Search results for: regional vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2771

Search results for: regional vector

1391 Assessing the Impacts of Frugivorous Birds on Dispersal and Recruitment of Invasive Phytolacca Americana in an Urban Landscape

Authors: Ning Li, Yaner Yan, Yajun Qiao, Shu-qing An

Abstract:

Although seed dispersal is considered to be a key process determining the spatial structure and spread of invasive plant populations, few studies have explicitly addressed the link between dispersal vector behaviour, and seedling recruitment to gain insight into the process of exotic species invasion within a urban landscape. The present study tests the effects of native bird species on the dispersal and recruitment of invasive Phytolacca Americana in an urban garden. We found the invasive population of American pokeweed attracted both generalist species and specialist species to forage and disperse its seeds, with generalists Pycnonotus sinensis and Urocissa erythrorhyncha being by far the most important dispersers. Seedling numbers of P. Americana was strongly affected by perching behavior of bird dispersers. Moreover, two main disperser species, P. sinensis and U. erythrorhyncha govern a high quality dispersal service for P. Americana. Our results highlight the ability of invasive P. americana to recruit seed dispersal agents in urban habitats. However, if the newly recruited species could use the seedling safe site for perching shelter, the invasive plants will get a high regenerate rate in the invasive new habitats thus enhancing their invasive ability.

Keywords: frugivorous birds, phytolacca americana, seed dispersal, urban landscape

Procedia PDF Downloads 545
1390 Economic Growth After an Earthquake: A Synthetic Control Approach

Authors: Diego Diaz H., Cristian Larroulet

Abstract:

Although a large earthquake has clear and immediate consequences such as deaths, destruction of infrastructure and displacement (at least temporary) of part of the population, scientific research about the impact of a geological disaster in economic activity is inconclusive, especially when looking beyond the very short term. Estimating the economic impact years after a disaster strike is non-trivial since there is an unavoidable difficulty in attributing the observed effect to the disaster and not to other economic shocks. Case studies are performed that determine the impact of earthquakes in Chile, Japan, and New Zealand at a regional level by applying the synthetic control method, using the natural disaster as treatment. This consisted in constructing a counterfactual from every region in the same country that is not affected (or is slightly affected) by the earthquake. The results show that the economies of Canterbury and Tohoku achieved greater levels of GDP per capita in the years after the disaster than they would have in the absence of the disaster. For the case of Chile, however, the region of Maule experiences a decline in GDP per capita because of the earthquake. All the results are robust according to the placebo tests. Also, the results suggest that national institutional quality improve the growth process after the disaster.

Keywords: earthquake, economic growth, institutional quality, synthetic control

Procedia PDF Downloads 223
1389 Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery

Authors: Pritika Ramharack, Mahmoud E. S. Soliman

Abstract:

The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.

Keywords: NS5 protein inhibitors, per-residue decomposition, pharmacophore model, virtual screening, Zika virus

Procedia PDF Downloads 226
1388 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 488
1387 Determination of Agricultural Characteristics of Smooth Bromegrass (Bromus inermis Leyss) Lines under Konya Regional Conditions

Authors: Abdullah Özköse, Ahmet Tamkoç

Abstract:

The present study was conducted to determine the yield and yield components of smooth bromegrass lines under the environmental conditions of the Konya region during the growing seasons between 2011 and 2013. The experiment was performed in the randomized complete block design (RCBD) with four replications. It was found that the selected lines had a statistically significant effect on all the investigated traits, except for the main stem length and the number of nodes in the main stem. According to the two-year average calculated for various parameters checked in the smooth bromegrass lines, the main stem length ranged from 71.6 cm to 79.1 cm, the main stem diameter from 2.12 mm from 2.70 mm, the number of nodes in the main stem from 3.2 to 3.7, the internode length from 11.6 cm to 18.9 cm, flag leaf length from 9.7 cm to 12.7 cm, flag leaf width from 3.58 cm to 6.04 mm, herbage yield from 221.3 kg da–1 to 354.7 kg da–1 and hay yield from 100.4 kg da–1 to 190.1 kg da–1. The study concluded that the smooth bromegrass lines differ in terms of yield and yield components. Therefore, it is very crucial to select suitable varieties of smooth bromegrass to obtain optimum yield.

