Search results for: agile mixture model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18113

Search results for: agile mixture model

3623 Analyzing Information Management in Science and Technology Institute Libraries in India

Authors: P. M. Naushad Ali

Abstract:

India’s strength in basic research is recognized internationally. Science and Technology research in India has been performed by six distinct bodies or organizations such as Cooperative Research Associations, Autonomous Research Council, Institute under Ministries, Industrial R&D Establishment, Universities, Private Institutions. All most all these institutions are having a well-established library/information center to cater the information needs of their users like scientists and technologists. Information Management (IM) comprises disciplines concerned with the study and the effective and efficient management of information and resources, products and services as well as the understanding of the involved technologies and the people engaged in this activity. It is also observed that the libraries and information centers in India are also using modern technologies for the management of various activities and services to serve their users in a better way. Science and Technology libraries in the country are usually better equipped because the investment in Science and Technology in the country are much larger than those in other fields. Thus, most of the Science and Technology libraries are equipped with modern IT-based tools for handling and management of library services. In spite of these facts Science and Technology libraries are having all the characteristics of a model organization where computer application is found most successful, however, the adoption of this IT based management tool is not uniform in these libraries. The present study will help to know about the level use of IT-based management tools for the information management of Science and Technology libraries in India. The questionnaire, interview, observation and document review techniques have been used in data collection. Finally, the author discusses findings of the study and put forward some suggestions to improve the quality of Science and Technology institute library services in India.

Keywords: information management, science and technology libraries, India, IT-based tools

Procedia PDF Downloads 396
3622 A Multigranular Linguistic ARAS Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain contexts where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ARAS-ELH). Within the ARAS-ELH approach, the DM can diagnose the results (the ranking of the alternatives) in a decomposed style, i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e the collective final results of all experts able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ARAS-ELH technique makes it easier for decision-makers to understand the results. Finally, An MCGDM case study is given to illustrate the proposed approach.

Keywords: additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts

Procedia PDF Downloads 210
3621 Closed-Loop Supply Chain: A Study of Bullwhip Effect Using Simulation

Authors: Siddhartha Paul, Debabrata Das

Abstract:

Closed-loop supply chain (CLSC) management focuses on integrating forward and reverse flow of material as well as information to maximize value creation over the entire life-cycle of a product. Bullwhip effect in supply chain management refers to the phenomenon where a small variation in customers’ demand results in larger variation of orders at the upstream levels of supply chain. Since the quality and quantity of products returned to the collection centers (as a part of reverse logistics process) are uncertain, bullwhip effect is inevitable in CLSC. Therefore, in the present study, first, through an extensive literature survey, we identify all the important factors related to forward as well as reverse supply chain which causes bullwhip effect in CLSC. Second, we develop a system dynamics model to study the interrelationship among the factors and their effect on the performance of overall CLSC. Finally, the results of the simulation study suggest that demand forecasting, lead times, information sharing, inventory and work in progress adjustment rate, supply shortages, batch ordering, price variations, erratic human behavior, parameter correcting, delivery time delays, return rate of used products, manufacturing and remanufacturing capacity constraints are the important factors which have a significant influence on system’s performance, specifically on bullwhip effect in a CLSC.

Keywords: bullwhip effect, closed-loop supply chain, system dynamics, variance ratio

Procedia PDF Downloads 165
3620 Measuring Banking Systemic Risk Conditional Value-At-Risk and Conditional Coherent Expected Shortfall in Taiwan Using Vector Quantile GARCH Model

Authors: Ender Su, Kai Wen Wong, I-Ling Ju, Ya-Ling Wang

Abstract:

In this study, the systemic risk change of Taiwan’s banking sector is analyzed during the financial crisis. The risk expose of each financial institutions to the whole Taiwan banking systemic risk or vice versa under financial distress are measured by conditional Value-at-Risk (CoVaR) and conditional coherent expected shortfall (CoES). The CoVaR and CoES are estimated by using vector quantile autoregression (MVMQ-CaViaR) with the daily stock returns of each banks included domestic and foreign banks in Taiwan. The daily in-sample data covered the period from 05/20/2002 to 07/31/2007 and the out-of-sample period until 12/31/2013 spanning the 2008 U.S. subprime crisis, 2010 Greek debt crisis, and post risk duration. All banks in Taiwan are categorised into several groups according to their size of market capital, leverage and domestic/foreign to find out what the extent of changes of the systemic risk as the risk changes between the individuals in the bank groups and vice versa. The final results can provide a guidance to financial supervisory commission of Taiwan to gauge the downside risk in the system of financial institutions and determine the minimum capital requirement hold by financial institutions due to the sensibility changes in CoVaR and CoES of each banks.

