Search results for: critical frequency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9076

Search results for: critical frequency

7696 Support for and Participation in 'Spontaneous' Mass Protest in Iceland: The Moderating Effects of Biographical Availability, Critical Mass, and Social Embeddedness

Authors: Jon Gunnar Bernburg

Abstract:

The present study addresses a topic that is fundamental to social movement theory, namely, the contingent link between movement support and movement participation. Usually, only a small fraction of those who agree with the cause of a social movement is mobilized into participating in it (a pattern sometimes referred to as 'the collective action problem'). However, historical moments sometimes emerge when many supporters become mobilized to participate in the movement, greatly enhancing the chance of movement success. By studying a case in point, this paper addresses the limited work on how support and participation are related at such critical moments. Specifically, the paper examines the association between supporting and participating in a huge 'pro-democracy' protest in Iceland in April 2016, in the wake of the global Panama Papers scandal. Organized via social media by only a handful of activists, but supported by a majority of Icelanders, the protest attracted about a fourth of the urban population, leading to a snap election and government change. Surveying Iceland’s urban population, this paper tests hypotheses about the processes mobilizing supporters to participate in the protest. The findings reveal how variables derived from the theories of biographical availability (males vs. females, working class vs. professionals), critical mass (expectations, prior protest success), and social embeddedness (close ties with protesters) moderate the association between protest support and participation. The study helps to account for one of the largest protests in Iceland’s history while contributing to the theory about how historical contexts shape the behavior of movement supporters.

Keywords: Iceland, crisis, protest support vs. participation, theories of mass mobilization

Procedia PDF Downloads 231
7695 Frequency of Gastrointestinal Manifestations in Systemic Sclerosis and Impact of Rituximab Treatment

Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova

Abstract:

Objectives. Gastrointestinal involvement is one of the most common manifestations of systemic sclerosis (SSc). The aim of our study was to assess the frequency of gastrointestinal manifestations in SSc patients (pts) with interstitial lung disease (ILD) and their changes to rituximab (RTX) therapy. Methods. There were 103 pts with SSc in this study. The mean follow-up period was 12.6±10.7 months. The mean age was 47±12.9 years, females - 87 pts (84%), and the diffuse cutaneous subset of the disease 55 pts (53%). The mean disease duration was 6.2±5.5 years. All pts had ILD and were positive for ANA. 67% of them were positive for anti-topoisomerase-1. All patients received prednisolone at a dose of 11.3±4.5 mg/day, and immunosuppressants at inclusion received 47% of them. Pts received RTX due to the ineffectiveness of previous therapy for ILD. The cumulative mean dose of RTX was 1.7±0.6 grams. 90% of pts received omeprazole at a dose of 20-40 mg/day. Results. At inclusion, dysphagia was observed in 76 pts (74%), early satiety or vomiting in 32 pts (31%), and diarrhea in 20 pts (19%). We didn't observe any changes in gastrointestinal manifestation during RTX therapy. There was a decrease in the number of pts with dysphagia from 76 (74%) to 66 (64%), but it was insignificant. The number of pts with early satiety or vomiting and diarrhea didn't change. Conclusion. In our study, gastrointestinal involvement was observed in most of the pts with SSc-ILD. We didn't find any significant changes in gastrointestinal manifestations during RTX therapy. RXT does not worsen gastrointestinal manifestations in SSc-ILD.

Keywords: systemic sclerosis, dysphagia, rituximab, gastrointestinal manifestations

Procedia PDF Downloads 79
7694 LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma

Authors: Jin Hwan Cheong, Mina Hwang, Myung Hoon Han, Je Il Ryu, Young ha Oh, Seong Ho Koh, Wu Duck Won, Byung Jin Ha

Abstract:

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inꠓhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream sigꠓnaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.

Keywords: LGR5, neuroblastoma, meningioma, pituitary adenoma, hnRNP

Procedia PDF Downloads 54
7693 Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts

Authors: Virgil-Florin Duma, Dorin Demian

Abstract:

Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297.