Keywords: semiarid region, smooth bromegrass, yield, yield components

Procedia PDF Downloads 275
1386 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 110
1385 Health Outcomes and Economic Growth Nexus: Testing for Long-run Relationships and Causal Links in Nigeria

Authors: Haruna Modibbo Usman, Mustapha Muktar, Nasiru Inuwa

Abstract:

This paper examined the long run relationship between health outcomes and economic growth in Nigeria from 1961 to 2012. Using annual time series data, Augmented Dickey-Fuller (ADF) test is conducted to check the stochastic properties of the variables. Also, the long run relationship among the variables is confirmed based on Johansen Multivariate Cointegration approach whereas the long run and short run dynamics are observed using Vector Error Correction Mechanism (VECM). In addition, VEC Granger causality test is employed to examine the direction of causality among the variables. On the whole, the results obtained revealed the existence of a long run relationship between health outcomes and economic growth in Nigeria and that both life expectancy and crude death rate as measures of health are found to have a long run negative and statistically significant impact on the economic growth over the study period. This is further buttressed by the results of Granger causality test which indicated the existence of unidirectional causality running from life expectancy and crude death rate to economic growth. The study therefore, calls for governments at various levels to create preconditions for health improvements in Nigeria in order to boost the level of health outcomes.

Keywords: cointegration, economic growth, Granger causality, health outcomes, VECM

Procedia PDF Downloads 490
1384 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste

Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha

Abstract:

Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.

Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil

Procedia PDF Downloads 136
1383 Torture, Inhuman and Degrading Treatment in Nigeria: A Time for Legislative Intervention

Authors: Kolawole Oyekan

Abstract:

Torture, cruel, inhuman and degrading treatment is one of the issues dealt with by the United Nations in its development of human rights standard. Torture and other ill -treatments is banned at all times in all places including in times of war. There is no justification for torture, cruel, inhuman and degrading treatment under any law in Nigeria. All statutes; local, regional and international on human rights prohibits all forms of degrading treatment. This paper examines the definition of torture, inhuman and degrading treatment and the prevalence of confessional statements obtain through torture by security agencies during the interrogation of crime suspects and are mostly relied upon during trial even in cases involving capital punishment. The paper further reviews the Violence against Persons Prohibition Act 2015 which prohibits torture and other forms of ill-treatment. Presently, the Act is applicable only to the federal Federal Capital Territory, Abuja. Consequently, the paper concludes that the Act should be adopted as a matter of urgency by the 36 states of the Federation of Nigeria and in addition, cogent steps must be taken to ensure that the provisions of the Act are strictly complied with in order to eliminate torture, cruel and inhuman degrading treatment in Nigeria.

Keywords: confessional statement, human rights, torture, United Nations

Procedia PDF Downloads 304
1382 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement

Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao

Abstract:

Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.

Keywords: feature analysis, machine vision, PCA, surface roughness, SVM

Procedia PDF Downloads 212
1381 The Correlation Between the Rise of China and the US-Iranian Conflict: An American Perspective

Authors: Ranj Tofik

Abstract:

This article aims to demonstrate a link and/or correlation between the rise of China and the US-Iranian conflict, from a US point of view. To demonstrate this link, the article relies on the content analysis method by analyzing American reports and official data. This article concludes that this correlation indicates that the more China rises and the greater the Chinese threat to America, the more changes will occur in the US-Iranian conflict and the US actions regarding this conflict will increase – in the form of imposing sanctions and using means of pressure on Iran, or trying to reach an agreement and settlement with Iran. This article, via noting and observing that correlation, also claims that before 2012, Iran was a regional threat to US interests in the Middle East. However, after 2012 when the rise of China became one of the major threats to America, Iran, because of its rapprochement with China, became also part of the Chinese threat, which is a threat to America's global standing. In addition, observing this correlation indicates the possibility that the rise of China and its threat to the USA has become one of the main drivers in the US-Iranian conflict. Consequently, it can be said that Iran has become a vital issue in the US-China rivalry, as it has become an appropriate gateway for China to enter the Middle East and undermine US hegemony there.

Keywords: China-Iran relations, China's rise, JCPOA, US-Chinese competition, US-Iranian conflict

Procedia PDF Downloads 101
1380 Analysis of Patient No-Shows According to Health Conditions

Authors: Sangbok Lee

Abstract:

There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.

Keywords: healthcare system, no show analysis, process improvment, statistical data analysis

Procedia PDF Downloads 233
1379 Neural Correlates of Decision-Making Under Ambiguity and Conflict

Authors: Helen Pushkarskaya, Michael Smithson, Jane E. Joseph, Christine Corbly, Ifat Levy

Abstract:

Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional Magnetic Resonance Imaging (fMRI) and a simple gamble design to study this question. In this design, the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on both expected value and variance. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across subjects. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. This novel double dissociation indicates that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.

