Search results for: dynamic neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7395

Search results for: dynamic neural networks

6015 Studying Second Language Development from a Complex Dynamic Systems Perspective

Authors: L. Freeborn

Abstract:

This paper discusses the application of complex dynamic system theory (DST) to the study of individual differences in second language development. This transdisciplinary framework allows researchers to view the trajectory of language development as a dynamic, non-linear process. A DST approach views language as multi-componential, consisting of multiple complex systems and nested layers. These multiple components and systems continuously interact and influence each other at both the macro- and micro-level. Dynamic systems theory aims to explain and describe the development of the language system, rather than make predictions about its trajectory. Such a holistic and ecological approach to second language development allows researchers to include various research methods from neurological, cognitive, and social perspectives. A DST perspective would involve in-depth analyses as well as mixed methods research. To illustrate, a neurobiological approach to second language development could include non-invasive neuroimaging techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate areas of brain activation during language-related tasks. A cognitive framework would further include behavioural research methods to assess the influence of intelligence and personality traits, as well as individual differences in foreign language aptitude, such as phonetic coding ability and working memory capacity. Exploring second language development from a DST approach would also benefit from including perspectives from the field of applied linguistics, regarding the teaching context, second language input, and the role of affective factors such as motivation. In this way, applying mixed research methods from neurobiological, cognitive, and social approaches would enable researchers to have a more holistic view of the dynamic and complex processes of second language development.

Keywords: dynamic systems theory, mixed methods, research design, second language development

Procedia PDF Downloads 134
6014 The Assessment of Some Biological Parameters With Dynamic Energy Budget of Mussels in Agadir Bay

Authors: Zahra Okba, Hassan El Ouizgani

Abstract:

Anticipating an individual’s behavior to the environmental factors allows for having relevant ecological forecasts. The Dynamic Energy Budget model facilitates prediction, and it is mechanically dependent on biology to abiotic factors but is generally field verified under relatively stable physical conditions. Dynamic Energy Budget Theory (DEB) is a robust framework that can link the individual state to environmental factors, and in our work, we have tested its ability to account for variability by looking at model predictions in the Agadir Bay, which is characterized by a semi-arid climate and temperature is strongly influenced by the trade winds front and nutritional availability. From previous works in our laboratory, we have collected different biological DEB model parameters of Mytilus galloprovincialis mussel in Agadir Bay. We mathematically formulated the equations that make up the DEB model and then adjusted our analytical functions with the observed biological data of our local species. We also assumed the condition of constant immersion, and then we integrated the details of the tidal cycles to calculate the metabolic depression at low tide. Our results are quite satisfactory concerning the length and shape of the shell in one part and the gonadosomatic index in another part.

Keywords: dynamic energy budget, mussels, mytilus galloprovincialis, agadir bay, DEB model

Procedia PDF Downloads 114
6013 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems

Authors: Craig Mahlasi

Abstract:

The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.

Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time

Procedia PDF Downloads 161
6012 A New Realization of Multidimensional System for Grid Sensor Network

Authors: Yang Xiong, Hua Cheng

Abstract:

In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.

Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems

Procedia PDF Downloads 654
6011 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 125
6010 3D Dynamic Modeling of Transition Zones

Authors: Edina Koch, Péter Hudacsek

Abstract:

In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.

Keywords: culvert, dynamic load, HS small model, railway transition zone

Procedia PDF Downloads 287
6009 A Crystal Plasticity Approach to Model Dynamic Strain Aging

Authors: Burak Bal, Demircan Canadinc

Abstract:

Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity.

Keywords: crystal plasticity, dynamic strain aging, Hadfield steel, negative strain rate sensitivity

Procedia PDF Downloads 258
6008 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction

Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan

Abstract:

In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.

Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound

Procedia PDF Downloads 99
6007 Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks

Authors: Noppatee Sabpayakom, Somporn Sirisumrannukul

Abstract:

Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.

Keywords: control and protection systems, distributed generation, renewable energy, very small power producers

Procedia PDF Downloads 477
6006 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.

Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony

Procedia PDF Downloads 378
6005 The Effect of Newspaper Reporting on COVID-19 Vaccine Hesitancy: A Randomised Controlled Trial

Authors: Anna Rinaldi, Pierfrancesco Dellino

Abstract:

COVID-19 vaccine hesitancy can be observed at different rates in different countries. In June 2021, 1,068 people were surveyed in France and Italy to inquire about individual potential acceptance, focusing on time preferences in a risk-return framework: having the vaccination today, in a month, and in 3 months; perceived risks of vaccination and COVID-19; and expected benefit of the vaccine. A randomized controlled trial was conducted to understand how everyday stimuli like fact-based news about vaccines impact an audience's acceptance of vaccination. The main experiment involved two groups of participants and two different articles about vaccine-related thrombosis taken from two Italian newspapers. One article used a more abstract description and language, and the other used a more anecdotal description and concrete language; each group read only one of these articles. Two other groups were assigned categorization tasks; one was asked to complete a concrete categorization task, and the other an abstract categorization task. Individual preferences for vaccination were found to be variable and unstable over time, and individual choices of accepting, refusing, or delaying could be affected by the way news is written. In order to understand these dynamic preferences, the present work proposes a new model based on seven categories of human behaviors that were validated by a neural network. A treatment effect was observed: participants who read the articles shifted to vaccine hesitancy categories more than participants assigned to other treatments and control. Furthermore, there was a significant gender effect, showing that the type of language leading to a lower hesitancy rate for men is correlated with a higher hesitancy rate for women and vice versa. This outcome should be taken into consideration for an appropriate gender-based communication campaign aimed at achieving herd immunity. The trial was registered at ClinicalTrials.gov NCT05582564 (17/10/2022).

Keywords: vaccine hesitancy, risk elicitation, neural network, covid19

Procedia PDF Downloads 82
6004 A Literature Review of the Trend towards Indoor Dynamic Thermal Comfort

Authors: James Katungyi

Abstract:

The Steady State thermal comfort model which dominates thermal comfort practice and which posits the ideal thermal conditions in a narrow range of thermal conditions does not deliver the expected comfort levels among occupants. Furthermore, the buildings where this model is applied consume a lot of energy in conditioning. This paper reviews significant literature about thermal comfort in dynamic indoor conditions including the adaptive thermal comfort model and alliesthesia. A major finding of the paper is that the adaptive thermal comfort model is part of a trend from static to dynamic indoor environments in aspects such as lighting, views, sounds and ventilation. Alliesthesia or thermal delight is consistent with this trend towards dynamic thermal conditions. It is within this trend that the two fold goal of increased thermal comfort and reduced energy consumption lies. At the heart of this trend is a rediscovery of the link between the natural environment and human well-being, a link that was partially severed by over-reliance on mechanically dominated artificial indoor environments. The paper concludes by advocating thermal conditioning solutions that integrate mechanical with natural thermal conditioning in a balanced manner in order to meet occupant thermal needs without endangering the environment.

Keywords: adaptive thermal comfort, alliesthesia, energy, natural environment

Procedia PDF Downloads 218
6003 Dynamic Stall Characterization of Low Reynolds Airfoil in Mars and Titan’s Atmosphere

Authors: Vatasta Koul, Vaibhav Sharma, Ayush Gupta, Rajesh Yadav

Abstract:

Exploratory missions to Mars and Titan have increased recently with various endeavors to find an alternate home to humankind. The use of surface rovers has its limitations due to rugged and uneven surfaces of these planetary bodies. The use of aerial robots requires the complete aerodynamic characterization of these vehicles in the atmospheric conditions of these planetary bodies. The dynamic stall phenomenon is extremely important for rotary wings performance under low Reynolds number that can be encountered in Martian and Titan’s atmosphere. The current research focuses on the aerodynamic characterization and exploration of the dynamic stall phenomenon of two different airfoils viz. E387 and Selig-Donovan7003 in Martian and Titan’s atmosphere at low Reynolds numbers of 10000 and 50000. The two-dimensional numerical simulations are conducted using commercially available finite volume solver with multi-species non-reacting mixture of gases as the working fluid. The k-epsilon (k-ε) turbulence model is used to capture the unsteady flow separation and the effect of turbulence. The dynamic characteristics are studied at a fixed different constant rotational extreme of angles of attack. This study of airfoils at different low Reynolds number and atmospheric conditions on Mars and Titan will be resulting in defining the aerodynamic characteristics of these airfoils for unmanned aerial missions for outer space exploration.

Keywords: aerodynamics, dynamic stall, E387, SD7003

Procedia PDF Downloads 132
6002 Optimal Driving Strategies for a Hybrid Street Type Motorcycle: Modelling and Control

Authors: Jhon Vargas, Gilberto Osorio-Gomez, Tatiana Manrique

Abstract:

This work presents an optimal driving strategy proposal for a 125 c.c. street-type hybrid electric motorcycle with a parallel configuration. The results presented in this article are complementary regarding the control proposal of a hybrid motorcycle. In order to carry out such developments, a representative dynamic model of the motorcycle is used, in which also are described different optimization functionalities for predetermined driving modes. The purpose is to implement an off-line optimal driving strategy which distributes energy to both engines by minimizing an objective torque requirement function. An optimal dynamic contribution is found from the optimization routine, and the optimal percentage contribution for vehicle cruise speed is implemented in the proposed online PID controller.

