Search results for: simulink simulation model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19613

Search results for: simulink simulation model

5363 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 94
5362 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh

Authors: B. Hossen, Y. Helmut

Abstract:

Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.

Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing

Procedia PDF Downloads 352
5361 Social Media and Internet Celebrity for Social Commerce Intentional and Behavioral Recommendations

Authors: Shu-Hsien Liao, Yao-Hsuan Yang

Abstract:

Social media is a virtual community and online platform that people use to create, share, and exchange opinions/experiences. Internet celebrities are people who become famous on the Internet, increasing their popularity through their social networking or video websites. Social commerce (s-ecommerce) is the combination of social relations and commercial transaction activities. The combination of social media and Internet celebrities is an emerging model for the development of s-ecommerce. With recent advances in system sciences, recommendation systems are gradually moving to develop intentional and behavioral recommendations. This background leads to the research issues regarding digital and social media in enterprises. Thus, this study implements data mining analytics, including clustering analysis and association rules, to investigate Taiwanese users (n=2,102) to investigate social media and Internet celebrities’ preferences to find knowledge profiles/patterns/rules for s-ecommerce intentional and behavioral recommendations.

Keywords: social media, internet celebrity, social commerce (s-ecommerce), data mining analytics, intentional and behavioral recommendations

Procedia PDF Downloads 37
5360 Sensitivity Analysis of Oil Spills Modeling with ADIOS II for Iranian Fields in Persian Gulf

Authors: Farzingohar Mehrnaz, Yasemi Mehran, Esmaili Zinat, Baharlouian Maedeh

Abstract:

Aboozar (Ardeshir) and Bahregansar are the two important Iranian oilfields in Persian Gulf waters. The operation activities cause to create spills which impacted on the marine environment. Assumed spills are molded by ADIOS II (Automated Data Inquiry for Oil Spills) which is NOAA’s weathering oil software. Various atmospheric and marine data with different oil types are used for the modeling. Numerous scenarios for 100 bbls with mean daily air temperature and wind speed are input for 5 days. To find the model sensitivity in each setting, one parameter is changed, but the others stayed constant. In both fields, the evaporated and dispersed output values increased hence the remaining rate is reduced. The results clarified that wind speed first, second air temperature and finally oil type respectively were the most effective factors on the oil weathering process. The obtained results can help the emergency systems to predict the floating (dispersed and remained) volume spill in order to find the suitable cleanup tools and methods.

Keywords: ADIOS, modeling, oil spill, sensitivity analysis

Procedia PDF Downloads 303
5359 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.

Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete

Procedia PDF Downloads 259
5358 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 352
5357 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: quantum semiconductors, nanostructures, quantum dots, spin polarization

Procedia PDF Downloads 278
5356 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration

Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez

Abstract:

Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.

Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering

Procedia PDF Downloads 161
5355 Economical Analysis of Optimum Insulation Thickness for HVAC Duct

Authors: D. Kumar, S. Kumar, A. G. Memon, R. A. Memon, K. Harijan

Abstract:

A considerable amount of energy is usually lost due to compression of insulation in Heating, ventilation, and air conditioning (HVAC) duct. In this paper, the economic impact of compression of insulation is estimated. Relevant mathematical models were used to estimate the optimal thickness at the points of compression. Furthermore, the payback period is calculated for the optimal thickness at the critical parts of supply air duct (SAD) and return air duct (RAD) considering natural gas (NG) and liquefied petroleum gas (LPG) as fuels for chillier operation. The mathematical model is developed using preliminary data obtained for an HVAC system of a pharmaceutical company. The higher heat gain and cooling loss, due to compression of thermal insulation, is estimated using relevant heat transfer equations. The results reveal that maximum energy savings (ES) in SAD is 34.5 and 40%, while in RAD is 22.9% and 29% for NG and LPG, respectively. Moreover, the minimum payback period (PP) for SAD is 2 and 1.6years, while in RAD is 4.3 and 2.7years for NG and LPG, respectively. The optimum insulation thickness (OIT) corresponding to maximum ES and minimum PP is estimated to be 35 and 42mm for SAD, while 30 and 38mm for RAD in case of NG and LPG, respectively.

Keywords: optimum insulation thickness, life cycle cost analysis, payback period, HVAC system

Procedia PDF Downloads 219
5354 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network

Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin

Abstract:

Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.

Keywords: eConsent, health social network, mixed methods, situation awareness

Procedia PDF Downloads 298
5353 Distributed Manufacturing (DM)- Smart Units and Collaborative Processes

Authors: Hermann Kuehnle

Abstract:

Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.