Keywords: decision making, uncertainty, ambiguity, conflict, fMRI

Procedia PDF Downloads 564
1378 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI

Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer

Abstract:

In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.

Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting

Procedia PDF Downloads 520
1377 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 357
1376 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 288
1375 The State Support to the Tourism Policy Formation Mechanism in Black Sea Basin Countries (Azerbaijan, Turkey, Russia, Georgia) and Its Impact on Sustainable Tourism Development

Authors: A. Bahar Ganiyeva, M. Sabuhi Tanriverdiyev

Abstract:

The article analyzes state support and policy mechanisms aimed at driving tourism as one of the vibrant and rapidly developing economies. State programs and long-range strategic roadmaps and previous programs execution, results and their impact on the particular countries economy have been raised during the research. This theme provides a useful framework for discussions with a wider range of stakeholders as the implications arising are of importance both for academics and practitioners engaged in hospitality and tourism development and research. The impact that tourism has on sustainable regional development in emerging markets is highly substantial. For Azerbaijan, Turkey, Georgia, and Russia, with their rich natural resources and cultural heritage, tourism can be an important basis for economic expansion, and a way to form an acceptable image of the countries as safe, open, hospitable, and complex.

Keywords: Sustainable tourism, hospitality, destination, strategic roadmap, tourism, economy, growth, state support, mechanism, policy formation, state program

Procedia PDF Downloads 158
1374 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 74
1373 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure

Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi

Abstract:

With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.

Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance

Procedia PDF Downloads 174
1372 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 509
1371 Growth Pattern Analysis of Khagrachari Pourashava

Authors: Kutub Uddin Chisty, Md. Kamrul Islam, Md. Ashraful Islam

Abstract:

Growth pattern is an important factor for a city because it can help to predict future growth trend and development of a city. Khagrachari District is one of the three hill tracts districts in Bangladesh. It is bordered by the Indian State of Tripura on the north, Rangamati and Chittagong districts on the south, Rangamati district on the east, Chittagong district and the Indian State of Tripura on the west. Khagrachari Pourashava is surrounded by hills and waterways. The Pourashava area is mostly inhibited by non-tribal population, while tribal population lives in hilly regions within and around the Pourashava area. The hilly area growth is different. Based on questioners and expert opinions survey, growth pattern of Khagrachari is evaluated. Different culture, history, tribal people, non-tribal people enrich the hilly heritages. In our study, we analyse the city growth pattern and identify the prominent factors that influence the city growth. Thus, it can help us to identify growth trend of the city.

Keywords: growth pattern, growth trend, prominent factors, regional development

Procedia PDF Downloads 341
1370 The Rocketing Raise of Bride Price in the Rural China: Intimacy and Family Changes Brought by Rural Urban Migration

Authors: Lei Liu

Abstract:

This paper concerns on a special phenomenon of rocketing of bride’s price in rural China after the rural-urban labor migration nowadays. It provides a brief overview of three major prospective on marriage exchange, especially impose the local marriage market due to the post-migration economic environments. Then the author highlights on several factors that influence the rocketing raise of rural marriage gifts using both the primary data from census 2010 and the interviews from the field study, such as one-child policy and the unbalanced sex ratio with the familiar context parents used different strategies in raising their sons and daughters so as to best hold their own interests, causing inequality between females and males. Then this was broken by the independence of rural women and the phenomenon of cross-regional marriage after the free mobility of labor resource between rural areas and urban areas which gives women equal rights to choose their spouses together with some publicly policies that accelerate the decline of patriarchy. In the end, the author spells out a framework of migration influence on rural marriage for some theoretical and policy implications of the findings.

Keywords: rural-urban migration, gender stratification, rural China, bride price, marriage

Procedia PDF Downloads 327
1369 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 131
1368 In Search of Seaplanes in Andhra Pradesh: In View of UDAN

Authors: Priyadarshini Alok

Abstract:

The present situation in India envisages that because of the surge in population and the economy, cities are expected to spill over to hinterland areas. The consumption-led factors such as land, labor, etc. will be boosted. Hence, the need for regional connectivity becomes obligatory. But, there is enormous pressure upon the land; proving itself through rising traffic congestion, roads, and railway accidents. Air transport is practical, but due to decreasing availability of land, this will not be a wise solution. What with the introduction of seaplanes in the country which was once the vital asset in the world prior to Second World War. Maldives has proved it. Seaplanes offer natural landing site and are time and cost-efficient. Seaplanes in accordance with UDAN can prove to be the solution in linking various regions with other states. This research paper aims to offer the feasibility analysis along with site justification of the potential areas in the state of Andhra Pradesh, India; for the operation of seaplanes. The standards are taken from the US Department of Transportation, Federal Aviation Administration for the analysis. The conflation of Seaplanes with UDAN will offer an alternate mode of air connectivity, strengthen the transport network by simulation of connectivity to unserved and under-served areas and boost the nation's economy.

