Search results for: preposition error detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5258

Search results for: preposition error detection

3848 Application of Infrared Thermal Imaging, Eye Tracking and Behavioral Analysis for Deception Detection

Authors: Petra Hypšová, Martin Seitl

Abstract:

One of the challenges of forensic psychology is to detect deception during a face-to-face interview. In addition to the classical approaches of monitoring the utterance and its components, detection is also sought by observing behavioral and physiological changes that occur as a result of the increased emotional and cognitive load caused by the production of distorted information. Typical are changes in facial temperature, eye movements and their fixation, pupil dilation, emotional micro-expression, heart rate and its variability. Expanding technological capabilities have opened the space to detect these psychophysiological changes and behavioral manifestations through non-contact technologies that do not interfere with face-to-face interaction. Non-contact deception detection methodology is still in development, and there is a lack of studies that combine multiple non-contact technologies to investigate their accuracy, as well as studies that show how different types of lies produced by different interviewers affect physiological and behavioral changes. The main objective of this study is to apply a specific non-contact technology for deception detection. The next objective is to investigate scenarios in which non-contact deception detection is possible. A series of psychophysiological experiments using infrared thermal imaging, eye tracking and behavioral analysis with FaceReader 9.0 software was used to achieve our goals. In the laboratory experiment, 16 adults (12 women, 4 men) between 18 and 35 years of age (SD = 4.42) were instructed to produce alternating prepared and spontaneous truths and lies. The baseline of each proband was also measured, and its results were compared to the experimental conditions. Because the personality of the examiner (particularly gender and facial appearance) to whom the subject is lying can influence physiological and behavioral changes, the experiment included four different interviewers. The interviewer was represented by a photograph of a face that met the required parameters in terms of gender and facial appearance (i.e., interviewer likability/antipathy) to follow standardized procedures. The subject provided all information to the simulated interviewer. During follow-up analyzes, facial temperature (main ROIs: forehead, cheeks, the tip of the nose, chin, and corners of the eyes), heart rate, emotional expression, intensity and fixation of eye movements and pupil dilation were observed. The results showed that the variables studied varied with respect to the production of prepared truths and lies versus the production of spontaneous truths and lies, as well as the variability of the simulated interviewer. The results also supported the assumption of variability in physiological and behavioural values during the subject's resting state, the so-called baseline, and the production of prepared and spontaneous truths and lies. A series of psychophysiological experiments provided evidence of variability in the areas of interest in the production of truths and lies to different interviewers. The combination of technologies used also led to a comprehensive assessment of the physiological and behavioral changes associated with false and true statements. The study presented here opens the space for further research in the field of lie detection with non-contact technologies.

Keywords: emotional expression decoding, eye-tracking, functional infrared thermal imaging, non-contact deception detection, psychophysiological experiment

Procedia PDF Downloads 102
3847 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 134
3846 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller

Procedia PDF Downloads 246
3845 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 170
3844 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 535
3843 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses

Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee

Abstract:

Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.

Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles

Procedia PDF Downloads 170
3842 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 58
3841 Evaluation of Microbiological Quality and Safety of Two Types of Salads Prepared at Libyan Airline Catering Center in Tripoli

Authors: Elham A. Kwildi, Yahia S. Abugnah, Nuri S. Madi

Abstract:

This study was designed to evaluate the microbiological quality and safety of two types of salads prepared at a catering center affiliated with Libyan Airlines in Tripoli, Libya. Two hundred and twenty-one (221) samples (132 economy-class and 89 first- class) were used in this project which lasted for ten months. Biweekly, microbiological tests were performed which included total plate count (TPC) and total coliforms (TCF), in addition to enumeration and/or detection of some pathogenic bacteria mainly Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella sp, Listeria sp and Vibrio parahaemolyticus parahaemolyticus, By using conventional as well as compact dry methods. Results indicated that TPC of type 1 salad ranged between (<10 – 62 x 103 cfu/gm) and (<10 to 36 x103 cfu/g), while TCF were (<10 – 41 x 103 cfu/gm) and (< 10 to 66 x102 cfu/g) using both methods of detection respectively. On the other hand, TPC of type 2 salad were: (1 × 10 – 52 x 103) and (<10 – 55 x 103 cfu/gm) and in the range of (1 x10 to 45x103 cfu/g), and the (TCF) counts were between (< 10 to 55x103 cfu/g) and (< 10 to 34 x103 cfu/g) using the 1st and the 2nd methods of detection respectively. Also, the pathogens mentioned above were detected in both types of salads, but their levels varied according to the type of salad and the method of detection. The level of Staphylococcus aureus, for instance, was 17.4% using conventional method versus 14.4% using the compact dry method. Similarly, E. coli was 7.6% and 9.8%, while Salmonella sp. recorded the least percentage i.e. 3% and 3.8% with the two mentioned methods respectively. First class salads were also found to contain the same pathogens, but the level of E. coli was relatively higher in this case (14.6% and 16.9%) using conventional and compact dry methods respectively. The second rank came Staphylococcus aureus (13.5%) and (11.2%), followed by Salmonella (6.74%) and 6.70%). The least percentage was for Vibrio parahaemolyticus (4.9%) which was detected in the first class salads only. The other two pathogens Bacillus cereus and Listeria sp. were not detected in either one of the salads. Finally, it is worth mentioning that there was a significant decline in TPC and TCF counts in addition to the disappearance of pathogenic bacteria after the 6-7th month of the study which coincided with the first trial of the HACCP system at the center. The ups and downs in the counts along the early stages of the study reveal that there is a need for some important correction measures including more emphasis on training of the personnel in applying the HACCP system effectively.

Keywords: air travel, vegetable salads, foodborne outbreaks, Libya

Procedia PDF Downloads 329
3840 A Novel Nano-Chip Card Assay as Rapid Test for Diagnosis of Lymphatic Filariasis Compared to Nano-Based Enzyme Linked Immunosorbent Assay

Authors: Ibrahim Aly, Manal Ahmed, Mahmoud M. El-Shall

Abstract:

Filariasis is a parasitic disease caused by small roundworms. The filarial worms are transmitted and spread by blood-feeding black flies and mosquitoes. Lymphatic filariasis (Elephantiasis) is caused by Wuchereriabancrofti, Brugiamalayi, and Brugiatimori. Elimination of Lymphatic filariasis necessitates an increasing demand for valid, reliable, and rapid diagnostic kits. Nanodiagnostics involve the use of nanotechnology in clinical diagnosis to meet the demands for increased sensitivity, specificity, and early detection in less time. The aim of this study was to evaluate the nano-based enzymelinked immunosorbent assay (ELISA) and novel nano-chip card as a rapid test for detection of filarial antigen in serum samples of human filariasis in comparison with traditional -ELISA. Serum samples were collected from an infected human with filarial gathered across Egypt's governorates. After receiving informed consenta total of 45 blood samples of infected individuals residing in different villages in Gharbea governorate, which isa nonendemic region for bancroftianfilariasis, healthy persons living in nonendemic locations (20 persons), as well as sera from 20 other parasites, affected patients were collected. The microfilaria was checked in thick smears of 20 µl night blood samples collected during 20-22 hrs. All of these individuals underwent the following procedures: history taking, clinical examination, and laboratory investigations, which included examination of blood samples for microfilaria using thick blood film and serological tests for detection of the circulating filarial antigen using polyclonal antibody- ELISA, nano-based ELISA, and nano-chip card. In the present study, a recently reported polyoclonal antibody specific to tegumental filarial antigen was used in developing nano-chip card and nano-ELISA compared to traditional ELISA for the detection of circulating filarial antigen in sera of patients with bancroftianfilariasis. The performance of the ELISA was evaluated using 45 serum samples. The ELISA was positive with sera from microfilaremicbancroftianfilariasis patients (n = 36) with a sensitivity of 80 %. Circulating filarial antigen was detected in 39/45 patients who were positive for circulating filarial antigen using nano-ELISA with a sensitivity of 86.6 %. On the other hand, 42 out of 45 patients were positive for circulating filarial antigen using nano-chip card with a sensitivity of 93.3%.In conclusion, using a novel nano-chip assay could potentially be a promising alternative antigen detection test for bancroftianfilariasis.

