Search results for: non-linear optical
1522 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression
Procedia PDF Downloads 4161521 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S
Authors: Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin
Procedia PDF Downloads 4431520 Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses
Authors: Khair Al-Deen Bsisu, Osama Mahmoud Abuzeid
Abstract:
Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established.Keywords: Glass Construction material, Facades, Finite Element, Pre-Tensioned Cable Truss
Procedia PDF Downloads 2801519 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E. Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval
Procedia PDF Downloads 3731518 Architectural Thinking in a Time of Climate Emergency
Authors: Manoj Parmar
Abstract:
The article uses reflexivity as a research method to investigate and propose an architectural theory plan for climate change. It hypothecates that to discuss or formulate discourse on "Architectural Thinking in a Time of Climate Emergency," firstly, we need to understand the modes of integration that enable architectural thinking with climate change. The study intends to study the various integration modes that have evolved historically and situate them in time. Subsequently, it analyses the integration pattern, challenges the existing model, and finds a way towards climate change as central to architectural thinking. The study is fundamental on-premises that ecology and climate change scholarship has consistently out lashed the asymmetrical and nonlinear knowledge and needs approaches for architecture that are less burden to climate change to people and minimize its impact on ecology.Keywords: climate change, architectural theory, reflexivity, modernity
Procedia PDF Downloads 2851517 Mechanical Characteristics on Fatigue Crack Propagation in Aluminum Plate
Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, L. Addar, H. Kebir
Abstract:
This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems. Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.Keywords: aluminum alloys, plate, crack, failure
Procedia PDF Downloads 4281516 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance
Authors: Flora Babongo, Valerie Chavez
Abstract:
Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.Keywords: causal inference, DAGs, BAMLSS, financial index
Procedia PDF Downloads 1511515 Synthesis and Characterizations of Lead-free BaO-Doped TeZnCaB Glass Systems for Radiation Shielding Applications
Authors: Rezaul K. Sk., Mohammad Ashiq, Avinash K. Srivastava
Abstract:
The use of radiation shielding technology ranging from EMI to high energy gamma rays in various areas such as devices, medical science, defense, nuclear power plants, medical diagnostics etc. is increasing all over the world. However, exposure to different radiations such as X-ray, gamma ray, neutrons and EMI above the permissible limits is harmful to living beings, the environment and sensitive laboratory equipment. In order to solve this problem, there is a need to develop effective radiation shielding materials. Conventionally, lead and lead-based materials are used in making shielding materials, as lead is cheap, dense and provides very effective shielding to radiation. However, the problem associated with the use of lead is its toxic nature and carcinogenic. So, to overcome these drawbacks, there is a great need for lead-free radiation shielding materials and that should also be economically sustainable. Therefore, it is necessary to look for the synthesis of radiation-shielding glass by using other heavy metal oxides (HMO) instead of lead. The lead-free BaO-doped TeZnCaB glass systems have been synthesized by the traditional melt-quenching method. X-ray diffraction analysis confirmed the glassy nature of the synthesized samples. The densities of the developed glass samples were increased by doping the BaO concentration, ranging from 4.292 to 4.725 g/cm3. The vibrational and bending modes of the BaO-doped glass samples were analyzed by Raman spectroscopy, and FTIR (Fourier-transform infrared spectroscopy) was performed to study the functional group present in the samples. UV-visible characterization revealed the significance of optical parameters such as Urbach’s energy, refractive index and optical energy band gap. The indirect and direct energy band gaps were decreased with the BaO concentration whereas the refractive index was increased. X-ray attenuation measurements were performed to determine the radiation shielding parameters such as linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), attenuation factor (Att%) and lead equivalent thickness of the lead-free BaO-doped TeZnCaB glass system. It was observed that the radiation shielding characteristics were enhanced with the addition of BaO content in the TeZnCaB glass samples. The glass samples with higher contents of BaO have the best attenuation performance. So, it could be concluded that the addition of BaO into TeZnCaB glass samples is a significant technique to improve the radiation shielding performance of the glass samples. The best lead equivalent thickness was 2.626 mm, and these glasses could be good materials for medical diagnostics applications.Keywords: heavy metal oxides, lead-free, melt-quenching method, x-ray attenuation
