Search results for: geographic feature distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7121

Search results for: geographic feature distribution

5711 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 15
5710 Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks

Authors: Dibu Dave Mbako, Bin Cheng

Abstract:

This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib.

Keywords: orthotropic steel bridge deck, rib-to-deck connection, hot spot stress, finite element method, stress distribution

Procedia PDF Downloads 223
5709 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 124
5708 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 153
5707 Thermodynamically Predicting the Impact of Temperature on the Performance of Drilling Bits as a Function of Time

Authors: Talal Al-Bazali

Abstract:

Air drilling has recently received increasing acceptance by the oil and gas industry due to its unique advantages. The main advantages of air drilling include the higher rate of penetration, less formation damage, lower risk of loss of circulation. However, these advantages cannot be fully realized if thermal effects in air drilling are not well understood and minimized. Due to its high frictional coefficient, low heat conductivity, and high compressibility, air can impact the temperature distribution of bit and thus affect its bit performances. Based on energy and mass balances, a transient thermal model that predicts bit temperature is presented along with numerical solutions in this paper. In addition, several important parameters that influence bit temperature distribution are analyzed. Simulation results show that the bit temperature increases with increasing weight on bit and rotary speed but decreases as the standpipe pressure and flow rate increase. These results can be used to optimize drilling operations and flow parameters for an improved bit performance as shown in this paper.

Keywords: air drilling, rate of penetration, temperature, rotary speed

Procedia PDF Downloads 285
5706 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
5705 Prevalence of Parasitic Diseases in Different Fishes of North-West Himalayan Streams of India

Authors: Feroz A. Shah, M. H. Balkhi

Abstract:

The study was aimed at to record the distribution and prevalence of various metazoan parasites of fish from hill stream/coldwater fishes of various water bodies of northwest Himalayan region of India. Snow trout (Schizoth oracids) from eutrophic lakes and fresh water streams were collected from January to December 2012, to study the impact of environmental factors on the dynamics and distribution of parasitic infection. The prevalence of helminth parasites was correlated with available physico-chemical parameters including water temperature, pH and dissolved oxygen (DO). The most abundant parasitic infection recorded during this study was Adenoscolex sp. (Cestode parasite) which showed positive correlation with pH (significant p≤0.05) negative correlation with temperature. The Bothriocephalus was having positive correlation with water temperature while as negative correlation was observed with pH and DO. The correlation between Diplozoon sp. and Clinostomum sp. with the physiochemical parameters were non-significant.

Keywords: hill stream fishes, parasites, Western Himalayas, prevelance

Procedia PDF Downloads 392
5704 AM/E/c Queuing Hub Maximal Covering Location Model with Fuzzy Parameter

Authors: M. H. Fazel Zarandi, N. Moshahedi

Abstract:

The hub location problem appears in a variety of applications such as medical centers, firefighting facilities, cargo delivery systems and telecommunication network design. The location of service centers has a strong influence on the congestion at each of them, and, consequently, on the quality of service. This paper presents a fuzzy maximal hub covering location problem (FMCHLP) in which travel costs between any pair of nodes is considered as a fuzzy variable. In order to consider the quality of service, we model each hub as a queue. Arrival rate follows Poisson distribution and service rate follows Erlang distribution. In this paper, at first, a nonlinear mathematical programming model is presented. Then, we convert it to the linear one. We solved the linear model using GAMS software up to 25 nodes and for large sizes due to the complexity of hub covering location problems, and simulated annealing algorithm is developed to solve and test the model. Also, we used possibilistic c-means clustering method in order to find an initial solution.

Keywords: fuzzy modeling, location, possibilistic clustering, queuing

Procedia PDF Downloads 394
5703 Design, Construction and Characterization of a 3He Proportional Counter for Detecting Thermal Neutron

Authors: M. Fares, S. Mameri, I. Abdlani, K. Negara

Abstract:

Neutron detectors in general, proportional counters gas filling based isotope 3He in particular are going to be essential for monitoring and control of certain nuclear facilities, monitoring of experimentation around neutron beams and channels nuclear research reactors, radiation protection instruments and other tools multifaceted exploration and testing of materials, etc. This work consists of a measurement campaign features two Proportional Counters 3He (3He: LND252/USA CP, CP prototype: 3He LND/DDM). This is to make a comparison study of a CP 3He LND252/USA reference one hand, and in the context of routine periodic monitoring of the characteristics of the detectors for controlling the operation especially for laboratory prototypes. In this paper, we have described the different characteristics of the detectors and the experimental protocols used. Tables of measures have been developed and the different curves were plotted. The experimental campaign at stake: 2 PC 3He were thus characterized: Their characteristics (sensitivity, energy pulse height distribution spectra, gas amplification etc.) Were identified: 01 PC 3He 1'' Type: prototype DEDIN/DDM, 01 PC 3He 1'' Type: LND252/USA.