Keywords: lymphatic filariasis, nanotechnology, rapid diagnosis, elisa technique

Procedia PDF Downloads 119
3839 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 40
3838 A Fluorescent Polymeric Boron Sensor

Authors: Soner Cubuk, Mirgul Kosif, M. Vezir Kahraman, Ece Kok Yetimoglu

Abstract:

Boron is an essential trace element for the completion of the life circle for organisms. Suitable methods for the determination of boron have been proposed, including acid - base titrimetric, inductively coupled plasma emission spectroscopy flame atomic absorption and spectrophotometric. However, the above methods have some disadvantages such as long analysis times, requirement of corrosive media such as concentrated sulphuric acid and multi-step sample preparation requirements and time-consuming procedures. In this study, a selective and reusable fluorescent sensor for boron based on glycosyloxyethyl methacrylate was prepared by photopolymerization. The response characteristics such as response time, pH, linear range, limit of detection were systematically investigated. The excitation/emission maxima of the membrane were at 378/423 nm, respectively. The approximate response time was measured as 50 sec. In addition, sensor had a very low limit of detection which was 0.3 ppb. The sensor was successfully used for the determination of boron in water samples with satisfactory results.

Keywords: boron, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 286
3837 Detection of Glyphosate Using Disposable Sensors for Fast, Inexpensive and Reliable Measurements by Electrochemical Technique

Authors: Jafar S. Noori, Jan Romano-deGea, Maria Dimaki, John Mortensen, Winnie E. Svendsen

Abstract:

Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively. As a consequence of the heavy use of glyphosate, residues of this compound are increasingly observed in food and water. Recent studies reported a direct link between glyphosate and chronic effects such as teratogenic, tumorigenic and hepatorenal effects although the exposure was below the lowest regulatory limit. Today, pesticides are detected in water by complicated and costly manual procedures conducted by highly skilled personnel. It can take up to several days to get an answer regarding the pesticide content in water. An alternative to this demanding procedure is offered by electrochemical measuring techniques. Electrochemistry is an emerging technology that has the potential of identifying and quantifying several compounds in few minutes. It is currently not possible to detect glyphosate directly in water samples, and intensive research is underway to enable direct selective and quantitative detection of glyphosate in water. This study focuses on developing and modifying a sensor chip that has the ability to selectively measure glyphosate and minimize the signal interference from other compounds. The sensor is a silicon-based chip that is fabricated in a cleanroom facility with dimensions of 10×20 mm. The chip is comprised of a three-electrode configuration. The deposited electrodes consist of a 20 nm layer chromium and 200 nm gold. The working electrode is 4 mm in diameter. The working electrodes are modified by creating molecularly imprinted polymers (MIP) using electrodeposition technique that allows the chip to selectively measure glyphosate at low concentrations. The modification included using gold nanoparticles with a diameter of 10 nm functionalized with 4-aminothiophenol. This configuration allows the nanoparticles to bind to the working electrode surface and create the template for the glyphosate. The chip was modified using electrodeposition technique. An initial potential for the identification of glyphosate was estimated to be around -0.2 V. The developed sensor was used on 6 different concentrations and it was able to detect glyphosate down to 0.5 mgL⁻¹. This value is below the accepted pesticide limit of 0.7 mgL⁻¹ set by the US regulation. The current focus is to optimize the functionalizing procedure in order to achieve glyphosate detection at the EU regulatory limit of 0.1 µgL⁻¹. To the best of our knowledge, this is the first attempt to modify miniaturized sensor electrodes with functionalized nanoparticles for glyphosate detection.