Procedia PDF Downloads 311514 Investigation of Optical Requirements for Power System Assets Monitoring with Unmanned Aerial Vehicles
Authors: Ioana Pisica, Dimitrios Gkritzapis
Abstract:
The significance of UAS in scientific applications has been amply demonstrated in recent years. The combinations of portability and quasi-static positioning by means of flying in close loop path make them versatile and efficient in the inspection of power systems infrastructure. In this paper, we critically assess several platforms and sensor capabilities to identify their pros and cons in relation to the power systems assets to be monitored. In this respect, it is paramount the flights to be conducted by using UAS which bear certain suitable features, such as responsive and easy control, video capturing in real time, autonomous routing of pre-planned flight programming with differentiating payloads. The outcome of this research is a set of optimal requirements for power system assets monitoring with UAS.Keywords: platforms, power system, sensors, UAVs
Procedia PDF Downloads 2851513 Photoreflectance Anisotropy Spectroscopy of Coupled Quantum Wells
Authors: J. V. Gonzalez Fernandez, T. Mozume, S. Gozu, A. Lastras Martinez, L. F. Lastras Martinez, J. Ortega Gallegos, R. E. Balderas Navarro
Abstract:
We report on a theoretical-experimental study of photoreflectance anisotropy (PRA) spectroscopy of coupled double quantum wells. By probing the in-plane interfacial optical anisotropies, we demonstrate that PRA spectroscopy has the capacity to detect and distinguish layers with quantum dimensions. In order to account for the experimental PRA spectra, we have used a theoretical model at k=0 based on a linear electro-optic effect through a piezoelectric shear strain.Keywords: coupled double quantum well (CDQW), linear electro-optic (LEO) effect, photoreflectance anisotropy (PRA), piezoelectric shear strain
Procedia PDF Downloads 6941512 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect
Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz
Abstract:
Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility
Procedia PDF Downloads 2681511 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding
Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak
Abstract:
The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure
Procedia PDF Downloads 3631510 Graphene Materials for Efficient Hybrid Solar Cells: A Spectroscopic Investigation
Authors: Mohammed Khenfouch, Fokotsa V. Molefe, Bakang M. Mothudi
Abstract:
Nowadays, graphene and its composites are universally known as promising materials. They show their potential in a large field of applications including photovoltaics. This study reports on the role of nanohybrids and nanosystems known as strong light harvesters in the efficiency of graphene hybrid solar cells. Our system included Graphene/ZnO/Porphyrin/P3HT layers. Moreover, the physical properties including surface/interface, optical and vibrational properties were also studied. Our investigations confirmed the interaction between the different components as well as the sensitivity of their photonics to the synthesis conditions. Remarkable energy and charge transfer were detected and deeply investigated. Hence, the optimization of the conditions will lead to the fabrication of higher conversion efficiency in graphene solar cells.Keywords: graphene, optoelectronics, nanohybrids, solar cells
Procedia PDF Downloads 1681509 Phase Transition of Aqueous Ternary (THF + Polyvinylpyrrolidone + H2O) System as Revealed by Terahertz Time-Domain Spectroscopy
Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee
Abstract:
Determination of the behavior of clathrate hydrate with inhibitor in the THz region will provide useful information about hydrate plug control in the upstream of the oil and gas industry. In this study, terahertz time-domain spectroscopy (THz-TDS) revealed the inhibition of the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different molecular weights. Distinct footprints of phase transition in the THz region (0.4–2.2 THz) were analyzed and absorption coefficients and real part of refractive indices are obtained in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.Keywords: clathrate hydrate, terahertz spectroscopy, tetrahydrofuran, inhibitor
Procedia PDF Downloads 3391508 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation
Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu
Abstract:
Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing
Procedia PDF Downloads 1611507 Quantification of Site Nonlinearity Based on HHT Analysis of Seismic Recordings
Authors: Ruichong Zhang
Abstract:
This study proposes a recording-based approach to characterize and quantify earthquake-induced site nonlinearity, exemplified as soil nonlinearity and/or liquefaction. Alternative to Fourier spectral analysis (FSA), the paper introduces time-frequency analysis of earthquake ground motion recordings with the aid of so-called Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the nonlinear features shown in the recordings. With the use of the 2001 Nisqually earthquake recordings, this study shows that the proposed approach is effective in characterizing site nonlinearity and quantifying the influences in seismic ground responses.Keywords: site nonlinearity, site amplification, site damping, Hilbert-Huang Transform (HHT), liquefaction, 2001 Nisqually Earthquake
Procedia PDF Downloads 4871506 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback
Authors: M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.Keywords: Parkinson's disease, stability, simulation, two delay differential equation
Procedia PDF Downloads 1301505 A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial
Authors: Eyyup Murat Karakurt, Yan Huang, Mehmet Kaya, Huseyin Demirtas
Abstract:
In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally.Keywords: porosity effect, Ti based alloys, elastic modulus, compression test
Procedia PDF Downloads 2301504 Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator
Authors: Debajyoti Choudhuri, Ratan Kumar Giri, Shesadev Pradhan
Abstract:
The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed.Keywords: p-Laplacian, p-biharmonic, elliptic PDEs, Concentration lemma, Sobolev space
Procedia PDF Downloads 2351503 A Study on the Shear-Induced Crystallization of Aliphatic-Aromatic Copolyester
Authors: Ramin Hosseinnezhad, Iurii Vozniak, Andrzej Galeski
Abstract:
Shear-induced crystallization, originated from orientation of chains along the flow direction, is an inevitable part of most polymer processing technologies. It plays a dominant role in determining the final product properties and is affected by many factors such as shear rate, cooling rate, total strain, etc. Investigation of the shear-induced crystallization process become of great importance for preparation of nanocomposite, which requires crystallization of nanofibrous sheared inclusions at higher temperatures. Thus, the effects of shear time, shear rate, and also thermal condition of cooling on crystallization of two aliphatic-aromatic copolyesters have been investigated. This was performed using Linkam optical shearing system (CSS450) for both Ecoflex® F Blend C1200 produced by BASF and synthesized copolyester of butylene terephthalate and a mixture of butylene esters: adipate, succinate, and glutarate, (PBASGT), containing 60% of aromatic comonomer. Crystallization kinetics of these biodegradable copolyesters was studied at two different conditions of shearing. First, sample with a thickness of 60µm was heated to 60˚C above its melting point and subsequently subjected to different shear rates (100–800 sec-1) while cooling with specific rates. Second, the same type of sample was cooled down when shearing at constant temperature was finished. The intensity of transmitted depolarized light, recorded by a camera attached to the optical microscope, was used as a measure to follow the crystallization. Temperature dependencies of conversion degree of samples during cooling were collected and used to determine the half-temperature (Th), at which 50% conversion degree was reached. Shearing ecoflex films for 45 seconds with a shear rate of 100 sec-1 resulted in significant increase of Th from 56˚C to 70˚C. Moreover, the temperature range for the transition of molten samples to crystallized state decreased from 42˚C to 20˚C. Comparatively low shift of 10˚C in Th towards higher temperature was observed for PBASGT films at shear rate of 600 sec-1 for 45 seconds. However, insufficient melt flow strength and non-laminar flow due to Taylor vortices was a hindrance to reach more elevated Th at very high shear rates (600–800 sec-1). The shift in Th was smaller for the samples sheared at a constant temperature and subsequently cooled down. This may be attributed to the longer time gap between cessation of shearing and the onset of crystallization. The longer this time gap, the more possibility for crystal nucleus to re-melt at temperatures above Tm and for polymer chains to recoil and relax. It is found that the crystallization temperature, crystallization induction time and spherulite growth of aliphatic-aromatic copolyesters are dramatically influenced by both the cooling rate and the shear imposed during the process.Keywords: induced crystallization, shear rate, aliphatic-aromatic copolyester, ecoflex
Procedia PDF Downloads 4481502 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures
Authors: Dong Wook Lee, Adrian Mistreanu
Abstract:
The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis
Procedia PDF Downloads 1381501 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions
Authors: Yacine Arioua
Abstract:
In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness
Procedia PDF Downloads 2641500 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening
Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah
Abstract:
This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.Keywords: damage mechanics, 3-D numerical analysis, RC, slab with opening
Procedia PDF Downloads 1741499 Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion
Authors: Rachid Fermous, Rima Mebrek
Abstract:
Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.Keywords: plasma expansion, quantum degeneracy, weakly relativistic, under-dense plasma
Procedia PDF Downloads 871498 Tunable in Phase, out of Phase and T/4 Square-Wave Pulses in Delay-Coupled Optoelectronic Oscillators
Authors: Jade Martínez-Llinàs, Pere Colet
Abstract:
By exploring the possible dynamical regimes in a prototypical model for mutually delay-coupled OEOs, here it is shown that two mutually coupled non-identical OEOs, besides in- and out-of-phase square-waves, can generate stable square-wave pulses synchronized at a quarter of the period (T/4) in a broad parameter region. The key point to obtain T/4 solutions is that the two OEO operate with mixed feedback, namely with negative feedback in one and positive in the other. Furthermore, the coexistence of multiple solutions provides a large degree of flexibility for tuning the frequency in the GHz range without changing any parameter. As a result the two coupled OEOs system is good candidate to be implemented for information encoding as a high-capacity memory device.Keywords: nonlinear optics, optoelectronic oscillators, square waves, synchronization
Procedia PDF Downloads 3701497 The Analysis of a Reactive Hydromagnetic Internal Heat Generating Poiseuille Fluid Flow through a Channel
Authors: Anthony R. Hassan, Jacob A. Gbadeyan
Abstract:
In this paper, the analysis of a reactive hydromagnetic Poiseuille fluid flow under each of sensitized, Arrhenius and bimolecular chemical kinetics through a channel in the presence of heat source is carried out. An exothermic reaction is assumed while the concentration of the material is neglected. Adomian Decomposition Method (ADM) together with Pade Approximation is used to obtain the solutions of the governing nonlinear non – dimensional differential equations. Effects of various physical parameters on the velocity and temperature fields of the fluid flow are investigated. The entropy generation analysis and the conditions for thermal criticality are also presented.Keywords: chemical kinetics, entropy generation, thermal criticality, adomian decomposition method (ADM) and pade approximation
Procedia PDF Downloads 4641496 An Approach for Reducing Morphological Operator Dataset and Recognize Optical Character Based on Significant Features
Authors: Ashis Pradhan, Mohan P. Pradhan
Abstract:
Pattern Matching is useful for recognizing character in a digital image. OCR is one such technique which reads character from a digital image and recognizes them. Line segmentation is initially used for identifying character in an image and later refined by morphological operations like binarization, erosion, thinning, etc. The work discusses a recognition technique that defines a set of morphological operators based on its orientation in a character. These operators are further categorized into groups having similar shape but different orientation for efficient utilization of memory. Finally the characters are recognized in accordance with the occurrence of frequency in hierarchy of significant pattern of those morphological operators and by comparing them with the existing database of each character.Keywords: binary image, morphological patterns, frequency count, priority, reduction data set and recognition
Procedia PDF Downloads 4141495 Failure Localization of Bipolar Integrated Circuits by Implementing Active Voltage Contrast
Authors: Yiqiang Ni, Xuanlong Chen, Enliang Li, Linting Zheng, Shizheng Yang
Abstract:
Bipolar ICs are playing an important role in military applications, mainly used in logic gates, such as inverter and NAND gate. The defect of metal break located on the step is one of the main failure mechanisms of bipolar ICs, resulting in open-circuit or functional failure. In this situation, general failure localization methods like optical beam-induced resistance change (OBIRCH) and photon emission microscopy (PEM) might not be fully effective. However, active voltage contrast (AVC) can be used as a voltage probe, which may pinpoint the incorrect potential and thus locate the failure position. Two case studies will be present in this paper on how to implement AVC for failure localization, and the detailed failure mechanism will be discussed.Keywords: bipolar IC, failure localization, metal break, open failure, voltage contrast
Procedia PDF Downloads 2911494 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 3281493 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations
Authors: Wieslaw Marszalek, Zdzislaw Trzaska
Abstract:
Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits
Procedia PDF Downloads 470