Search results for: deformable multimodal image registration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3208

Search results for: deformable multimodal image registration

1798 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 150
1797 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm

Authors: J. S. Dhillon, K. K. Dhaliwal

Abstract:

In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.

Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization

Procedia PDF Downloads 478
1796 Anti-crisis Public Relations and Aspects of Effective Management in Georgian Companies

Authors: Marine Kobalava

Abstract:

Introduction. The paper substantiates the crucial role of anti-crisis PR in managing the image and reputation of companies. The critical situation caused by the Covid-19 virus in various countries of the world and the actions taken have had a significant negative impact on the image of companies and public groups. The mentioned circumstance has caused some problems for companies’ products in terms of customer demand. Accordingly, the main goal of PR has become to achieve the optimal relationship between companies and society with effective management. It should also be taken into account that the range of action of PR in crisis situations is much wider than that of advertising. In the paper, Public Relations is evaluated as a determining factor of the companies' prestige, its reliability, which has a decisive effect on the goodwill, trust, and general reputation of the public towards the company. The purpose of the study is to reveal the challenges of anti-crisis PR in Georgian companies and to develop recommendations on effective management mechanisms. Methodologies. Analysis, induction, synthesis, and other methods are used in the paper; Matrix and SWOT analysis are constructed. Ways of establishing and implementing an anti-crisis PR system in companies are proposed. The main aspects of anti-crisis management are identified by using the matrix of the choice of diversification strategy of the companies' activities, the possibilities of making adequate decisions using PR are studied according to the characteristics of the companies' activities and priority directions. Conclusion. The paper draws conclusions on modern problems of anti-crisis PR, offers recommendations on ways to solve it through PR strategies.

Keywords: anti-crisis PR, effective management, company, PR strategy

Procedia PDF Downloads 79
1795 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit

Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi

Abstract:

Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).

Keywords: deep learning, delirium, healthcare, pervasive sensing

Procedia PDF Downloads 93
1794 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 340
1793 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion

Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong

Abstract:

The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor

Procedia PDF Downloads 232
1792 The Masterplan for the Urban Regeneration of the Heritage District of Msheireb Downtown Doha, State of Qatar

Authors: Raffaello Furlan

Abstract:

In the 21st century, the sustainable urban development of GCC-cities is challenged by inhabitants’ over-dependency on private-use vehicles. In turn, this habit has generated problems of urban inefficiency, contributing to traffic congestion, pollution, urban sprawling, fragmentation of the urban fabric, and various environmental and social challenges. In the context of Doha, the capital city of the State of Qatar, the over-dependency on private-use vehicles is justified by the lack of alternative public modes of transportation that support the need to connect fragmented urban districts and provide an effective solution to urban sprawl. Therefore, the current construction of the Qatar Metro Rail is offering the potential for investigating and defining a strategy for the sustainable urban development and/or urban regeneration of transit villages (TODs) in Qatar. Namely, the aim of this research study is (i) to investigate the development of transit villages (TODs) in the cultural-heritage district of Msheireb, Downtown Doha, (ii) to explore how the introduction of the new public transport system of Doha Metro can be effectively utilized as means of urban regeneration of the cultural core of the city, (iii) to propose a masterplan for TOD suitable for the district, suiting and responding to regional cultural and societal values. The findings reveal that the strategies for the sustainable urban regeneration of Msheireb are based on (i) the integration of land-use and multimodal transportation systems, (ii) the implementation of the public realm, and (iii) conservation of culture and urban identity.

Keywords: sustainable urbanism, smart growth, TODs, cultural district, Msheireb Downtown Doha

Procedia PDF Downloads 245
1791 Image Making: The Spectacle of Photography and Text in Obituary Programs as Contemporary Practice of Social Visibility in Southern Nigeria

Authors: Soiduate Ogoye-Atanga

Abstract:

During funeral ceremonies, it has become common for attendees to jostle for burial programs in some southern Nigerian towns. Beginning from ordinary typewritten text only sheets of paper in the 1980s to their current digitally formatted multicolor magazine style, burial programs continue to be collected and kept in homes where they remain as archival documents of family photo histories and as a veritable form of leveraging family status and visibility in a social economy through the inclusion of lots of choreographically arranged photographs and text. The biographical texts speak of idealized and often lofty and aestheticized accomplishments of deceased peoples, which are often corroborated by an accompanying section of tributes from first the immediate family members, and then from affiliations as well as organizations deceased people belonged, in the form of scanned letterheaded corporate tributes. Others speak of modest biographical texts when the deceased accomplished little. Usually, in majority of the cases, the display of photographs and text in these programs follow a trajectory of historical compartmentalization of the deceased, beginning from parentage to the period of youth, occupation, retirement, and old age as the case may be, which usually drives from black and white historical photographs to the color photography of today. This compartmentalization follows varied models but is designed to show the deceased in varying activities during his lifetime. The production of these programs ranges from the extremely expensive and luscious full colors of near fifty-eighty pages to bland and very simplified low-quality few-page editions in a single color and no photographs, except on the cover. Cost and quality, therefore, become determinants of varying family status and social visibility. By a critical selection of photographs and text, family members construct an idealized image of deceased people and themselves, concentrating on mutuality based on appropriate sartorial selections, socioeconomic grade, and social temperaments that are framed to corroborate the public’s perception of them. Burial magazines, therefore, serve purposes beyond their primary use; they symbolize an orchestrated social site for image-making and the validation of the social status of families, shaped by prior family histories.

Keywords: biographical texts, burial programs, compartmentalization, magazine, multicolor, photo-histories, social status

Procedia PDF Downloads 188
1790 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 120
1789 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing

Procedia PDF Downloads 420
1788 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 174
1787 A Blending Analysis of Metaphors and Metonymies Used to Depict the Deal of the Century by Jordanian Cartoonists

Authors: Aseel Zibin, Abdel Rahman Altakhaineh

Abstract:

This study analyses 30 cartoons depicting THE DEAL OF THE CENTURY as envisaged by two Jordanian cartoonists, namely, EmadHajjaj and Osama Hajjaj. Conceptual Blending Theory (CBT) and Multimodal Metaphor Theory (MMT) are adopted as a theoretical framework to interpret the metaphors and metonymies used in the target cartoons. The results reveal that the target domain THE DEAL OF THE CENTURY was conceptualized mainly through layered metaphors that have metonymic basis and event metaphors\allegories. Specifically, 6 groups were identified: OBJECT or a situation involving OBJECTS, situations involving HUMANS\HYBRIDS of HUMANS and OBJECTS, an ANIMAL OR situation involving an ANIMAL, hybrids of WEAPONS and humans, and event metaphors used to build a story\allegory. The target domain was also depicted via event metaphors used to build a story; some of which are embedded in the Jordanian culture, while others could be perceivable cross-culturally. The results also demonstrate that the most widely used configurations to construe the metaphors was the pictorial source–verbal target in line with Lan and Zuo (2016); the motivation was probably the greater conceptual density and concreteness of visual representation since the target is better captured verbally because of its abstractness. The use of cross-modal mappings of this type was attributed to the abstractness of the target domain, THE DEAL OF THE CENTURY, which makes it more construable via verbal cues rather than visual ones. In contrast, the source domains used were mainly concrete and thus perceivable pictorially rather than verbally.

Keywords: semiotics, cognitive semantics, metaphor, culture, blending, cartoon

Procedia PDF Downloads 182
1786 Metaphorical Devices in Political Cartoons with Reference to Political Confrontation in Pakistan after Panama Leaks

Authors: Ayesha Ashfaq, Muhammad Ajmal Ashfaq

Abstract:

It has been assumed that metaphorical and symbolic contests are waged with metaphors, captions, and signs in political cartoons that play a significant role in image construction of political actors, situations or events in the political arena. This paper is an effort to explore the metaphorical devices in political cartoons related to the political confrontation in Pakistan between the ruling party Pakistan Muslim League Nawaz (PMLN) and opposition parties especially after Panama leaks. For this purpose, political cartoons sketched by five renowned political cartoonists on the basis of their belongings to the most highly circulated mainstream English newspapers of Pakistan and their professional experiences in their genre, were selected. The cartoons were analyzed through the Barthes’s model of Semiotics under the umbrella of the first level of agenda setting theory ‘framing’. It was observed that metaphorical devices in political cartoons are one of the key weapons of cartoonists’ armory. These devices are used to attack the candidates and contribute to the image and character building. It was found that all the selected political cartoonists used different forms of metaphors including situational metaphors and embodying metaphors. Not only the physical stature but also the debates and their activities were depicted metaphorically in the cartoons that create the scenario of comparison between the cartoons and their real political confrontation. It was examined that both forms of metaphors shed light on cartoonist’s perception and newspaper’s policy about political candidates, political parties and particular events. In addition, it was found that zoomorphic metaphors and metaphors of diminishments were also predominantly used to depict the conflict between two said political actors.