Keywords: PC 3He, sensitivity, pulse height distribution spectra, gas amplification

Procedia PDF Downloads 442
5702 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine

Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski

Abstract:

This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: crank bearings, diesel engine, oil film, two-stroke engine

Procedia PDF Downloads 214
5701 Assessing the Values and Destruction Degree of Archaeological Sites in Taiwan

Authors: Yung-Chung Chuang

Abstract:

Current situation and accumulated development of archaeological sites have very high impacts on the preservation value of the site. This research set 3 archaeological sites in Taiwan as study areas. Assessment of the degree of destruction of cultural layers due to land use change and geomorphological change were conducted with aerial photographs (1976-1978; 2016-2017) and digital aerial survey technology on 2D and 3D geographic information system platforms. The results showed that the archaeological sites were all seriously influenced due to the high land use intensity between 1976-2017. Geomorphological changes caused by human cultivation and engineering construction were main causes of site destruction, especially in private lands. Therefore, urban planning methods for land acquisition or land regulation are necessary.

Keywords: archaeological sites, accumulated development, destruction of cultural layers, geomorphological changes

Procedia PDF Downloads 208
5700 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel, S. P. Dave, M. V Shah

Abstract:

Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.

Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity

Procedia PDF Downloads 68
5699 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 79
5698 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 75
5697 Measuring Housing Quality Using Geographic Information System (GIS)

Authors: Silvija ŠIljeg, Ante ŠIljeg, Ivan Marić

Abstract:

Measuring housing quality is being done on objective and subjective level using different indicators. During the research 5 urban and housing indicators formed according to 58 variables from different housing, domains were used. The aims of the research were to measure housing quality based on GIS approach and to detect critical points of housing in the example of Croatian coastal Town Zadar. The purposes of GIS in the research are to generate models of housing quality indexes by standardisation and aggregation of variables and to examine accuracy model of housing quality index. Analysis of accuracy has been done on the example of variable referring to educational objects availability. By defining weighted coefficients and using different GIS methods high, middle and low housing quality zones were determined. Obtained results can be of use to town planners, spatial planners and town authorities in the process of generating decisions, guidelines, and spatial interventions.

Keywords: housing quality, GIS, housing quality index, indicators, models of housing quality

Procedia PDF Downloads 299
5696 Food Foam Characterization: Rheology, Texture and Microstructure Studies

Authors: Rutuja Upadhyay, Anurag Mehra

Abstract:

Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.

Keywords: food foams, rheology, microstructure, texture

Procedia PDF Downloads 334
5695 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
5694 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: disturbance automation, electric power grid, smart grid, smart switches

Procedia PDF Downloads 309
5693 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 60
5692 Tunisian Dung Beetles Fauna: Composition and Biogeographic Affinities

Authors: Imen Labidi, Said Nouira

Abstract:

Dung beetles Scarabaeides of Tunisia constitute a major component of soil fauna, especially in the Mediterranean region. In the first phase of the present study, an intensive investigation of this group following the gathering of all the bibliographic, museological data and based on a recent collection of 17020 specimens in 106 localities in Tunisia, allowed to confirm with certainty the presence of 94 species distributed in 43 genera, 4 families and 3 sub-families. Only 81 species distributed in 38 genres, 4 families, and 3 sub-families, have been found during our prospections. The population of dung beetles Scarabaeides is composed of 58% of Aphodiidae, 39.51% of Scarabaeidae, and 8.64% of Geotrupidae. Biogeographic affinities of the species were determined and showed that 42% of the identified species have a wide Palaearctic distribution, the endemism is very low, only 3 species are endemic to Tunisia Mecynodes demoflysi, Neobodilus marani, and Thorectes demoflysi, 29 species have a wide distribution, 35 are northern and 17 are southern species. Moreover, others are dependent on very specific Biotopes like Sisyphus schaefferi linked to the northwest of Tunisia and Scarabaeus semipunctatus related to the coastal area north of Tunisia.