Keywords: dynamic model, driving strategies, parallel hybrid motorcycle, PID controller, optimization

Procedia PDF Downloads 186
6001 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 181
6000 Creating Knowledge Networks: Comparative Analysis of Reference Cases

Authors: Sylvia Villarreal, Edna Bravo

Abstract:

Knowledge management focuses on coordinating technologies, people, processes, and structures to generate a competitive advantage and considering that networks are perceived as mechanisms for knowledge creation and transfer, this research presents the stages and practices related to the creation of knowledge networks. The methodology started with a literature review adapted from the systematic literature review (SLR). The descriptive analysis includes variables such as approach (conceptual or practical), industry, knowledge management processes and mythologies (qualitative or quantitative), etc. The content analysis includes identification of reference cases. These cases were characterized based on variables as scope, creation goal, years, network approach, actors and creation methodology. It was possible to do a comparative analysis to determinate similarities and differences in these cases documented in knowledge network scientific literature. Consequently, it was shown that even the need and impact of knowledge networks in organizations, the initial guidelines for their creation are not documented, so there is not a guide of good practices and lessons learned. The reference cases are from industries as energy, education, creative, automotive and textile. Their common points are the human approach; it is oriented to interactions to facilitate the appropriation of knowledge, explicit and tacit. The stages of every case are analyzed to propose the main successful elements.

Keywords: creation, knowledge management, network, stages

Procedia PDF Downloads 300
5999 Conscious Intention-based Processes Impact the Neural Activities Prior to Voluntary Action on Reinforcement Learning Schedules

Authors: Xiaosheng Chen, Jingjing Chen, Phil Reed, Dan Zhang

Abstract:

Conscious intention can be a promising point cut to grasp consciousness and orient voluntary action. The current study adopted a random ratio (RR), yoked random interval (RI) reinforcement learning schedule instead of the previous highly repeatable and single decision point paradigms, aimed to induce voluntary action with the conscious intention that evolves from the interaction between short-range-intention and long-range-intention. Readiness potential (RP) -like-EEG amplitude and inter-trial-EEG variability decreased significantly prior to voluntary action compared to cued action for inter-trial-EEG variability, mainly featured during the earlier stage of neural activities. Notably, (RP) -like-EEG amplitudes decreased significantly prior to higher RI-reward rates responses in which participants formed a higher plane of conscious intention. The present study suggests the possible contribution of conscious intention-based processes to the neural activities from the earlier stage prior to voluntary action on reinforcement leanring schedule.

Keywords: Reinforcement leaning schedule, voluntary action, EEG, conscious intention, readiness potential

Procedia PDF Downloads 76
5998 A Narrative of Nationalism in Mainstream Media: The US, China, and COVID-19

Authors: Rachel Williams, Shiqi Yang

Abstract:

Our research explores the influence nationalism has had on media coverage of the COVID-19 pandemic as it relates to China in the United States through an inclusive qualitative analysis of two US news networks, Fox News and CNN. In total, the transcripts of sixteen videos uploaded on YouTube, each with more than 100,000 views, were gathered for data processing. Co-occurrence networks generated by KH Coder illuminate the themes and narratives underpinning the reports from Fox News and CNN. The results of in-depth content analysis with keywords suggest that the pandemic has been framed in an ethnopopulist nationalist manner, although to varying degrees between networks. Specifically, the authors found that Fox News is more likely to report hypotheses or statements as a fact; on the contrary, CNN is more likely to quote data and statements from official institutions. Future research into how nationalist narratives have developed in China and in other US news coverage with a more systematic and quantitative method can be conducted to expand on these findings.

Keywords: nationalism, media studies, us and china, COVID-19, social media, communication studies

Procedia PDF Downloads 56
5997 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping

Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu

Abstract:

This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.

Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning

Procedia PDF Downloads 309
5996 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 527
5995 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network

Authors: Jui-Chen Huang, Shou-Hsiung Cheng

Abstract:

This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.

Keywords: fall, fuzzy neural network, health belief model, telecare, willingness

Procedia PDF Downloads 200
5994 Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network

Authors: K. Padmavathi, K. Sri Ramakrishna

Abstract:

This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database.

Keywords: bundle block, SC, LMNN classifier, welch method, PSD, MIT-BIH, arrhythmia database

Procedia PDF Downloads 280
5993 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 313
5992 The Contribution of Hip Strategy in Dynamic Balance in Recurrent Ankle Sprain

Authors: Radwa Talaat Mohammed El-Shorbagy, Alaa El-Din Balbaa, Khaled Ayad, Waleed Red

Abstract:

Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: To determine the contribution of proximal hip strategy to dynamic balance control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic system. Dynamic balance was measured before and after fatigue by the Biodex Balance system Results: Repeated measures MANOVA was used to compare between and within group differences. In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p=0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy.