Keywords: metaphor, Panama leaks, political cartoons, political communication

Procedia PDF Downloads 308
1785 A Questionnaire Survey Reviewing Radiographers' Knowledge of Computed Tomography Exposure Parameters

Authors: Mohammad Rawashdeh, Mark McEntee, Maha Zaitoun, Mostafa Abdelrahman, Patrick Brennan, Haytham Alewaidat, Sarah Lewis, Charbel Saade

Abstract:

Despite the tremendous advancements that have been generated by Computed Tomography (CT) in the field of diagnosis, concerns have been raised about the potential cancer induction risk from CT because of the exponentially increased use of it in medicine. This study aims at investigating the application and knowledge of practicing radiographers in Jordan about CT radiation. In order to collect the primary data of this study, a questionnaire was designed and distributed by social media using a snow-balling sampling method. The respondents (n=54) have answered 36 questions including the questions about their demographic information, knowledge about Diagnostic Reference Levels (DRLs), CT exposure and adaptation of pediatric patients exposure. The educational level of the respondents was either at a diploma degree (35.2%) or bachelor (64.8%). The results of this study have indicated a good level of general knowledge between radiographers about the relationship between image quality, exposure parameters, and patient dose. The level of knowledge related to DRL was poor where less than 7.4 percent of the sample members were able to give specific values for a number of common anatomical fields, including abdomen, brain, and chest. Overall, Jordanian radiographers need to gain more knowledge about the expected levels of the dose when applying good practice. Additional education on DRL or DRL inclusion in educational programs is highlighted.

Keywords: computed tomography, CT scan, DRLs, exposure parameters, image quality, radiation dose

Procedia PDF Downloads 144
1784 Preliminary Analysis on Land Use-Land Cover Assessment of Post-Earthquake Geohazard: A Case Study in Kundasang, Sabah

Authors: Nur Afiqah Mohd Kamal, Khamarrul Azahari Razak

Abstract:

The earthquake aftermath has become a major concern, especially in high seismicity region. In Kundasang, Sabah, the earthquake on 5th June 2015 resulted in several catastrophes; landslides, rockfalls, mudflows and major slopes affected regardless of the series of the aftershocks. Certainly, the consequences of earthquake generate and induce the episodic disaster, not only life-threatening but it also affects infrastructure and economic development. Therefore, a need for investigating the change in land use and land cover (LULC) of post-earthquake geohazard is essential for identifying the extent of disastrous effects towards the development in Kundasang. With the advancement of remote sensing technology, post-earthquake geohazards (landslides, mudflows, rockfalls, debris flows) assessment can be evaluated by the employment of object-based image analysis in investigating the LULC change which consists of settlements, public infrastructure and vegetation cover. Therefore, this paper discusses the preliminary results on post-earthquakes geohazards distribution in Kundasang and evaluates the LULC classification effect upon the occurrences of geohazards event. The result of this preliminary analysis will provide an overview to determine the extent of geohazard impact on LULC. This research also provides beneficial input to the local authority in Kundasang about the risk of future structural development on the geohazard area.

Keywords: geohazard, land use land cover, object-based image analysis, remote sensing

Procedia PDF Downloads 245
1783 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 332
1782 A Study and Design Scarf Collection Applied Vietnamese Traditional Patterns by Using Printing Method on Fabric

Authors: Mai Anh Pham Ho

Abstract:

Scarf products today is a symbol of fashion to decorate, to make our life more beautiful and bring new features to our living space. It also shows the cultural identity by using the traditional patterns that make easily to introduce the image of Vietnam to other nations all over the world. Therefore, the purpose of this research is to classify Vietnamese traditional patterns according to the era and dynasties. Vietnamese traditional patterns through the dynasties of Vietnamese history are done and classified by five groups of patterns including the geometric patterns, the natural patterns, the animal patterns, the floral patterns, and the character patterns in the Prehistoric times, the Bronze and Iron age, the Chinese domination, the Ngo-Dinh-TienLe-Ly-Tran-Ho dynasty, and the LeSo-Mac-LeTrinh-TaySon-Nguyen dynasty. Besides, there are some special kinds of Vietnamese traditional patterns like buffalo, lotus, bronze-drum, Phuc Loc Tho character, and so on. Extensive research was conducted for modernizing scarf collection applied Vietnamese traditional patterns which the fashion trend is used on creating works. The concept, target, image map, lifestyle map, motif, colours, arrangement and completion of patterns on scarf were set up. The scarf collection is designed and developed by the Adobe Illustrator program with three colour ways for each scarf. Upon completion of the research, digital printing technology is chosen for using on scarf collection which Vietnamese traditional patterns were researched deeply and widely with the purpose of establishment the basic background for Vietnamese culture in order to identify Vietnamese national personality as well as establish and preserve the cultural heritage.

Keywords: scarf collection, Vietnamese traditional patterns, printing methods, fabric design

Procedia PDF Downloads 342
1781 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 428
1780 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
1779 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 180
1778 Imaginations of the Silk Road in Sven Hedin’s Travel Writings: 1900-1936

Authors: Kexin Tan

Abstract:

The Silk Road is a concept idiosyncratic in nature. Western scholars co-created and conceptualized in its early days, transliterated into the countries along the Silk Road, redefined, reimagined, and reconfigured by the public in the second half of the twentieth century. Therefore, the image is not only a mirror of the discursive interactions between East and West but Self and Other. The travel narrative of Sven Hedin, through which the Silk Road was enriched in meanings and popularized, is the focus of this study. This article examines how the Silk Road was imagined in three key texts of Sven Hedin: The Silk Road, The Wandering Lake, and The Flight of “Big Horse”. Three recurring themes are extracted and analyzed: the Silk Road, the land of enigmas, the virgin land, and the reconnecting road. Ideas about ethnotypes and images drawn from theorists such as Joep Leerssen have been deployed in the analysis. This research tracks how the images were configured, concentrating on China’s ethnotypes, travel writing tropes, and the Silk Road discourse that preceded Sven Hedin. Hedin’s role in his expedition, his geopolitical viewpoints, and the commercial considerations of his books are also discussed in relation to the intellectual construct of the Silk Road. It is discovered that the images of the Silk Road and the discursive traditions behind it are mobile rather than static, inclusive than antithetical. The paradoxical characters of the Silk Road reveal the complexity of the socio-historical background of Hedin’s time, as well as the collision of discursive traditions and practical issues. While it is true that Hedin’s discursive construction of the Silk Road image embodies the bias of Self-West against Other-East, its characteristics such as fluidity and openness could probably offer a hint at its resurgence in the postcolonial era.

Keywords: the silk road, Sven Hedin, imagology, ethnotype, travelogue

Procedia PDF Downloads 193
1777 The Stereotypical Images of Marginalized Women in the Poetry of Rita Dove

Authors: Wafaa Kamal Isaac

Abstract:

This paper attempts to shed light upon the stereotypical images of marginalized black women as shown through the poetry of Rita Dove. Meanwhile, it explores how stereotypical images held by the society and public perceptions perpetuate the marginalization of black women. Dove is considered one of the most fundamental African-American poets who devoted her writings to explore the problem of identity that confronted marginalized women in America. Besides tackling the issue of black women’s stereotypical images, this paper focuses upon the psychological damage which the black women had suffered from due to their stripped identity. In ‘Thomas and Beulah’, Dove reflects the black woman’s longing for her homeland in order to make up for her lost identity. This poem represents atavistic feelings deal with certain recurrent images, both aural and visual, like the image of Beulah who represents the African-American woman who searches for an identity, as she is being denied and humiliated one in the newly founded society. In an attempt to protest against the stereotypical mule image that had been imposed upon black women in America, Dove in ‘On the Bus with Rosa Parks’ tries to ignite the beaten spirits to struggle for their own rights by revitalizing the rebellious nature and strong determination of the historical figure ‘Rosa Parks’ that sparked the Civil Rights Movement. In ‘Daystar’, Dove proves that black women are subjected to double-edged oppression; firstly, in terms of race as a black woman in an unjust white society that violates her rights due to her black origins and secondly, in terms of gender as a member of the female sex that is meant to exist only to serve man’s needs. Similarly, in the ‘Adolescence’ series, Dove focuses on the double marginalization which the black women had experienced. It concludes that the marginalization of black women has resulted from the domination of the masculine world and the oppression of the white world. Moreover, Dove’s ‘Beauty and the Beast’ investigates the African-American women’s problem of estrangement and identity crisis in America. It also sheds light upon the psychological consequences that resulted from the violation of marginalized women’s identity. Furthermore, this poem shows the black women’s self-debasement, helplessness, and double consciousness that emanate from the sense of uprootedness. Finally, this paper finds out that the negative, debased and inferior stereotypical image held by the society did not only contribute to the marginalization of black women but also silenced and muted their voices.