Keywords: bank financial distress, vector quantile autoregression, CoVaR, CoES

Procedia PDF Downloads 388
3619 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 83
3618 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 547
3617 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 100
3616 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: bipartite graph, one-mode projection, clustering, web proxy detection

Procedia PDF Downloads 248
3615 The Factors for Developing Trainers in Auto Parts Manufacturing Factories at Amata Nakon Industrial Estate in Cholburi Province

Authors: Weerakarj Dokchan

Abstract:

The purposes of this research are to find out the factors for developing trainers in the auto part manufacturing factories (AMF) in Amata Nakon Industrial Estate Cholburi. Population in this study included 148 operators to complete the questionnaires and 10 trainers to provide the information on the interview. The research statistics consisted of percentage, mean, standard deviation and step-wise multiple linear regression analysis.The analysis of the training model revealed that: The research result showed that the development factors of trainers in AMF consisted of 3 main factors and 8 sub-factors: 1) knowledge competency consisting of 4 sub-factors; arrangement of critical thinking, organizational loyalty, working experience of the trainers, analysis of behavior, and work and organization loyalty which could predict the success of the trainers at 55.60%. 2) Skill competency consisted of 4 sub-factors, arrangement of critical thinking, organizational loyalty and analysis of behavior and work and the development of emotional quotient. These 4 sub-factors could predict the success of the trainers in skill aspect 55.90%. 3) The attitude competency consisted of 4 sub-factors, arrangement of critical thinking, intention of trainee computer competency and teaching psychology. In conclusion, these 4 sub-factors could predict the success of the trainers in attitude aspect 58.50%.

Keywords: the development factors, trainers development, trainer competencies, auto part manufacturing factory (AMF), AmataNakon Industrial Estate Cholburi

Procedia PDF Downloads 306
3614 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 230
3613 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 28
3612 New-Born Children and Marriage Stability: An Evaluation of Divorce Risk Based on 2010-2018 China Family Panel Studies Data

Authors: Yuchao Yao

Abstract:

As two of the main characteristics of Chinese demographic trends, increasing divorce rates and decreasing fertility rates both shaped the population structure in the recent decade. Figuring out to what extent can be having a child make a difference in the divorce rate of a couple will not only draw a picture of Chinese families but also bring about a new perspective to evaluate the Chinese child-breeding policies. Based on China Family Panel Studies (CFPS) Data 2010-2018, this paper provides a systematic evaluation of how children influence a couple’s marital stability through a series of empirical models. Using survival analysis and propensity score matching (PSM) model, this paper finds that the number and age of children that a couple has mattered in consolidating marital relationship, and these effects vary little over time; during the last decade, newly having children can in fact decrease the possibility of divorce for Chinese couples; the such decreasing effect is largely due to the birth of a second child. As this is an inclusive attempt to study and compare not only the effects but also the causality of children on divorce risk in the last decade, the results of this research will do a good summary of the status quo of divorce in China. Furthermore, this paper provides implications for further reforming the current marriage and child-breeding policies.

Keywords: divorce risk, fertility, China, survival analysis, propensity score matching

Procedia PDF Downloads 77
3611 Effects of Swimming Exercise Training on Persistent Pain in Rats after Thoracotomy

Authors: Shao-Cyuan Yewang, Yu-Wen Chen

Abstract:

Background: Exercise training is well known to alleviate chronic pain syndromes improve of chronic pain. This study investigated the effect of swimming exercise training on thoracotomy and rib retraction-induced allodynia. Methods: Male Sprague Dawley rats that received animal model of persistent postthoracotomy pain. All rats were divided into three groups: sham operations group (Sham), thoracotomy and rib retraction group (TRR), and TRR with swimming exercise training for 90min/day, 7 days a week for 4 weeks (TRR-SEW). The sham group did not receive retraction of the ribs. Thus, they received a pleural incision. The levels of mechanical and cold allodynia were measured by von Frey and acetone test. Results: In von Frey test, the level of mechanical allodynia in the TRR group was significantly higher than the sham group. The level of mechanical allodynia in the TRR-SEW group was significantly lower than the TRR group. In acetone test, the level of cold allodynia in the TRR group was significantly higher than the sham group. The level of cold allodynia in the TRR-SEW group was significantly lower than the TRR group. Conclusions: These results suggest that swimming exercise training decreases persistent postthoracotomy pain caused by TRR surgery. It may provide one of the new therapeutic effects of swimming exercise training could alleviate persistent postthoracotomy pain.