Keywords: laser signals, laser systems, optical choppers, optomechatronics, transfer functions, eclipse choppers, choppers with shafts

Procedia PDF Downloads 187
7692 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance

Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier

Abstract:

Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.

Keywords: durability, PEMFC, recovery procedure, reversible degradation

Procedia PDF Downloads 129
7691 Statistical Tools for SFRA Diagnosis in Power Transformers

Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava

Abstract:

For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.

Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)

Procedia PDF Downloads 693
7690 Analysis of Critical Success Factors for Implementing Industry 4.0 and Circular Economy to Enhance Food Traceability

Authors: Mahsa Pishdar

Abstract:

Food traceability through the supply chain is facing increased demand. IoT and blockchain are among the tools under consideration in the Industry 4.0 era that could be integrated to help implementation of the Circular Economy (CE) principles while enhancing food traceability solutions. However, such tools need intellectual system, and infrastructureto be settled as guidance through the way, helping overcoming obstacles. That is why the critical success factors for implementing Industry 4.0 and circular economy principles in food traceability concept are analyzed in this paper by combination of interval type 2 fuzzy Worst Best Method and Measurement Alternatives and Ranking according to Compromise Solution (Interval Type 2 fuzzy WBM-MARCOS). Results indicate that “Knowledge of Industry 4.0 obligations and CE principle” is the most important factor that is the basis of success following by “Management commitment and support”. This will assist decision makers to seize success in gaining a competitive advantage while reducing costs through the supply chain.

Keywords: food traceability, industry 4.0, internet of things, block chain, best worst method, marcos

Procedia PDF Downloads 200
7689 A Lung Cancer Patients with Septic Shock Nursing Experience

Authors: Syue-Wen Lin

Abstract:

Objective: This article explores the nursing experience of an 84-year-old male lung cancer patient who underwent a thoracoscopic right lower lobectomy and treatment. The patient has multiple medical histories, including hypertension and diabetes. The nursing process involved cancer treatment, postoperative pain management, as well as wound care and healing. Methods: The nursing period is from February 10 to February 17, 2024. During the nursing process, pain management strategies are implemented, including morphine drugs and non-drug methods, and music therapy, essential oil massage, and extended reception time are used to make patients feel physically and mentally comfortable so as to reduce postoperative pain and encourage active participation in rehabilitation. Strict sterile wound dressing procedures and advanced wound care techniques are used to promote wound healing and prevent infection. Due to septic shock, dialysis is used to relieve worsening symptoms. Taking into account the patient's cancer status, the nursing team provides comprehensive cancer care based on the patient's physical and psychological needs. Given the complexity of the patient's condition, including advanced cancer, palliative care is also incorporated throughout the care process to relieve discomfort and provide psychological support. Results: Through comprehensive health assessment, the nursing team fully understood the patient's condition and developed a personalized care plan based on the patient's condition. The interprofessional critical care team provides respiratory therapy and lung expansion exercises to reduce muscle loss while addressing the patient's psychological status, pain management, and vital sign stabilization needs, resulting in a comprehensive approach to care. Lung expansion exercises and the use of a high-frequency chest wall oscillation vest successfully improved sputum drainage and facilitated weaning from mechanical ventilation. In addition, helping patients stabilize their vital signs and the integration of cancer care, pain management, wound care and palliative care helps the patient be fully supported throughout the recovery process, ultimately improving his quality of life. Conclusion: Lung cancer and septic shock present significant challenges to patients, and the nursing team not only provides critical care but also addresses the unique needs of patients through comprehensive infection control, cancer care, pain management, wound care, and palliative care interventions. These measures effectively improve patients' quality of life, promote recovery, and provide compassionate palliative care for terminally ill patients. Nursing staff work closely with family members to develop a comprehensive care plan to ensure that patients receive high-quality medical care as well as psychological support and a comfortable recovery environment.