Keywords: ankle sprain, hip muscles fatigue, dynamic balance

Procedia PDF Downloads 489
5991 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems

Authors: Taha Bensiradj, Samira Moussaoui

Abstract:

Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.

Keywords: HSVN, ITS, VANET, WSN

Procedia PDF Downloads 360
5990 Experimental Investigation of the Static and Dynamic Behaviour of Double Lap Joints

Authors: H. I. Beloufa, M. Tarfaoui

Abstract:

For many applications, adhesively bonded assemblies have gained an increasing interest in the industry due to several advantages over welding, riveting and bolting, such as reduction of stress concentrations, lightness, low cost and easy manufacturing. This work is largely concerned to show the effects of the loading rate of the adhesively bonded joints under different speed rates. The tensile tests were conducted at four different rates; static (5mm/min, 50mm/min) and dynamic tests (1m/s, and 10m/s). An attempt was made to determine the damage kinetic and a comparison between the use of aluminium and composite laminate substrates is introduced. Aluminum T6082 and glass/vinylester laminated composite Substrates were used to construct aluminum/aluminum and laminate/laminate specimens. The adhesive used in this study was Araldite 2015. The results showed the effects of the loading rate évolution on the double joint strength. The comparison of the results of static and dynamic tests showed a raise of the strength of the specimens while the load velocity is elevated. In the case of composite substrates double joint lap, the stiffness increased by more than 60% between static and dynamic tests. However, in the case of aluminum substrates, the rigidity improved about 28% from static to moderately high velocity loading. For both aluminum and composite double joint lap, the strength increased by approximately 25% when the tensile velocity is increased from 5 mm/min to 50 mm/min (static tests). Nevertheless, the tensile velocity is extended to 1m/s the strength increased by 13% and 25% respectively for composite and aluminum substrates.

Keywords: adhesive, double lap joints, static and dynamic behavior, tensile tests

Procedia PDF Downloads 194
5989 Investigation of Delivery of Triple Play Services

Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 541
5988 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads

Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei

Abstract:

The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.

Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load

Procedia PDF Downloads 104
5987 Influence of Shock Absorber Condition on the Vertical Dynamic Load Applied on the Pavement by a Truck’s Front Suspension

Authors: Pablo Kubo, Cassio Paiva, Adelino Ferreira

Abstract:

The main objective of this research study is to present the results of the influence of shock absorber condition, from a truck front suspension, on the vertical dynamic load applied on the pavement. For the measurements, it has been used a durability test track located in Brazil. The shock absorber conditions were new, used and failed with a constant load of 6 tons on the front suspension, the maximum allowed load for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the shock absorber conditions will significantly affect the load applied on the pavement. Although, it is recommended to repeat the same methodology in order to analyze the influence on the variation of the quarter car model variants.

Keywords: damage, shock absorber, vertical dynamic load, absorber

Procedia PDF Downloads 480
5986 Decellularized Brain-Chitosan Scaffold for Neural Tissue Engineering

Authors: Yun-An Chen, Hung-Jun Lin, Tai-Horng Young, Der-Zen Liu

Abstract:

Decellularized brain extracellular matrix had been shown that it has the ability to influence on cell proliferation, differentiation and associated cell phenotype. However, this scaffold is thought to have poor mechanical properties and rapid degradation, it is hard for cell recellularization. In this study, we used decellularized brain extracellular matrix combined with chitosan, which is naturally occurring polysaccharide and non-cytotoxic polymer, forming a 3-D scaffold for neural stem/precursor cells (NSPCs) regeneration. HE staining and DAPI fluorescence staining confirmed decellularized process could effectively vanish the cellular components from the brain. GAGs and collagen I, collagen IV were be showed a great preservation by Alcain staining and immunofluorescence staining respectively. Decellularized brain extracellular matrix was well mixed in chitosan to form a 3-D scaffold (DB-C scaffold). The pore size was approximately 50±10 μm examined by SEM images. Alamar blue results demonstrated NSPCs had great proliferation ability in DB-C scaffold. NSPCs that were cultured in this complex scaffold differentiated into neurons and astrocytes, as reveled by NSPCs expression of microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP). In conclusion, DB-C scaffold may provide bioinformatics cues for NSPCs generation and aid for CNS injury functional recovery applications.

Keywords: brain, decellularization, chitosan, scaffold, neural stem/precursor cells

Procedia PDF Downloads 319