Search results for: R-peak classification
786 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes
Authors: Muammer Kaya
Abstract:
The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy
Procedia PDF Downloads 356785 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 343784 A Review of Serious Games Characteristics: Common and Specific Aspects
Authors: B. Ben Amara, H. Mhiri Sellami
Abstract:
Serious games adoption is increasing in multiple fields, including health, education, and business. In the same way, many research studied serious games (SGs) for various purposes such as classification, positive impacts, or learning outcomes. Although most of these research examine SG characteristics (SGCs) for conducting their studies, to author’s best knowledge, there is no consensus about features neither in number not in the description. In this paper, we conduct a literature review to collect essential game attributes regardless of the application areas and the study objectives. Firstly, we aimed to define Common SGCs (CSGCs) that characterize the game aspect, by gathering features having the same meanings. Secondly, we tried to identify specific features related to the application area or to the study purpose as a serious aspect. The findings suggest that any type of SG can be defined by a number of CSGCs depicting the gaming side, such as adaptability and rules. In addition, we outlined a number of specific SGCs describing the 'serious' aspect, including specific needs of the domain and indented outcomes. In conclusion, our review showed that it is possible to bridge the research gap due to the lack of consensus by using CSGCs. Moreover, these features facilitate the design and development of successful serious games in any domain and provide a foundation for further research in this area.Keywords: serious game characteristics, serious games common aspects, serious games features, serious games outcomes
Procedia PDF Downloads 136783 Seasonal Influence on Environmental Indicators of Beach Waste
Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman
Abstract:
The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.Keywords: beach solid waste, environmental indicators, quali-quantitative analysis, waste management
Procedia PDF Downloads 306782 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery
Authors: Mohammadreza Mohebbi, Masoumeh Sanagou
Abstract:
The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics
Procedia PDF Downloads 297781 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis
Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv
Abstract:
Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.Keywords: correlation analysis, hierarchical filtering, multisource data, network security
Procedia PDF Downloads 201780 Iranian Sexual Health Needs in Viewpoint of Policy Makers: A Qualitative Study
Authors: Mahnaz Motamedi, Mohammad Shahbazi, Shahrzad Rahimi-Naghani, Mehrdad Salehi
Abstract:
Introduction: Identifying sexual health needs, developing appropriate plans, and delivering services to meet those needs is an essential component of health programs for women, men, and children all over the world, especially in poor countries. Main Subject: The aim of this study was to describe the needs of sexual health from the viewpoint of health policymakers in Iran. Methods: A qualitative study using thematic content analysis was designed and conducted. Data gathering was conducted through semi-structured, in-depth interviews with 25 key informants within the healthcare system. Key informants were selected through both purposive and snowball sampling. MAXQUDA software (version 10) was used to facilitate transcription, classification of codes, and conversion of data into meaningful units, by the process of reduction and compression. Results: The analysis of narratives and information categorized sexual health needs into five categories: culturalization of sexual health discourse, sexual health care services, sexual health educational needs, sexual health research needs, and organizational needs. Conclusion: Identifying and explaining sexual health needs is an important factor in determining the priority of sexual health programs and identification of barriers to meet these needs. This can help other policymakers and health planners to develop appropriate programs to promote sexual and reproductive health.Keywords: sexual health, sexual health needs, policy makers, health system, qualitative study
Procedia PDF Downloads 219779 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments
Authors: Aileen F. Wang
Abstract:
Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square
Procedia PDF Downloads 452778 Digital Privacy Legislation Awareness
Authors: Henry Foulds, Magda Huisman, Gunther R. Drevin
Abstract:
Privacy is regarded as a fundamental human right and it is clear that the study of digital privacy is an important field. Digital privacy is influenced by new and constantly evolving technologies and this continuous change makes it hard to create legislation to protect people’s privacy from being exploited by misuse of these technologies.
This study aims to benefit digital privacy legislation efforts by evaluating the awareness and perceived importance of digital privacy legislation among computer science students. The chosen fixed variables for the population are study year and gamer classification.