Keywords: septic shock, lung cancer, palliative care, nursing experience

Procedia PDF Downloads 14
7688 Hip and Valley Support Location in Wood Framing

Authors: P. Hajyalikhani, B. Hudson, D. Boll, L. Boren, Z. Sparks, M. Ward

Abstract:

Wood Light frame construction is one of the most common types of construction methods for residential and light commercial building in North America and parts of Europe. The typical roof framing for wood framed building is sloped and consists of several structural members such as rafters, hips, and valleys which are connected to the ridge and ceiling joists. The common slopes for roofs are 3/12, 8/12, and 12/12. Wood framed residential roof failure is most commonly caused by wind damage in such buildings. In the recent study, one of the weaknesses of wood framed roofs is long unsupported structural member lengths, such as hips and valleys. The purpose of this research is to find the critical support location for long hips and valleys with different slopes. ForteWeb software is used to find the critical location. The analysis results demonstrating the maximum unbraced hip and valley length are from 8.5 to 10.25 ft. dependent on the slope and roof type.

Keywords: wood frame, stick framing, hip, valley

Procedia PDF Downloads 114
7687 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads

Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon

Abstract:

The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.

Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads

Procedia PDF Downloads 266
7686 Implementing Critical Friends Groups in Schools

Authors: S. Odabasi Cimer, A. Cimer

Abstract:

Recently, the poor quality of education, low achieving students, low international exam performances and little or no effect of the education reforms on the teaching in the classrooms are the main problems of education discussed in Turkey. Research showed that the quality of an education system can not exceed the quality of its teachers and teaching. Therefore, in-service training (INSET) courses are important to improve teacher quality, thereby, the quality of education. However, according to the research conducted on the evaluation of the INSET courses in Turkey, they are not effective in improving the quality of teaching in the classroom. The main reason for this result is because INSET courses are conducted and delivered in limited time and presented theoretically, which does not meet the needs of teachers and as a result, the knowledge and skills taught are not used in the classrooms. Recently, developed countries have been using Critical Friends Groups (CFGs) successfully for the purpose of school-based training of teachers. CFGs are the learning groups which contain 6-10 teachers aimed at fostering their capacities to undertake instructional and personal improvement and schoolwide reform. CFGs have been recognized as a critical feature in school reform, improving teaching practice and improving student achievement. In addition, in the USA, teachers have named CFGs one of the most powerful professional development activities in which they have ever participated. Whereas, in Turkey, the concept is new. This study aimed to investigate the implications of application, evaluation, and promotion of CFGs which has the potential to contribute to teacher development and student learning in schools in Turkey. For this purpose, the study employed a qualitative approach and case study methodology to implement the model in high schools. The research was conducted in two schools and 13 teachers working in these schools participated. The study lasted two years and the data were collected through various data collection tools including interviews, meeting transcripts, questionnaires, portfolios, and diaries. The results of the study showed that CFGs contributed professional development of teachers and their students’ learning. It also contributed to a culture of collaborative work in schools. A number of barriers and challenges which prevent effective implementation were also determined.

Keywords: critical friends group, education reform, science learning, teacher education

Procedia PDF Downloads 122
7685 The Feasibility and Usability of Antennas Silence Zone for Localization and Path Finding

Authors: S. Malebary, W. Xu

Abstract:

Antennas are important components that enable transmitting and receiving signals in mid-air (wireless). The radiation pattern of omni-directional (i.e., dipole) antennas, reflects the variation of power radiated by an antenna as a function of direction when transmitting. As the performance of the antenna is the same in transmitting and receiving, it also reflects the sensitivity of the antenna in different directions when receiving. The main observation when dealing with omni-directional antennas, regardless the application, is they equally radiate power in all directions in reference to Equivalent Isotropically Radiated Power (EIRP). Disseminating radio frequency signals in an omni-directional manner form a doughnut-shape-field with a cone in the middle of the elevation plane (when mounted vertically). In this paper, we investigate the existence of this physical phenomena namely silence cone zone (the zone where radiated power is nulled). First, we overview antenna types and properties that have the major impact on the shape of the electromagnetic field. Then we model various off the shelf dipoles in Matlab based on antennas’ features (dimensions, gain, operating frequency, … etc.) and compare the resulting radiation patterns. After that, we validate the existence of the null zone in Omni-directional antennas by conducting experiments and generating waveforms (using USRP1 and USRP2) at various frequencies using different types of antennas and gains in indoor/outdoor. We capture the generated waveforms around antennas' null zone in the reactive, near, and far field with a spectrum analyzer mounted on a drone, using various off the shelf antennas. We analyze the captured signals in RF-Explorer and plot the impact on received power and signal amplitude inside and around the null zone. Finally, it is concluded from evaluation and measurements the existence of null zones in Omni-directional antennas which we plan on extending this work in the near future to investigate the usability of the null zone for various applications such as localization and path finding.