Keywords: pesticides, glyphosate, rapid, detection, modified, sensor

Procedia PDF Downloads 181
3836 Astronomical Object Classification

Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan

Abstract:

We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.

Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis

Procedia PDF Downloads 84
3835 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 348
3834 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario

Authors: Shuqi Zhang

Abstract:

Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.

Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning

Procedia PDF Downloads 101
3833 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 59
3832 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC

Authors: Salman Hameed

Abstract:

In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.

Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor

Procedia PDF Downloads 428
3831 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 127
3830 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 223
3829 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set

Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques

Procedia PDF Downloads 423
3828 Development of Advanced Linear Calibration Technique for Air Flow Sensing by Using CTA-Based Hot Wire Anemometry

Authors: Ming-Jong Tsai, T. M. Wu, R. C. Chu

Abstract:

The purpose of this study is to develop an Advanced linear calibration Technique for air flow sensing by using CTA-based Hot wire Anemometry. It contains a host PC with Human Machine Interface, a wind tunnel, a wind speed controller, an automatic data acquisition module, and nonlinear calibration model. To improve the fitting error by using single fitting polynomial, this study proposes a Multiple three-order Polynomial Fitting Method (MPFM) for fitting the non-linear output of a CTA-based Hot wire Anemometry. The CTA-based anemometer with built-in fitting parameters is installed in the wind tunnel, and the wind speed is controlled by the PC-based controller. The Hot-Wire anemometer's thermistor resistance change is converted into a voltage signal or temperature differences, and then sent to the PC through a DAQ card. After completion measurements of original signal, the Multiple polynomial mathematical coefficients can be automatically calculated, and then sent into the micro-processor in the Hot-Wire anemometer. Finally, the corrected Hot-Wire anemometer is verified for the linearity, the repeatability, error percentage, and the system outputs quality control reports.

Keywords: flow rate sensing, hot wire, constant temperature anemometry (CTA), linear calibration, multiple three-order polynomial fitting method (MPFM), temperature compensation

Procedia PDF Downloads 420
3827 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler

Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury

Abstract:

An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.

Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler

Procedia PDF Downloads 154
3826 Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry

Authors: Fangyan Li, Lin Min Lee, Hui Zhu Peh, Shoet Harn Chan

Abstract:

Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food.

Keywords: advantame, food, LC-MS/MS, sweetener

Procedia PDF Downloads 480
3825 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 347
3824 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 72
3823 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 326
3822 Colorimetric Measurement of Dipeptidyl Peptidase IV (DPP IV) Activity via Peptide Capped Gold Nanoparticles

Authors: H. Aldewachi, M. Hines, M. McCulloch, N. Woodroofe, P. Gardiner

Abstract:

DPP-IV is an enzyme whose expression is affected in a variety of diseases, therefore, has been identified as possible diagnostic or prognostic marker for various tumours, immunological, inflammatory, neuroendocrine, and viral diseases. Recently, DPP-IV enzyme has been identified as a novel target for type II diabetes treatment where the enzyme is involved. There is, therefore, a need to develop sensitive and specific methods that can be easily deployed for the screening of the enzyme either as a tool for drug screening or disease marker in biological samples. A variety of assays have been introduced for the determination of DPP-IV enzyme activity using chromogenic and fluorogenic substrates, nevertheless these assays either lack the required sensitivity especially in inhibited enzyme samples or displays low water solubility implying difficulty for use in vivo samples in addition to labour and time-consuming sample preparation. In this study, novel strategies based on exploiting the high extinction coefficient of gold nanoparticles (GNPs) are investigated in order to develop fast, specific and reliable enzymatic assay by investigating synthetic peptide sequences containing a DPP IV cleavage site and coupling them to GNPs. The DPP IV could be detected by colorimetric response of peptide capped GNPs (P-GNPS) that could be monitored by a UV-visible spectrophotometer or even naked eyes, and the detection limit could reach 0.01 unit/ml. The P-GNPs, when subjected to DPP IV, showed excellent selectivity compared to other proteins (thrombin and human serum albumin) , which led to prominent colour change. This provided a simple and effective colorimetric sensor for on-site and real-time detection of DPP IV.