Keywords: chronic pain, thoracotomy pain, swimming, von Frey test, acetone test

Procedia PDF Downloads 219
3610 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics

Authors: C. S. Saini

Abstract:

The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.

Keywords: black gram, corn flour, extrusion, physical characteristics

Procedia PDF Downloads 481
3609 Mobile Schooling for the Most Vulnerable Children on the Street: An Innovation

Authors: Md. Shakhawat Ullah Chowdhury

Abstract:

Mobile school is an innovative methodology in non-formal education to increase access to education for children during conflict through theatre for education for appropriate basic education to children during conflict. The continuous exposure to harsh environments and the nature of the lifestyles of children in conflict make them vulnerable. However, the mobile school initiative takes into consideration the mobile lifestyle of children in conflict. Schools are provided considering the pocket area of the street children with portable chalkboards, tin of books and materials as communities move. Teaching is multi-grade to ensure all children in the community benefit. The established mobile schools, while focused on basic literacy and numeracy skills according to traditions of the communities. The school teachers are selected by the community and trained by a theatre activist. These teachers continue to live and move with the community and provide continuous education for children in conflict. The model proposed a holistic team work to deliver education focused services to the street children’s pocket area where the team is mobile. The team consists of three members –an educator (theatre worker), a psychological counsellor and paramedics. The mobile team is responsible to educate street children and also play dramas which specially produce on the basis of national curriculum and awareness issues for street children. Children enjoy play and learn about life skills and basic literacy and numeracy skills which may be a pillar of humanitarian aid during conflict.

Keywords: vulnerable, children in conflict, mobile schooling, child-friendly

Procedia PDF Downloads 434
3608 Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark

Authors: B. Cheknane, F. Zermane

Abstract:

The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model.

Keywords: maritime pine bark (MP), pinyon pine bark (PP), Aleppo pine (AP) bark, adsorption, dyes

Procedia PDF Downloads 321
3607 Management and Evaluation of Developing Medical Device Software in Compliance with Rules

Authors: Arash Sepehri bonab

Abstract:

One of the regions of critical development in medical devices has been the part of the software - as an indispensable component of a therapeutic device, as a standalone device, and more as of late, as applications on portable gadgets. The chance related to a breakdown of the standalone computer program utilized inside healthcare is in itself not a model for its capability or not as a medical device. It is, subsequently, fundamental to clarify a few criteria for the capability of a stand-alone computer program as a medical device. The number of computer program items and therapeutic apps is persistently expanding and so as well is used in wellbeing education (e. g., in clinics and doctors' surgeries) for determination and treatment. Within the last decade, the use of information innovation in healthcare has taken a developing part. In reality, the appropriation of an expanding number of computer devices has driven several benefits related to the method of quiet care and permitted simpler get to social and health care assets. At the same time, this drift gave rise to modern challenges related to the usage of these modern innovations. The program utilized in healthcare can be classified as therapeutic gadgets depending on the way they are utilized and on their useful characteristics. In the event that they are classified as therapeutic gadgets, they must fulfill particular directions. The point of this work is to show a computer program improvement system that can permit the generation of secure and tall, quality restorative gadget computer programs and to highlight the correspondence between each program advancement stage and the fitting standard and/or regulation.

Keywords: medical devices, regulation, software, development, healthcare

Procedia PDF Downloads 110
3606 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II

Authors: Khaled R. Khater

Abstract:

All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.

Keywords: design aids, numerical analysis, secant pile, Wall tip displacement

Procedia PDF Downloads 192
3605 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 253
3604 Sphingosomes: Potential Anti-Cancer Vectors for the Delivery of Doxorubicin

Authors: Brajesh Tiwari, Yuvraj Dangi, Abhishek Jain, Ashok Jain

Abstract:

The purpose of the investigation was to evaluate the potential of sphingosomes as nanoscale drug delivery units for site-specific delivery of anti-cancer agents. Doxorubicin Hydrochloride (DOX) was selected as a model anti-cancer agent. Sphingosomes were prepared and loaded with DOX and optimized for size and drug loading. The formulations were characterized by Malvern zeta-seizer and Transmission Electron Microscopy (TEM) studies. Sphingosomal formulations were further evaluated for in-vitro drug release study under various pH profiles. The in-vitro drug release study showed an initial rapid release of the drug followed by a slow controlled release. In vivo studies of optimized formulations and free drug were performed on albino rats for comparison of drug plasma concentration. The in- vivo study revealed that the prepared system enabled DOX to have had enhanced circulation time, longer half-life and lower elimination rate kinetics as compared to free drug. Further, it can be interpreted that the formulation would selectively enter highly porous mass of tumor cells and at the same time spare normal tissues. To summarize, the use of sphingosomes as carriers of anti-cancer drugs may prove to be a fascinating approach that would selectively localize in the tumor mass, increasing the therapeutic margin of safety while reducing the side effects associated with anti-cancer agents.

Keywords: sphingosomes, anti-cancer, doxorubicin, formulation

Procedia PDF Downloads 305
3603 Release Response of Black Spruce and White Spruce Following Overstory Lodgepole Pine Mortality Due to Mountain Pine Beetle Attack

Authors: F. O. Oboite, P. G. Comeau

Abstract:

Advance regeneration is present in many lodgepole pine stands in Alberta. When the overstory pine canopy is killed by Mountain Pine Beetle (MPB) the growth of this advance is likely to increase. Understanding the growth response of these understory tree species is needed to improve mid-term timber supply projections and management decisions. To quantify the growth (diameter, height, height/diameter ratio) responses of black spruce and white spruce to lodgepole pine mortality, sample trees of black and white spruce advance regeneration were selected from 7 lodgepole pine dominated stands (5 attacked; 2 control) in the Foothills Region of western Alberta. Measurements were collected 7-8 years after MPB attack across a wide range of spruce height and stand densities. Analysis was done using mixed model linear regression. Result indicates that there was an increase in both diameter and height growth after MPB attack; however, this increase in growth was delayed for about four years. Both spruce species had similar height response and their height/diameter ratio decreased after release, partly as a result of increased understory light associated with loss of needles in the pine canopy. In addition, the diameter and height growth responses of both spruce species were strongly related to density, prerelease growth and initial size.

Keywords: mountain pine beetle, forest regeneration, lodgepole pine, growth response

Procedia PDF Downloads 377
3602 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 554
3601 Examination of the Satisfaction Levels of Pre-Service Teachers Concerning E-Learning Process in Terms of Different Variables

Authors: Agah Tugrul Korucu

Abstract:

Significant changes have taken place for the better in the bulk of information and in the use of technology available in the field of education induced by technological changes in the 21st century. It is mainly the job of the teachers and pre-service teachers to integrate information and communication technologies into education by means of conveying the use of technology to individuals. While the pre-service teachers are conducting lessons by using technology, the methods they have developed are important factors for the requirements of the lesson and for the satisfaction levels of the students. The study of this study is to examine the satisfaction levels of pre-service teachers as regards e-learning in a technological environment in which there are lesson activities conducted through an online learning environment in terms of various variables. The study group of the research is composed of 156 pre-service teachers that were students in the departments of Computer and Teaching Technologies, Art Teaching and Pre-school Teaching in the academic year of 2014 - 2015. The qualitative research method was adopted for this study; the scanning model was employed in collecting the data. “The Satisfaction Scale regarding the E-learning Process”, developed by Gülbahar, and the personal information form, which was developed by the researcher, were used as means of collecting the data. Cronbach α reliability coefficient, which is the internal consistency coefficient of the scale, is 0.91. SPSS computerized statistical package program and the techniques of medium, standard deviation, percentage, correlation, t-test and variance analysis were used in the analysis of the data.

Keywords: online learning environment, integration of information technologies, e-learning, e-learning satisfaction, pre-service teachers

Procedia PDF Downloads 354
3600 Study and Conservation of Cultural and Natural Heritages with the Use of Laser Scanner and Processing System for 3D Modeling Spatial Data

Authors: Julia Desiree Velastegui Caceres, Luis Alejandro Velastegui Caceres, Oswaldo Padilla, Eduardo Kirby, Francisco Guerrero, Theofilos Toulkeridis

Abstract:

It is fundamental to conserve sites of natural and cultural heritage with any available technique or existing methodology of preservation in order to sustain them for the following generations. We propose a further skill to protect the actual view of such sites, in which with high technology instrumentation we are able to digitally preserve natural and cultural heritages applied in Ecuador. In this project the use of laser technology is presented for three-dimensional models, with high accuracy in a relatively short period of time. In Ecuador so far, there are not any records on the use and processing of data obtained by this new technological trend. The importance of the project is the description of the methodology of the laser scanner system using the Faro Laser Scanner Focus 3D 120, the method for 3D modeling of geospatial data and the development of virtual environments in the areas of Cultural and Natural Heritage. In order to inform users this trend in technology in which three-dimensional models are generated, the use of such tools has been developed to be able to be displayed in all kinds of digitally formats. The results of the obtained 3D models allows to demonstrate that this technology is extremely useful in these areas, but also indicating that each data campaign needs an individual slightly different proceeding starting with the data capture and processing to obtain finally the chosen virtual environments.

Keywords: laser scanner system, 3D model, cultural heritage, natural heritage

Procedia PDF Downloads 310
3599 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values ​​at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: electrical properties, optical gap, phthalocyanine, thin film.

Procedia PDF Downloads 252
3598 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method

Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat

Abstract:

Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.

Keywords: feature extraction, feature selection, image annotation, classification

Procedia PDF Downloads 587
3597 Longitudinal Changes in Body Composition in Subjects with Diabetes Who Received Low-Carbohydrate Diet Education: The Effect of Age and Sex

Authors: Hsueh-Ching Wu

Abstract:

Aims: This study investigated the longitudinal changes in BC were evaluated in patients with T2D who received carbohydrate-restricted diet education (CRDE), and the effects of age and sex on BC were analyzed. Design: This retrospective observational study was conducted between 2018 and 2021. A total of 6164 T2D patients were analyzed. Subjects with T2D who received CRDE (daily carbohydrate intake: 26-45%). A hierarchical linear model (HLM) was used to estimate the change amount and rate of change for the following variables in each group: body weight (BW), body mass index (BMI), body fat mass (BFM), percent body fat (PBF), appendicular skeletal muscle mass (ASM), and skeletal muscle index (SMI). Results: The BW, BMI, ASM, SMI and BFM of T2D patients who received CRDE for 3 years decreased with increasing age; PBF showed the opposite trend. The changes in BW, BMI, ASM, and SMI of patients older than 65 years were higher than those of patients younger than 65 years, and the annual rate of decline for males was higher than that for females. The annual change in BFM and PBF for both sexes changed from a downward trend before the age of 65 to a slow increase after the age of 65, and the slow increase rate for women was higher than that for men. Conclusion: Changes in body composition are associated with age and sex. BW and muscle tissue decrease with age, and attention must be paid to the rebound of adipose tissue after middle age. Patient or Public Contribution: The patient agreed to participate in a retrospective chart review during in the study period.

Keywords: body weight, body composition, carbohydrate-restricted diet, nursing, type 2 diabetes

Procedia PDF Downloads 77
3596 Grammatical Forms and Functions in Selected Political Interviews of Nigerian Presidential Aspirants in 2015 General Election

Authors: Temitope Abiodun Balogun

Abstract:

Political interviews are one of the ways by which political office-seekers in Nigeria sell themselves to the electorates. Extant studies have examined the discourse of political interviews from conversational, philosophical, rhetorical, stylistic and pragmatic perspectives with insufficient attention paid to grammatical forms and communicative intentions of the interviews granted by the two presidential aspirants in the 2015 Nigerian general election. This study fills this scholarly gap to unmask their grammatical forms and communicative styles, intention and credibility. The paper adopts Halliday’s Systemic Functional Grammar, specifically interpersonal function coupled with Searle’s Model of Speech Acts Theory as a theoretical framework. A total of six interviews granted by the two presidential aspirants in media serve as the source of data. It is discovered that, in most cases, politicians’ communicative intention is to “pull-down” their political opponents. While declarative and interrogatives are simple, direct and straightforward, the intention is to condemn, lambast and castigate their opponents. This communicative style does not allow the general populace to decipher the political manifestoes of the political aspirants and the party they represent. The paper recommends that before Nigeria can boast of any sustainable growth and development, there is the need for her political office-seekers to adopt effective communication strategies and styles to unveil their intention and manifestoes so that electorates can evaluate their performance after their tenure of office.

Keywords: general election, grammatical forms and function, political interviews, presidential aspirants

Procedia PDF Downloads 165
3595 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 302
3594 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez

Abstract:

Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.

Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma

Procedia PDF Downloads 132