Keywords: antennas, amplitude, field regions, frequency, FSPL, omni-directional, radiation pattern, RSSI, silence zone cone

Procedia PDF Downloads 299
7684 Viscoelastic Behaviour of Hyaluronic Acid Copolymers

Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu

Abstract:

The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.

Keywords: copolymer, viscoelasticity, gelation, 3D network

Procedia PDF Downloads 284
7683 Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation

Authors: Abul Bashar

Abstract:

The recent surge in the adoption of cloud computing systems by various organizations has brought forth the challenge of evaluating their performance. One of the major issues faced by the cloud service providers and customers is to assess the ability of cloud computing systems to provide the desired services in accordance to the QoS and SLA constraints. To this end, an opportunity exists to develop means to ensure that the desired performance levels of such systems are met under simulated environments. This will eventually minimize the service disruptions and performance degradation issues during the commissioning and operational phase of cloud computing infrastructure. However, it is observed that several simulators and modelers are available for simulating the cloud computing systems. Therefore, this paper presents a critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems. It compares the prominent simulation frameworks in terms of the API features, programming flexibility, operating system requirements, supported services, licensing needs and popularity. Subsequently, it provides recommendations regarding the choice of the most appropriate framework for researchers, administrators and managers of cloud computing systems.

Keywords: cloud computing, modeling framework, performance evaluation, simulation tools

Procedia PDF Downloads 494
7682 Oscillating Water Column Wave Energy Converter with Deep Water Reactance

Authors: William C. Alexander

Abstract:

The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.

Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer

Procedia PDF Downloads 103
7681 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation

Authors: Mahmut Yildirim

Abstract:

This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.

Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection

Procedia PDF Downloads 67
7680 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Mohammed Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass

Procedia PDF Downloads 482
7679 Evaluation of Longitudinal and Hoops Stresses and a Critical Study of Factor of Safety (Fos) in the Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Mohammad Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass

Procedia PDF Downloads 487
7678 Understanding the Impact of Ephemerality and Mobility on Social Media News: A Content Analysis of News on Snapchat

Authors: Chelsea Peterson-Salahuddin

Abstract:

Over the past decade, news outlets have increasingly used social media as a means to create and distribute news content to audiences. Ephemerality, the transitory nature of media, and mobility, media viewing on mobile technologies, are two increasingly salient attributes of social media content; yet little is known about how these features influence news selection practices of news outlets when distributing news via social media. To account for this gap, this study examines the influences of ephemerality and mobility on social media news content on the social media application Snapchat, in order to understand how these qualities of digital media influence and shape news content. Findings from this study suggest that understandings of ephemerality and mobility play a key role in influencing social media news. This paper suggests that as these factors become increasingly salient in our dominant news viewing environments, being able to understand how they manifest themselves in online news reporting practices is critical for both scholars and practitioners of news as they aim to understand what 'newsworthiness' means in the current, digital age. Findings from this study also enhance our current understandings of how the technological affordances of online and digital media platforms play a key role in shaping the kinds being produced and what information is being prioritized and highlighted in our contemporary news media environment. This is especially important in our current era where new mediums and technologies for news dissemination are continuously arising, and reorienting our understandings of what is considered ‘news'. As a key site of mass communication, discourse, and stories highlighted in the news do critical work in defining culture and ideology. Thus, better understanding the contours of news in our contemporary moment is critical in understanding cultural norms and meaning-making.

