sustainability. In a way environmental crisis will be referred to “spiritual crisis” as A. Gore (1992) has pointed out. The paper will also give important to global consciousness, as well as to self-actualization and self-fulfillment. In the words of Melvin McLeod “Only when we combine environmentalism with spiritual practice, will we find the tools to make the profound personal transformations needed to address the planetary crisis?”Keywords: dependent arising, collective ecological suffering, remediation, Buddhist approach
Procedia PDF Downloads 266162 AI-Powered Conversation Tools - Chatbots: Opportunities and Challenges That Present to Academics within Higher Education
Authors: Jinming Du
Abstract:
With the COVID-19 pandemic beginning in 2020, many higher education institutions and education systems are turning to hybrid or fully distance online courses to maintain social distance and provide a safe virtual space for learning and teaching. However, the majority of faculty members were not well prepared for the shift to blended or distance learning. Communication frustrations are prevalent in both hybrid and full-distance courses. A systematic literature review was conducted by a comprehensive analysis of 1688 publications that focused on the application of the adoption of chatbots in education. This study aimed to explore instructors' experiences with chatbots in online and blended undergraduate English courses. Language learners are overwhelmed by the variety of information offered by many online sites. The recently emerged chatbots (e.g.: ChatGPT) are slightly superior in performance as compared to those traditional through previous technologies such as tapes, video recorders, and websites. The field of chatbots has been intensively researched, and new methods have been developed to demonstrate how students can best learn and practice a new language in the target language. However, it is believed that among the many areas where chatbots are applied, while chatbots have been used as effective tools for communicating with business customers, in consulting and targeting areas, and in the medical field, chatbots have not yet been fully explored and implemented in the field of language education. This issue is challenging enough for language teachers; they need to study and conduct research carefully to clarify it. Pedagogical chatbots may alleviate the perception of a lack of communication and feedback from instructors by interacting naturally with students through scaffolding the understanding of those learners, much like educators do. However, educators and instructors lack the proficiency to effectively operate this emerging AI chatbot technology and require comprehensive study or structured training to attain competence. There is a gap between language teachers’ perceptions and recent advances in the application of AI chatbots to language learning. The results of the study found that although the teachers felt that the chatbots did the best job of giving feedback, the teachers needed additional training to be able to give better instructions and to help them assist in teaching. Teachers generally perceive the utilization of chatbots to offer substantial assistance to English language instruction.Keywords: artificial intelligence in education, chatbots, education and technology, education system, pedagogical chatbot, chatbots and language education
Procedia PDF Downloads 66161 Data Analytics in Hospitality Industry
Authors: Tammy Wee, Detlev Remy, Arif Perdana
Abstract:
In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing
Procedia PDF Downloads 179