Keywords: stereotypical images, marginalized women, Rita Dove, identity

Procedia PDF Downloads 164
1776 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 96
1775 A Study on Legal Regimes Alternatives from the Aspect of Shenzhen Global Ocean Central City Construction

Authors: Jinsong Zhao, Lin Zhao

Abstract:

Shenzhen, one of the fastest growing cities in the world, has been building a global ocean central city since 2017, facing many challenges, especially how to innovate new legal regimes to meet the future demands of the development of global shipping. First, the current legal regime of bills of lading as a document of title was established by English law in the 18th century but limited to the period of marine transportation from port of loading to port of discharge (namely, port to port). The e-commerce era is asking for such a function to be extended from port to port to door to door. Secondly, the function of the port has also been upgraded from the traditional loading and unloading of goods to a much wider area, such as being custody of warehousing goods for its mortgage bank, and therefore its legal status is changing, so it is necessary to amend the law of ports and harbours and innovate the rights and responsibilities of the port under its new role as the custody. Thirdly, the development of new marine energy has made more and more offshore floating wind power and floating photovoltaic devices face new legal issues such as legal status, nationality and ownership registration, mortgage, maritime lien, and possessory lien. Fourthly, the jurisdiction of the above issues, as well as conflicts of law and the applicable law, are also questions pending answers. This paper will discuss these issues of private international law, especially the innovation of new legal regimes with an aim to solve the above problems.

Keywords: maritime law, bills of lading, e-commerce, port law, marine clean energy

Procedia PDF Downloads 40
1774 Primary Analysis of a Randomized Controlled Trial of Topical Analgesia Post Haemorrhoidectomy

Authors: James Jin, Weisi Xia, Runzhe Gao, Alain Vandal, Darren Svirkis, Andrew Hill

Abstract:

Background: Post-haemorrhoidectomy pain is concerned by patients/clinicians. Minimizing the postoperation pain is highly interested clinically. Combinations of topical cream targeting three hypothesised post-haemorrhoidectomy pain mechanisms were developed and their effectiveness were evaluated. Specifically, a multi-centred double-blinded randomized clinical trial (RCT) was conducted in adults undergoing excisional haemorrhoidectomy. The primary analysis was conveyed on the data collected to evaluate the effectiveness of the combinations of topical cream targeting three hypothesized pain mechanisms after the operations. Methods: 192 patients were randomly allocated to 4 arms (each arm has 48 patients), and each arm was provided with pain cream 10% metronidazole (M), M and 2% diltiazem (MD), M with 4% lidocaine (ML), or MDL, respectively. Patients were instructed to apply topical treatments three times a day for 7 days, and record outcomes for 14 days after the operations. The primary outcome was VAS pain on day 4. Covariates and models were selected in the blind review stage. Multiple imputations were applied for the missingness. LMER, GLMER models together with natural splines were applied. Sandwich estimators and Wald statistics were used. P-values < 0.05 were considered as significant. Conclusions: The addition of topical lidocaine or diltiazem to metronidazole does not add any benefit. ML had significantly better pain and recovery scores than combination MDL. Multimodal topical analgesia with ML after haemorrhoidectomy could be considered for further evaluation. Further trials considering only 3 arms (M, ML, MD) might be worth exploring.