The use of location based services in mobile applications and games are a concern for digital privacy. For this reason the study focused on computer science students as they have a high likelihood to use and develop this type of software. Surveys were used to evaluate awareness and perceived importance of digital privacy legislation.
The results of the study show that privacy legislation and awareness of privacy legislation are important to people. The perception of the importance of privacy legislation increases with academic experience. Awareness of privacy legislation increases from non-gamers to pro gamers.
Keywords: digital privacy, legislation awareness, gaming, privacy legislation
Procedia PDF Downloads 355777 Migration, Violent Extremism and Gang Violence in Trinidad and Tobago
Authors: Raghunath Mahabir
Abstract:
This paper provides an analysis of the existing evidence on the relationships between the migration of Venezuelans into Trinidad and Tobago, violent extremism and gang violence. Arguing that there is a dearth of reliable data on the subject matter, the paper fills the gap by providing relevant definitions of terms used, discusses the sources of data and identifies the causes for this migration and the subsequent ramifications for Trinidad and Tobago and for the migrants themselves. A simple but clear classification pointing to the nexus between migration gang violence and violent extremism is developed, following the logic of migration of criminals(gang members), the need to link with local gangs and the view that certain elements within the TnT society has become radicalized to the point where violent extremism is being displayed in different ways. The paper highlights implications for further policy debate:the imperatives for more effective communication between government officials responsible for migration and those personnel who are tasked with countering violent extremism and gang violence: promoting and executing better integration and social inclusion policies which are necessary to minimize social exclusion, and the threat of violent extremist agendas emanating from both Venezuelans and Trinidadians and generally to establish strong analytical framework grounded in stronger definitions, more reliable data and other evidence which can guide further research and analysis and contribute to policy formation.Keywords: migration, violent extremism, gangs, Venezuela
Procedia PDF Downloads 54776 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language
Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot
Abstract:
The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields
Procedia PDF Downloads 103775 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm
Authors: Swati Kishor Zode, Rahul Ambekar
Abstract:
Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.Keywords: classification, homomorphic encryption, clinical decision support, privacy
Procedia PDF Downloads 330774 Kluyveromyces marxianus ABB S8 as Yeast-Based Technology to Manufacture Low FODMAP Baking Good
Authors: Jordi Cuñé, Carlos de Lecea, Laia Marti
Abstract:
Small molecules known as fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are quickly fermented in the large intestine after being poorly absorbed in the small intestine. There is proof that individuals suffering from functional gastrointestinal disorders, like irritable bowel syndrome (IBS), observe an improvement while following a diet low in FODMAPs. Because wheat has a relatively high fructan content, it is a key source of FODMAPs in our diet. A yeast-based method was created in this study to lower the amounts of FODMAP in (whole wheat) bread. In contrast to fermentation by regular baker yeast, the combination of Kluyveromyces marxianus ABB S7 with Saccharomyces cerevisiae allowed a reduction of fructan content by 60% without implying the appearance of other substrates categorized as FODMAP (excess fructose or polyols). The final FODMAP content in the developed whole wheat bread would allow its classification as a safe product for sensitive people, according to international consensus. Cocultures of S. cerevisiae and K. marxianus were established in order to ensure sufficient CO₂ generation; larger quantities of gas were produced due to the strains' synergistic relationship. Thus, this method works well for lowering the levels of FODMAPs in bread.Keywords: Kluyveromyces marxianus, bakery, bread, FODMAP, IBS, functional gastro intestinal disorders
Procedia PDF Downloads 48773 Methods of Interpolating Temperature and Rainfall Distribution in Northern Vietnam
Authors: Thanh Van Hoang, Tien Yin Chou, Yao Min Fang, Yi Min Huang, Xuan Linh Nguyen
Abstract:
Reliable information on the spatial distribution of annual rainfall and temperature is essential in research projects relating to urban and regional planning. This research presents results of a classification of temperature and rainfall in the Red River Delta of northern Vietnam based on measurements from seven meteorological stations (Ha Nam, Hung Yen, Lang, Nam Dinh, Ninh Binh, Phu Lien, Thai Binh) in the river basin over a thirty-years period from 1982-2011. The average accumulated rainfall trends in the delta are analysed and form the basis of research essential to weather and climate forecasting. This study employs interpolation based on the Kriging Method for daily rainfall (min and max) and daily temperature (min and max) in order to improve the understanding of sources of variation and uncertainly in these important meteorological parameters. To the Kriging method, the results will show the different models and the different parameters based on the various precipitation series. The results provide a useful reference to assist decision makers in developing smart agriculture strategies for the Red River Delta in Vietnam.Keywords: spatial interpolation method, ArcGIS, temperature variability, rainfall variability, Red River Delta, Vietnam
Procedia PDF Downloads 329772 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation
Authors: Djallel Bouamama, Yasser R. Haddadi
Abstract:
Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.Keywords: brain tumor classification, image segmentation, CNN, U-NET
Procedia PDF Downloads 33771 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based on Dynamic Time Warping
Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar
Abstract:
Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.Keywords: dynamic time warping, glottal area waveform, linear predictive coding, high-speed laryngeal images, Hilbert transform
Procedia PDF Downloads 239770 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars
Procedia PDF Downloads 138769 Eco-Drive Predictive Analytics
Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie
Abstract:
With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning
Procedia PDF Downloads 304768 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 94767 Design of a Real Time Heart Sounds Recognition System
Authors: Omer Abdalla Ishag, Magdi Baker Amien
Abstract:
Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform
Procedia PDF Downloads 445766 Study of Halophytic Vegetation of Chott Gamra (Batna, High Plateaus of Eastern Algeria)
Authors: Marref C., Marref S., Melakhssou M. A.
Abstract:
The halophytic vegetation of Chott Gamra (Gadaïne Eco-complex, High Plateaus of Eastern Algeria) is characterized by a very rich cover. It is structured according to the variation in soil salinity and moisture. The objective of this study is to understand the biodiversity, distribution, and classification of halophytic vegetation. This wetland is characterized by a Mediterranean climate in the semi-arid to cool winter stage. The wetland area of the High Plateaus of Eastern Algeria constitutes a biodiversity reservoir. It is considered exceptional, although it remains little explored and documented to date. The study was conducted over consecutive spring seasons (2020/2021). Indeed, the inventory we established includes forty plant species belonging to fourteen different families, the majority of which are resistant to salinity and drought. These halophytic species that thrive there establish themselves in bands according to their tolerance threshold to salinity and their affinity to the hygroscopic level of the soil. Thus, other edaphic factors may come into play in the zonation of halophytes in saline environments. Species belonging to the Juncaceae and Poaceae families dominate by far the non-flooded vegetation cover of this site. These plants are perfectly adapted to saline environments.Keywords: halophytes, biodiversity, salinity, wetland
Procedia PDF Downloads 51765 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content
Procedia PDF Downloads 299764 Real Time Traffic Performance Study over MPLS VPNs with DiffServ
Authors: Naveed Ghani
Abstract:
With the arrival of higher speed communication links and mature application running over the internet, the requirement for reliable, efficient and robust network designs rising day by day. Multi-Protocol Label Switching technology (MPLS) Virtual Private Networks (VPNs) have committed to provide optimal network services. They are gaining popularity in industry day by day. Enterprise customers are moving to service providers that offer MPLS VPNs. The main reason for this shifting is the capability of MPLS VPN to provide built in security features and any-to-any connectivity. MPLS VPNs improved the network performance due to fast label switching as compare to traditional IP Forwarding but traffic classification and policing was still required on per hop basis to enhance the performance of real time traffic which is delay sensitive (particularly voice and video). QoS (Quality of service) is the most important factor to prioritize enterprise networks’ real time traffic such as voice and video. This thesis is focused on the study of QoS parameters (e.g. delay, jitter and MOS (Mean Opinion Score)) for the real time traffic over MPLS VPNs. DiffServ (Differentiated Services) QoS model will be used over MPLS VPN network to get end-to-end service quality.Keywords: network, MPLS, VPN, DiffServ, MPLS VPN, DiffServ QoS, QoS Model, GNS2