Keywords: content analysis, ephemerality, mobile communication, social media news

Procedia PDF Downloads 134
7677 Serological Assay and Genotyping of Hepatitis C Virus in Infected Patients in Zanjan Province

Authors: Abdolreza Esmaeilzadeh, Maryam Erfanmanesh, Sousan Ghasemi, Farzaneh Mohammadi

Abstract:

Background: Hepatitis C Virus (HCV), a public health problem, is an enveloped, single-stranded RNA virus and a member of the Hepacivirus genus of the Flaviviridae family. Liver cancer, cirrhosis, and end-stage liver are the outcomes of chronic infection with HCV. HCV isolates show significant heterogeneity in genetics around the world. Therefore, determining HCV genotypes is a vital step in determining prognosis and planning therapeutic strategies. Materials and Methods: Serum samples of 136 patients were collected and analyzed for anti-HCV antibodies using ELISA (The enzyme-linked immunosorbent assay) method. Then, positive samples were exposed to RT-PCR, which was performed under standard condition. Afterwards, they investigated for genotyping using allele-specific PCR (AS-PCR), and HCV genotype 2.0 line probe assay (LiPA). Results: Samples indicated 216 bp bands on 2% agarose gel. Analyses of the results demonstrated that the most dominant subtype was 3a with frequency of 38.26% in Zanjan Province followed by subtypes of 1b, 1a, 2, and 4 with frequencies of 25.73%, 22.05%, 5.14%, and 4.41%, respectively. The frequency of unknown HCV genotypes was 4.41%. Conclusions: According to the results, it was found that HCV high prevalent genotype in Zanjan is subtype 3a. Analysis of the results provides identification of certain HCV genotypes, and these valuable findings could affect the type and duration of the treatment.

Keywords: anti-HCV antibody, Hepatitis C Virus (HCV), genotype, RT-PCR, AS-PCR

Procedia PDF Downloads 486
7676 Influence of Annealing Temperature on Optical, Anticandidal, Photocatalytic and Dielectric Properties of ZnO/TiO2 Nanocomposites

Authors: Wasi Khan, Suboohi Shervani, Swaleha Naseem, Mohd. Shoeb, J. A. Khan, B. R. Singh, A. H. Naqvi

Abstract:

We have successfully synthesized ZnO/TiO2 nanocomposite using a two-step solochemical synthesis method. The influence of annealing temperature on microstructural, optical, anticandidal, photocatalytic activities and dielectric properties were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show the formation of nanocomposite and uniform surface morphology of all samples. The UV-Vis spectra indicate decrease in band gap energy with increase in annealing temperature. The anticandidal activity of ZnO/TiO2 nanocomposite was evaluated against MDR C. albicans 077. The in-vitro killing assay revealed that the ZnO/TiO2 nanocomposite efficiently inhibit the growth of the C. albicans 077. The nanocomposite also exhibited the photocatalytic activity for the degradation of methyl orange as a function of time at 465 nm wavelength. The electrical behaviour of composite has been studied over a wide range of frequencies at room temperature using complex impedance spectroscopy. The dielectric constants, dielectric loss and ac conductivity (σac) were studied as the function of frequency, which have been explained by ‘Maxwell Wagner Model’. The data reveals that the dielectric constant and loss (tanδ) exhibit the normal dielectric behavior and decreases with the increase in frequency.

Keywords: ZnO/TiO2 nanocomposites, SEM, photocatalytic activity, dielectric properties

Procedia PDF Downloads 402
7675 Causes of Variation Orders in the Egyptian Construction Industry: Time and Cost Impacts

Authors: A. Samer Ezeldin, Jwanda M. El Sarag

Abstract:

Variation orders are of great importance in any construction project. Variation orders are defined as any change in the scope of works of a project that can be an addition omission, or even modification. This paper investigates the variation orders that occur during construction projects in Egypt. The literature review represents a comparison of causes of variation orders among Egypt, Tanzania, Nigeria, Malaysia and the United Kingdom. A classification of occurrence of variation orders due to owner related factors, consultant related factors and other factors are signified in the literature review. These classified events that lead to variation orders were introduced in a survey with 19 events to observe their frequency of occurrence, and their time and cost impacts. The survey data was obtained from 87 participants that included clients, consultants, and contractors and a database of 42 scenarios was created. A model is then developed to help assist project managers in predicting the frequency of variations and account for a budget for any additional costs and minimize any delays that can take place. Two experts with more than 25 years of experience were given the model to verify that the model was working effectively. The model was then validated on a residential compound that was completed in July 2016 to prove that the model actually produces acceptable results.