Keywords: autonomous unit, networkability, smart manufacturing unit, virtualization

Procedia PDF Downloads 531
5352 Toward the Destigmatizing the Autism Label: Conceptualizing Celebratory Technologies

Authors: LouAnne Boyd

Abstract:

From the perspective of self-advocates, the biggest unaddressed problem is not the symptoms of an autism spectrum diagnosis but the social stigma that accompanies autism. This societal perspective is in contrast to the focus on the majority of interventions. Autism interventions, and consequently, most innovative technologies for autism, aim to improve deficits that occur within the person. For example, the most common Human-Computer Interaction research projects in assistive technology for autism target social skills from a normative perspective. The premise of the autism technologies is that difficulties occur inside the body, hence, the medical model focuses on ways to improve the ailment within the person. However, other technological approaches to support people with autism do exist. In the realm of Human Computer Interaction, there are other modes of research that provide critique of the medical model. For example, critical design, whose intended audience is industry or other HCI researchers, provides products that are the opposite of interventionist work to bring attention to the misalignment between the lived experience and the societal perception of autism. For example, parodies of interventionist work exist to provoke change, such as a recent project called Facesavr, a face covering that helps allistic adults be more independent in their emotional processing. Additionally, from a critical disability studies’ perspective, assistive technologies perpetuate harmful normalizing behaviors. However, these critical approaches can feel far from the frontline in terms of taking direct action to positively impact end users. From a critical yet more pragmatic perspective, projects such as Counterventions lists ways to reduce the likelihood of perpetuating ableism in interventionist’s work by reflectively analyzing a series of evolving assistive technology projects through a societal lens, thus leveraging the momentum of the evolving ecology of technologies for autism. Therefore, all current paradigms fall short of addressing the largest need—the negative impact of social stigma. The current work introduces a new paradigm for technologies for autism, borrowing from a paradigm introduced two decades ago around changing the narrative related to eating disorders. It is the shift from reprimanding poor habits to celebrating positive aspects of eating. This work repurposes Celebratory Technology for Neurodiversity and intended to reduce social stigma by targeting for the public at large. This presentation will review how requirements were derived from current research on autism social stigma as well as design sessions with autistic adults. Congruence between these two sources revealed three key design implications for technology: provide awareness of the autistic experience; generate acceptance of the neurodivergence; cultivate an appreciation for talents and accomplishments of neurodivergent people. The current pilot work in Celebratory Technology offers a new paradigm for supporting autism by shifting the burden of change from the person with autism to address changing society’s biases at large. Shifting the focus of research outside of the autistic body creates a new space for a design that extends beyond the bodies of a few and calls on all to embrace humanity as a whole.

Keywords: neurodiversity, social stigma, accessibility, inclusion, celebratory technology

Procedia PDF Downloads 77
5351 Pragmatic Discoursal Study of Hedging Constructions in English Language

Authors: Mohammed Hussein Ahmed, Bahar Mohammed Kareem

Abstract:

This study is concerned with the pragmatic discoursal study of hedging constructions in English language. Hedging is a mitigated word used to lessen the impact of the utterance uttered by the speakers. Hedging could be either adverbs, adjectives, verbs and sometimes it may consist of clauses. It aims at finding out the extent to which speakers and participants of the discourse use hedging constructions during their conversations. The study also aims at finding out whether or not there are any significant differences in the types and functions of the frequency of hedging constructions employed by male and female. It is hypothesized that hedging constructions are frequent in English discourse more than any other languages due to its formality and that the frequency of the types and functions are influenced by the gender of the participants. To achieve the aims of the study, two types of procedures have been followed: theoretical and practical. The theoretical procedure consists of presenting a theoretical background of hedging topic which includes its definitions, etymology and theories. The practical procedure consists of selecting a sample of texts and analyzing them according to an adopted model. A number of conclusions will be drawn based on the findings of the study.

Keywords: hedging, pragmatics, politeness, theoretical

Procedia PDF Downloads 592
5350 Social Data-Based Users Profiles' Enrichment

Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick

Abstract:

In this paper, we propose a generic model of user profile integrating several elements that may positively impact the research process. We exploit the classical behavior of users and integrate a delimitation process of their research activities into several research sessions enriched with contextual and temporal information, which allows reflecting the current interests of these users in every period of time and infer data freshness. We argue that the annotation of resources gives more transparency on users' needs. It also strengthens social links among resources and users, and can so increase the scope of the user profile. Based on this idea, we integrate the social tagging practice in order to exploit the social users' behavior to enrich their profiles. These profiles are then integrated into a recommendation system in order to predict the interesting personalized items of users allowing to assist them in their researches and further enrich their profiles. In this recommendation, we provide users new research experiences.