Keywords: RCT, primary analysis, multiple imputation, pain scores, haemorrhoidectomy, analgesia, lmer

Procedia PDF Downloads 120
1773 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles

Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad

Abstract:

As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.

Keywords: computational methods, context-awareness, design process, smart spaces

Procedia PDF Downloads 331
1772 Measuring Corporate Brand Loyalties in Business Markets: A Case for Caution

Authors: Niklas Bondesson

Abstract:

Purpose: This paper attempts to examine how different facets of attitudinal brand loyalty are determined by different brand image elements in business markets. Design/Methodology/Approach: Statistical analysis is employed to data from a web survey, covering 226 professional packaging buyers in eight countries. Findings: The results reveal that different brand loyalty facets have different antecedents. Affective brand loyalties (or loyalty 'feelings') are mainly driven by customer associations to service relationships, whereas customers’ loyalty intentions (to purchase and recommend a brand) are triggered by associations to the general reputation of the company. The findings also indicate that willingness to pay a price premium is a distinct form of loyalty, with unique determinants. Research implications: Theoretically, the paper suggests that corporate B2B brand loyalty needs to be conceptualised with more refinement than has been done in extant B2B branding work. Methodologically, the paper highlights that single-item approaches can be fruitful when measuring B2B brand loyalty, and that multi-item scales can conceal important nuances in terms of understanding why customers are loyal. Practical implications: The idea of a loyalty 'silver metric' is an attractive idea, but this study indicates that firms who rely too much on one single type of brand loyalty risk to miss important building blocks. Originality/Value/Contribution: The major contribution is a more multi-faceted conceptualisation, and measurement, of corporate B2B brand loyalty and its brand image determinants than extant work has provided.

Keywords: brand equity, business-to-business branding, industrial marketing, buying behaviour

Procedia PDF Downloads 414
1771 A Process of Forming a Single Competitive Factor in the Digital Camera Industry

Authors: Kiyohiro Yamazaki

Abstract:

This paper considers a forming process of a single competitive factor in the digital camera industry from the viewpoint of product platform. To make product development easier for companies and to increase product introduction ratios, development efforts concentrate on improving and strengthening certain product attributes, and it is born in the process that the product platform is formed continuously. It is pointed out that the formation of this product platform raises product development efficiency of individual companies, but on the other hand, it has a trade-off relationship of causing unification of competitive factors in the whole industry. This research tries to analyze product specification data which were collected from the web page of digital camera companies. Specifically, this research collected all product specification data released in Japan from 1995 to 2003 and analyzed the composition of image sensor and optical lens; and it identified product platforms shared by multiple products and discussed their application. As a result, this research found that the product platformation was born in the development of the standard product for major market segmentation. Every major company has made product platforms of image sensors and optical lenses, and as a result, this research found that the competitive factors were unified in the entire industry throughout product platformation. In other words, this product platformation brought product development efficiency of individual firms; however, it also caused industrial competition factors to be unified in the industry.

Keywords: digital camera industry, product evolution trajectory, product platform, unification of competitive factors

Procedia PDF Downloads 158
1770 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest

Procedia PDF Downloads 188
1769 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

Snoring, the lay term for obstructive breathing during sleep, is one of the most prevalent of obnoxious human habits. Loud snoring usually makes others feel noisy and uncomfortable. Snoring also influences the sleep quality of snorers’ bed partners, because of the noise they do not get to sleep easily. Snoring causes the reduce of sleep quality leading to several medical problems, such as excessive daytime sleepiness, high blood pressure, increased risk for cardiovascular disease and cerebral vascular accident, and etc. There are many non-prescription devices offered for sale on the market, but very limited data are available to support a beneficial effect of these devices on snoring and use in treating obstructive sleep apnea (OSA). Mandibular advancement devices (MADs), also termed as the Mandibular reposition devices (MRDs) are removable devices which are worn at night during sleep. Most devices require dental impression, bite registration, and fabrication by a dental laboratory. Those devices are fixed to upper and lower teeth and are adjusted to advance the mandible. The amount of protrusion is adjusted to meet the therapeutic requirements, comfort, and tolerance. Many devices have a fixed degree of advancement. Some are adjustable in a limited degree. This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: finite element analysis, mandibular advancement devices, mechanical stress, snoring

Procedia PDF Downloads 356