Keywords: gold nanoparticles, synthetic peptides, colorimetric detection, DPP-IV enzyme

Procedia PDF Downloads 308
3821 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication

Authors: Krish Jhurani

Abstract:

The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.

Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties

Procedia PDF Downloads 128
3820 The Effect of Exposure to High Noise Level on the Performance and Rate of Error in Manual Activities

Authors: Zahra Zamanian, Alireza Zamanian, Jafar Hasanzadeh

Abstract:

Background: Unwanted sound, as one of the most important physical factors in the majority of production units, imposes a great number of problems on the industrial workers. Sound is one of the environmental factors which can cause physical as well as psychological damages and also affects the individuals’ performance and productivity. Therefore, the present study aimed to determine the effect of noise exposure on human performance. Methods: The present study assessed the effect of noise on the performance of 50 students of Shiraz University of Medical Sciences (25 males and 25 females) at the sound pressures of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound pressure source as well as applying Two-Arm coordination Test. Results: The results of the present study revealed no significant difference between male and female subjects as well as different conditions of creating sound pressure regarding the length of performance (p> 0.05). In addition, as the sound pressure increased, the length of performance increased, as well. According to the results, no significant difference was found between the performance at 70 and 90 dB. On the other hand, the performance at 110 dB was significantly different from the performance at 70 and 90 dB (p<0.05 and p<0.001). Conclusion: In general, as the sound pressure increases, the performance decreases which results in a considerable increase in the individuals’ rate of error.

Keywords: physical factors, two-arm coordination test, Shiraz University of Medical Sciences, noise

Procedia PDF Downloads 307
3819 Cross-Sectional Study Investigating the Prevalence of Uncorrected Refractive Error and Visual Acuity through Mobile Vision Screening in the Homeless in Wales

Authors: Pakinee Pooprasert, Wanxin Wang, Tina Parmar, Dana Ahnood, Tafadzwa Young-Zvandasara, James Morgan

Abstract:

Homelessness has been shown to be correlated to poor health outcomes, including increased visual health morbidity. Despite this, there are relatively few studies regarding visual health in the homeless population, especially in the UK. This research aims to investigate visual disability and access barriers prevalent in the homeless population in Cardiff, South Wales. Data was collected from 100 homeless participants in three different shelters. Visual outcomes included near and distance visual acuity as well as non-cycloplegic refraction. Qualitative data was collected via a questionnaire and included socio-demographic profile, ocular history, subjective visual acuity and level of access to healthcare facilities. Based on the participants’ presenting visual acuity, the total prevalence of myopia and hyperopia was 17.0% and 19.0% respectively based on spherical equivalent from the eye with the greatest absolute value. The prevalence of astigmatism was 8.0%. The mean absolute spherical equivalent was 0.841D and 0.853D for right and left eye respectively. The number of participants with sight loss (as defined by VA= 6/12-6/60 in the better-seeing eye) was 27.0% in comparison to 0.89% and 1.1% in the general Cardiff and Wales population respectively (p-value is < 0.05). Additionally, 1.0% of the homeless subjects were registered blind (VA less than 3/60), in comparison to 0.17% for the national consensus after age standardization. Most participants had good knowledge regarding access to prescription glasses and eye examination services. Despite this, 85.0% never had their eyes examined by a doctor and 73.0% had their last optometrist appointment in more than 5 years. These findings suggested that there was a significant disparity in ocular health, including visual acuity and refractive error amongst the homeless in comparison to the general population. Further, the homeless were less likely to receive the same level of support and continued care in the community due to access barriers. These included a number of socio-economic factors such as travel expenses and regional availability of services, as well as administrative shortcomings. In conclusion, this research demonstrated unmet visual health needs within the homeless, and that inclusive policy changes may need to be implemented for better healthcare outcomes within this marginalized community.

Keywords: homelessness, refractive error, visual disability, Wales

Procedia PDF Downloads 176