Keywords: user profiles, topical ontology, contextual information, folksonomies, tags' clusters, data freshness, association rules, data recommendation

Procedia PDF Downloads 268
5349 Awareness and Recognition: A Legitimate-Geographic Model for Analyzing the Determinants of Corporate Perceptions of Climate Change Risk

Authors: Seyedmohammad Mousavian, Hanlu Fan, Quingliang Tang

Abstract:

Climate change is emerging as a severe threat to our society, so businesses are expected to take actions to mitigate carbon emissions. However, the actions to be taken depend on managers’ perceptions of climate change risks. Yet, there is scant research on this issue, and understanding of the determinants of corporate perceptions of climate change is extremely limited. The purpose of this study is to close this gap by examining the relationship between perceptions of climate risk and firm-level and country-level factors. In this study, climate change risk captures physical, regulatory, and other risks, and we use data from European companies that participated in CDP from 2010 to 2017. This study reveals those perceptions of climate change risk are significantly positively associated with the environmental, social, and governance score, firm size, and membership in a carbon-intensive sector. In addition, we find that managers in firms operating in a geographic area that is sensitive to the consequences of global warming are more likely to perceive and formally recognize carbon-related risks in their CDP reports.

Keywords: carbon actions, CDP, climate change risk, risk perception

Procedia PDF Downloads 297
5348 Voice and Head Controlled Intelligent Wheelchair

Authors: Dechrit Maneetham

Abstract:

The aim of this paper was to design a void and head controlled electric power wheelchair (EPW). A novel activate the control system for quadriplegics with voice, head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely x and y. At the same time, patients can control the motorized wheelchair using voice signals (forward, backward, turn left, turn right, and stop) given by it self. The model of a dc motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller as controller, a DC motor driven EPW and feedback elements. This paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the dc motor so that the motor runs very closed to the reference speed and angle. Intelligent wheelchair can be used to ensure the person’s voice and head are attending the direction of travel asserted by a conventional, direction and speed control.

Keywords: wheelchair, quadriplegia, rehabilitation , medical devices, speed control

Procedia PDF Downloads 541
5347 Shock and Particle Velocity Determination from Microwave Interrogation

Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert

Abstract:

Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.

Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation

Procedia PDF Downloads 217
5346 Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound

Authors: A. Chouaih, N. Benhalima, N. Boukabcha, R. Rahmani, F. Hamzaoui

Abstract:

Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound.

Keywords: organic compounds, polarizability, hyperpolarizability, dipole moment

Procedia PDF Downloads 422
5345 Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Authors: Mohammad Sahadet Hossain, Shamsil Arifeen, Mehrab Hossian Likhon

Abstract:

In this paper, we analyze a linear time invariant (LTI) descriptor system of large dimension. Since these systems are difficult to simulate, compute and store, we attempt to reduce this large system using Low Rank Cholesky Factorized Alternating Directions Implicit (LRCF-ADI) iteration followed by Square Root Balanced Truncation. LRCF-ADI solves the dual Lyapunov equations of the large system and gives low-rank Cholesky factors of the gramians as the solution. Using these cholesky factors, we compute the Hankel singular values via singular value decomposition. Later, implementing square root balanced truncation, the reduced system is obtained. The bode plots of original and lower order systems are used to show that the magnitude and phase responses are same for both the systems.

Keywords: low-rank cholesky factor alternating directions implicit iteration, LTI Descriptor system, Lyapunov equations, Square-root balanced truncation

Procedia PDF Downloads 420
5344 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 53
5343 The Impact of Foreign Direct Investment on Economic Growth of Ethiopia: Econometrics Cointegration Analysis

Authors: Dejene Gizaw Kidane

Abstract:

This study examines the impact of foreign direct investment on economic growth of Ethiopia using yearly time-series data for 1974 through 2013. Economic growth is proxies by real per capita gross domestic product and foreign direct investment proxies by the inflow of foreign direct investment. Other control variables such as gross domestic saving, trade, government consumption and inflation has been incorporated. In order to fully account for feedbacks, a vector autoregressive model is utilized. The results show that there is a stable, long-run relationship between foreign direct investment and economic growth. The variance decomposition results show that the main sources of Ethiopia economic growth variations are due largely own shocks. The pairwise Granger causality results show that there is a unidirectional causality that runs from FDI to economic growth of Ethiopia. Hence, the researcher therefore recommends that, FDI facilitate economic growth, so the government has to exert much effort in order to attract more FDI into the country.