Keywords: construction, cost impact, Egypt, time impact, variation orders

Procedia PDF Downloads 178
7674 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency

Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu

Abstract:

In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.

Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal

Procedia PDF Downloads 147
7673 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes

Authors: A. Abdikian

Abstract:

Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.

Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes

Procedia PDF Downloads 445
7672 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 100
7671 Delay Studies in Construction: Synthesis, Critical Evaluation, and the Way Forward

Authors: Abdullah Alsehaimi

Abstract:

Over decades, there have been many studies of delay in construction, and this type of study continues to be popular in construction management research. A synthesis and critical evaluation of delay studies in developing countries reveals that poor project management is cited as one of the main causes of delay. However, despite such consensus, most of the previous studies fall short in providing clear recommendations demonstrating how project management practice could be improved. Moreover, the majority of recommendations are general and not devoted to solving the difficulties associated with particular delay causes. This paper aims to demonstrate that the root cause of this state of affairs is that typical research into delay tends to be descriptive and explanatory, making it inadequate for solving persistent managerial problems in construction. It is contended that many problems in construction could be mitigated via alternative research approaches, i.e. action and constructive research. Such prescriptive research methods can assist in the development and implementation of innovative tools tackling managerial problems of construction, including that of delay. In so doing, those methods will better connect research and practice, and thus strengthen the relevance of academic construction management.

Keywords: construction delay, action research, constructive research, industrial engineering

Procedia PDF Downloads 419
7670 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks

Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang

Abstract:

The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.

Keywords: femtocell networks, game theory, interference mitigation, spectrum allocation

Procedia PDF Downloads 155
7669 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine

Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao

Abstract:

The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.

Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)

Procedia PDF Downloads 339
7668 Perception Towards Palliative Patients’ Healthcare Needs: A Survey of Patients and Carers

Authors: Che Zarrina Sa'ari, Sheriza Izwa Zainuddin, Hasimah Chik, Sharifah Basirah Syed Muhsin

Abstract:

Palliative care is holistic care for patients with serious illnesses and for the family as well by interdisciplinary specialties to optimize quality of life by preventing, treating, and comforting the suffering and struggling. Palliative care is not a curative treatment but a comprehensive care to ensure the well-being of patients. This study was to identify the perceptions of patients and carers on healthcare needs and any factors related to the needs of palliative patients. Validated questionnaires survey of 254 patients and carers were analysed using a Statistical Package for the Social Sciences (SPSS) version 22. The findings were processed with Cronbach Alpha analysis, frequency, and descriptive to compare the important of each element in healthcare. Open-ended responses were analysed using thematic framework approach. The findings proved that all the items in healthcare needs elements were important because the frequency shown higher values, which were physical needs (5.91), mental needs (6.10), spiritual needs (6.34), emotional needs (6.05), social needs (5.88) and logistics needs (5.05). The total score of Cronbach’s alpha (α) for this study is 0.958, which is suggesting very good internal consistency reliability for the elements for healthcare needs. Professionals and healthcare providers need to ensure healthcare planning is individualised by tailoring it to the values, priorities, and ethnic/cultural/religious context of each person.

Keywords: healthcare, need, holistic, palliative, multi speciality

Procedia PDF Downloads 81
7667 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method

Authors: Zheng Zhang, Xin Chen, Guoqing Ding

Abstract:

Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.

Keywords: root canal length, apex locator, multifrequency impedance, sweep frequency

Procedia PDF Downloads 154