Keywords: dung beetles, Tunisia, composition, biogeography

Procedia PDF Downloads 249
5691 Integration of a Self-Cooling Photobioreactor to Building Envelop

Authors: Amin Mirabbasi

Abstract:

This review focuses on the integration of self-cooling photobioreactors into building envelopes as an approach to sustainable architecture. We emphasize the urgency for eco-friendly design advancements and explore the incorporation of plants, particularly microalgae photobioreactors, into building facades. This entails a discussion of the building envelope's components and definition, challenges posed by algal technology in architecture, and adaptations for varied structures such as skyscrapers, residences, and townhouses. We further evaluate the influence of geographic factors, with a spotlight on warm and temperate regions like Western Australia. Concluding, we analyse the cost-effectiveness and practicality of this integration, focusing on its potential application in the upcoming Harry Butler Science Centre building. Through comprehensive literature scrutiny, we aim to shed light on the prospects and obstacles of embedding self-cooling photobioreactors in pursuit of an eco-aware architectural future.

Keywords: microalgae photobioreactors, building envelope, sustainable architecture, eco-friendly design advancements.

Procedia PDF Downloads 64
5690 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning

Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis

Abstract:

Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.

Keywords: space syntax, economic activities, multilevel model, Chinese city

Procedia PDF Downloads 124
5689 Estimation of Energy Losses of Photovoltaic Systems in France Using Real Monitoring Data

Authors: Mohamed Amhal, Jose Sayritupac

Abstract:

Photovoltaic (PV) systems have risen as one of the modern renewable energy sources that are used in wide ranges to produce electricity and deliver it to the electrical grid. In parallel, monitoring systems have been deployed as a key element to track the energy production and to forecast the total production for the next days. The reliability of the PV energy production has become a crucial point in the analysis of PV systems. A deeper understanding of each phenomenon that causes a gain or a loss of energy is needed to better design, operate and maintain the PV systems. This work analyzes the current losses distribution in PV systems starting from the available solar energy, going through the DC side and AC side, to the delivery point. Most of the phenomena linked to energy losses and gains are considered and modeled, based on real time monitoring data and datasheets of the PV system components. An analysis of the order of magnitude of each loss is compared to the current literature and commercial software. To date, the analysis of PV systems performance based on a breakdown structure of energy losses and gains is not covered enough in the literature, except in some software where the concept is very common. The cutting-edge of the current analysis is the implementation of software tools for energy losses estimation in PV systems based on several energy losses definitions and estimation technics. The developed tools have been validated and tested on some PV plants in France, which are operating for years. Among the major findings of the current study: First, PV plants in France show very low rates of soiling and aging. Second, the distribution of other losses is comparable to the literature. Third, all losses reported are correlated to operational and environmental conditions. For future work, an extended analysis on further PV plants in France and abroad will be performed.

Keywords: energy gains, energy losses, losses distribution, monitoring, photovoltaic, photovoltaic systems

Procedia PDF Downloads 176
5688 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 165
5687 Research on Spatial Allocation Optimization of Urban Elderly Care Facilities Based on ArcGIS Technology

Authors: Qiao Qiao

Abstract:

With the development of The Times, the elderly demand for pension service facilities is increasing. Taking 26 street towns in Jiangjin District of Chongqing as examples, ArcGIS spatial analysis method was used to analyze the distribution status of the elderly population, the core density of the elderly population, and the spatial layout characteristics of institutional elderly care facilities in Jiangjin District of Chongqing. The results showed that there were differences in the structure and aging degree of the elderly population in each street town. There is a certain imbalance between the spatial distribution of the elderly population and the planning and construction of elderly care facilities. The accessibility of elderly care facilities is uneven. Therefore, a genetic algorithm is used to optimize the spatial layout of institutional elderly care facilities, improve the accessibility of facilities, strengthen the participation of multiple subjects, and provide a reference for the future construction planning of elderly care facilities.

Keywords: institutional pension facilities, spatial layout, accessibility, ArcGIS

Procedia PDF Downloads 9
5686 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies

Authors: Praniil Nagaraj

Abstract:

This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.

Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis

Procedia PDF Downloads 45
5685 Influence of Maximum Fatigue Load on Probabilistic Aspect of Fatigue Crack Propagation Life at Specified Grown Crack in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The principal purpose of this paper is to find the influence of maximum fatigue load on the probabilistic aspect of fatigue crack propagation life at a specified grown crack in magnesium alloys. The experiments of fatigue crack propagation are carried out in laboratory air under different conditions of the maximum fatigue loads to obtain the fatigue crack propagation data for the statistical analysis. In order to analyze the probabilistic aspect of fatigue crack propagation life, the goodness-of fit test for probability distribution of the fatigue crack propagation life at a specified grown crack is implemented through Anderson-Darling test. The good probability distribution of the fatigue crack propagation life is also verified under the conditions of the maximum fatigue loads.

Keywords: fatigue crack propagation life, magnesium alloys, maximum fatigue load, probability

Procedia PDF Downloads 389
5684 Distribution of Dynamical and Energy Parameters in Axisymmetric Air Plasma Jet

Authors: Vitas Valinčius, Rolandas Uscila, Viktorija Grigaitienė, Žydrūnas Kavaliauskas, Romualdas Kėželis

Abstract:

Determination of integral dynamical and energy characteristics of high-temperature gas flows is a very important task of gas-dynamic for hazardous substances destruction systems. They are also always necessary for the investigation of high-temperature turbulent flow dynamics, heat and mass transfer. It is well known that distribution of dynamical and thermal characteristics of high-temperature flows and jets is strongly related to heat flux variation over an imposed area of heating. As is visible from numerous experiments and theoretical considerations, the fundamental properties of an isothermal jet are well investigated. However, the establishment of regularities in high-temperature conditions meets certain specific behavior comparing with moderate-temperature jets and flows. Their structures have not been thoroughly studied yet, especially in the cases of plasma ambient. It is well known that the distribution of local plasma jet parameters in high temperature and isothermal jets and flows may significantly differ. High temperature axisymmetric air jet generated by atmospheric pressure DC arc plasma torch was investigated employing enthalpy probe 3.8∙10-3 m of diameter. Distribution of velocities and temperatures were established in different cross-sections of the plasma jet outflowing from 42∙10-3 m diameter pipe at the average mean velocity of 700 m∙s-1, and averaged temperature of 4000 K. It has been found that gas heating fractionally influences shape and values of a dimensionless profile of velocity and temperature in the main zone of plasma jet and has a significant influence in the initial zone of the plasma jet. The width of the initial zone of the plasma jet has been found to be lesser than in the case of isothermal flow. The relation between dynamical thickness and turbulent number of Prandtl has been established along jet axis. Experimental results were generalized in dimensionless form. The presence of convective heating shows that heat transfer in a moving high-temperature jet also occurs due to heat transfer by moving particles of the jet. In this case, the intensity of convective heat transfer is proportional to the instantaneous value of the flow velocity at a given point in space. Consequently, the configuration of the temperature field in moving jets and flows essentially depends on the configuration of the velocity field.

Keywords: plasma jet, plasma torch, heat transfer, enthalpy probe, turbulent number of Prandtl

Procedia PDF Downloads 182
5683 Pudhaiyal: A Maze-Based Treasure Hunt Game for Tamil Words

Authors: Aarthy Anandan, Anitha Narasimhan, Madhan Karky

Abstract:

Word-based games are popular in helping people to improve their vocabulary skills. Games like ‘word search’ and crosswords provide a smart way of increasing vocabulary skills. Word search games are fun to play, but also educational which actually helps to learn a language. Finding the words from word search puzzle helps the player to remember words in an easier way, and it also helps to learn the spellings of words. In this paper, we present a tile distribution algorithm for a Maze-Based Treasure Hunt Game 'Pudhaiyal’ for Tamil words, which describes how words can be distributed horizontally, vertically or diagonally in a 10 x 10 grid. Along with the tile distribution algorithm, we also present an algorithm for the scoring model of the game. The proposed game has been tested with 20,000 Tamil words.

Keywords: Pudhaiyal, Tamil word game, word search, scoring, maze, algorithm

Procedia PDF Downloads 441
5682 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based on Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: cyclic loading, finite element analysis, Prager kinematic hardening model, torsion of shaft

Procedia PDF Downloads 408