Keywords: connectivity, seaplanes, transport, UDAN

Procedia PDF Downloads 169
1367 Association between Neurofibromatosis Type 1 and Breast Sarcoma: A Case Report

Authors: Ines Zemni, Maher Slimane, Jamel Ben Hassouna, Khaled Rahal

Abstract:

Background: Neurofibromatosis type 1 (NF1) is a genetic disease, which is associated with an increased risk of developing different malignancies including breast cancer. The association between NF1 band breast sarcoma is a rare entity. Herein we present a 25-year-old woman with NF1 who had fibrosarcoma of the left breast. Case presentation: The patient has multiple thoraco-abdominal 'café au lait' spots. Clinical examination showed a lump of the left breast measuring 9 cm of diameter, which was noticed for 6 months. There was a left inguinal mass of 6 cm of diameter. The patient underwent first a left lumpectomy. Histopathological exam revealed a high-grade fibrosarcoma of the left breast measuring 7.5 cm. Three months later, the patient underwent a left mastectomy and excision of the inguinal mass, which was a neurofibroma. An adjuvant chemotherapy and radiation therapy were indicated, but not applied because of the timeout. The patient is now alive after a follow up of 6 years, with no loco-regional recurrence or metastasis. Conclusion: The relationship between NF1 and breast cancer need to be more clarified by further studies. Establishing a specific screening program of these patients may help to make an earlier diagnosis of breast cancer.

Keywords: neurofibromatosis, breast, sarcoma, cancer

Procedia PDF Downloads 121
1366 Changing New York Financial Clusters in the 2000s: Modeling the Impact and Policy Implication of the Global Financial Crisis

Authors: Silvia Lorenzo, Hongmian Gong

Abstract:

With the influx of research assessing the economic impact of the global financial crisis of 2007-8, a spatial analysis based on empirical data is needed to better understand the spatial significance of the financial crisis in New York, a key international financial center also considered the origin of the crisis. Using spatial statistics, the existence of financial clusters specializing in credit and securities throughout the New York metropolitan area are identified for 2000 and 2010, the time period before and after the height of the global financial crisis. Geographically Weighted Regressions are then used to examine processes underlying the formation and movement of financial geographies across state, county and ZIP codes of the New York metropolitan area throughout the 2000s with specific attention to tax regimes, employment, household income, technology, and transportation hubs. This analysis provides useful inputs for financial risk management and public policy initiatives aimed at addressing regional economic sustainability across state boundaries, while also developing the groundwork for further research on a spatial analysis of the global financial crisis.

Keywords: financial clusters, New York, global financial crisis, geographically weighted regression

Procedia PDF Downloads 308
1365 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques

Authors: Raymond Feng, Shadi Ghiasi

Abstract:

An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.

Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals

Procedia PDF Downloads 61
1364 Conditions Required for New Sector Emergence: Results from a Systematic Literature Review

Authors: Laurie Prange-Martin, Romeo Turcan, Norman Fraser

Abstract:

The aim of this study is to identify the conditions required and describe the process of emergence for a new economic sector created from new or established businesses. A systematic literature review of English-language studies published from 1983 to 2016 was conducted using the following databases: ABI/INFORM Complete; Business Source Premiere; Google Scholar; Scopus; and Web of Science. The two main terms of business sector and emergence were used in the systematic literature search, along with another seventeen synonyms for each these main terms. From the search results, 65 publications met the requirements of an empirical study discussing and reporting the conditions of new sector emergence. A meta-analysis of the literature examined suggest that there are six favourable conditions and five key individuals or groups required for new sector emergence. In addition, the results from the meta-analysis showed that there are eighteen theories used in the literature to explain the phenomenon of new sector emergence, which can be grouped in three study disciplines. With such diversity in theoretical frameworks used in the 65 empirical studies, the authors of this paper propose the development of a new theory of sector emergence.

Keywords: economic geography, new sector emergence, economic diversification, regional economies

Procedia PDF Downloads 270
1363 Formal Implementation of Routing Information Protocol Using Event-B

Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura

Abstract:

The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.

Keywords: dynamic rout RIP, formal method, event-B, pro-B

Procedia PDF Downloads 401
1362 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 161