Keywords: real per capita GDP, FDI, co-integration, VECM, Granger causality

Procedia PDF Downloads 440
5342 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
5341 Spatial Integrity of Seismic Data for Oil and Gas Exploration

Authors: Afiq Juazer Rizal, Siti Zaleha Misnan, M. Zairi M. Yusof

Abstract:

Seismic data is the fundamental tool utilized by exploration companies to determine potential hydrocarbon. However, the importance of seismic trace data will be undermined unless the geo-spatial component of the data is understood. Deriving a proposed well to be drilled from data that has positional ambiguity will jeopardize business decision and millions of dollars’ investment that every oil and gas company would like to avoid. Spatial integrity QC workflow has been introduced in PETRONAS to ensure positional errors within the seismic data are recognized throughout the exploration’s lifecycle from acquisition, processing, and seismic interpretation. This includes, amongst other tests, quantifying that the data is referenced to the appropriate coordinate reference system, survey configuration validation, and geometry loading verification. The direct outcome of the workflow implementation helps improve reliability and integrity of sub-surface geological model produced by geoscientist and provide important input to potential hazard assessment where positional accuracy is crucial. This workflow’s development initiative is part of a bigger geospatial integrity management effort, whereby nearly eighty percent of the oil and gas data are location-dependent.

Keywords: oil and gas exploration, PETRONAS, seismic data, spatial integrity QC workflow

Procedia PDF Downloads 231
5340 Dynamic Evaluation of Shallow Lake Habitat Quality Based on InVEST Model: A Case in Baiyangdian Lake

Authors: Shengjun Yan, Xuan Wang

Abstract:

Water level changes in a shallow lake always introduce dramatic land pattern changes. To achieve sustainable ecosystem service, it is necessary to evaluate habitat quality dynamic and its spatio-temporal variation resulted from water level changes, which can provide a scientific basis for protection of biodiversity and planning of wetland ecological system. Landsat data in the spring was chosen to obtain landscape data at different times based on the high, moderate and low water level of Baiyangdian Shallow Lake. We used the InVEST to evaluate the habitat quality, habitat degradation, and habitat scarcity. The result showed that: 1) the water level of shallow lake changes from high to low lead to an obvious landscape pattern changes and habitat degradation, 2) the most change area occurred in northwestward and southwest of Baiyangdian Shallow Lake, which there was a 21 percent of suitable habitat and 42 percent of moderately suitable habitat lost. Our findings show that the changes of water level in the shallow lake would have a strong relationship with the habitat quality.

Keywords: habitat quality, habitat degradation, water level changes, shallow lake

Procedia PDF Downloads 257
5339 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 279
5338 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 555
5337 The Impact of Citizens’ Involvement on Their Perception of the Brand’s Image: The Case of the City of Casablanca

Authors: Abderrahmane Mousstain, Ez-Zohra Belkadi

Abstract:

Many authors support more participatory and inclusive place branding practices that empower stakeholders’ participation. According to this participatory point of view, the effectiveness of place branding strategies cannot be achieved without citizen involvement. However, the role of all residents as key participants in the city branding process has not been widely discussed. The aim of this paper was to determine how citizens’ involvement impacts their perceptions of the city's image, using a multivariate model. To test our hypotheses hypothetical-deductive reasoning by the quantitative method was chosen. Our investigation is based on data collected through a survey among 200 citizens of Casablanca. Results show that the more citizens are involved, the more they tend to evaluate the image of the brand positively. Additionally, the degree of involvement seems to impact satisfaction and a sense of belonging. As well, the more citizen develops a sense of belonging to the city, the more favorable his or her perception of the brand image is. Ultimately, the role of citizens shouldn’t be limited to reception. They are also Co-creators of the brand, who ensure the correlation of the brand with authentic place roots.

Keywords: citybranding, sense of belonging, satisfaction, impact, brand’s image

Procedia PDF Downloads 183
5336 DNA Vaccine Study against Vaccinia Virus Using In vivo Electroporation

Authors: Jai Myung Yang, Na Young Kim, Sung Ho Shin

Abstract:

The adverse reactions of current live smallpox vaccines and potential use of smallpox as a bioterror weapon have heightened the development of new effective vaccine for this infectious disease. In the present study, DNA vaccine vector was produced which was optimized for expression of the vaccinia virus L1 antigen in the mouse model. A plasmid IgM-tL1R, which contains codon-optimized L1R gene, was constructed and fused with an IgM signal sequence under the regulation of a SV40 enhancer. The expression and secretion of recombinant L1 protein was confirmed in vitro 293 T cell. Mice were administered the DNA vaccine by electroporation and challenged with vaccinia virus. We observed that immunization with IgM-tL1R induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Isotyping studies reveal that immunoglobulin G2 (IgG2) antibody predominated after the immunization, indicative of a T helper type 1 response. Our results suggest that an optimized DNA vaccine, IgM-tL1R, can be effective in stimulating anti-vaccinia virus immune response and provide protection against lethal orthopoxvirus challenge.

Keywords: DNA vaccine, electroporation, L1R, vaccinia virus

Procedia PDF Downloads 275
5335 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 156
5334 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format

Authors: Utkan Caliskan

Abstract:

Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.

Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP

Procedia PDF Downloads 322