Procedia PDF Downloads 426763 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein
Authors: Y. Ruchi, A. Prerna, S. Deepshikha
Abstract:
Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.Keywords: ALS, binding site, homology modeling, neuronal degeneration
Procedia PDF Downloads 389762 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 154761 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation
Authors: Mahmut Yildirim
Abstract:
This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection
Procedia PDF Downloads 72760 Effects of Local Ground Conditions on Site Response Analysis Results in Hungary
Authors: Orsolya Kegyes-Brassai, Zsolt Szilvágyi, Ákos Wolf, Richard P. Ray
Abstract:
Local ground conditions have a substantial influence on the seismic response of structures. Their inclusion in seismic hazard assessment and structural design can be realized at different levels of sophistication. However, response results based on more advanced calculation methods e.g. nonlinear or equivalent linear site analysis tend to show significant discrepancies when compared to simpler approaches. This project's main objective was to compare results from several 1-D response programs to Eurocode 8 design spectra. Data from in-situ site investigations were used for assessing local ground conditions at several locations in Hungary. After discussion of the in-situ measurements and calculation methods used, a comprehensive evaluation of all major contributing factors for site response is given. While the Eurocode spectra should account for local ground conditions based on soil classification, there is a wide variation in peak ground acceleration determined from 1-D analyses versus Eurocode. Results show that current Eurocode 8 design spectra may not be conservative enough to account for local ground conditions typical for Hungary.Keywords: 1-D site response analysis, multichannel analysis of surface waves (MASW), seismic CPT, seismic hazard assessment
Procedia PDF Downloads 246759 Comparison of Rumen Microbial Analysis Pipelines Based on 16s rRNA Gene Sequencing
Authors: Xiaoxing Ye
Abstract:
To investigate complex rumen microbial communities, 16S ribosomal RNA (rRNA) sequencing is widely used. Here, we evaluated the impact of bioinformatics pipelines on the observation of OTUs and taxonomic classification of 750 cattle rumen microbial samples by comparing three commonly used pipelines (LotuS, UPARSE, and QIIME) with Usearch. In LotuS-based analyses, 189 archaeal and 3894 bacterial OTUs were observed. The observed OTUs for the Usearch analysis were significantly larger than the LotuS results. We discovered 1495 OTUs for archaea and 92665 OTUs for bacteria using Usearch analysis. In addition, taxonomic assignments were made for the rumen microbial samples. All pipelines had consistent taxonomic annotations from the phylum to the genus level. A difference in relative abundance was calculated for all microbial levels, including Bacteroidetes (QIIME: 72.2%, Usearch: 74.09%), Firmicutes (QIIME: 18.3%, Usearch: 20.20%) for the bacterial phylum, Methanobacteriales (QIIME: 64.2%, Usearch: 45.7%) for the archaeal class, Methanobacteriaceae (QIIME: 35%, Usearch: 45.7%) and Methanomassiliicoccaceae (QIIME: 35%, Usearch: 31.13%) for archaeal family. However, the most prevalent archaeal class varied between these two annotation pipelines. The Thermoplasmata was the top class according to the QIIME annotation, whereas Methanobacteria was the top class according to Usearch.Keywords: cattle rumen, rumen microbial, 16S rRNA gene sequencing, bioinformatics pipeline
Procedia PDF Downloads 88758 Causes of Variation Orders in the Egyptian Construction Industry: Time and Cost Impacts
Authors: A. Samer Ezeldin, Jwanda M. El Sarag
Abstract:
Variation orders are of great importance in any construction project. Variation orders are defined as any change in the scope of works of a project that can be an addition omission, or even modification. This paper investigates the variation orders that occur during construction projects in Egypt. The literature review represents a comparison of causes of variation orders among Egypt, Tanzania, Nigeria, Malaysia and the United Kingdom. A classification of occurrence of variation orders due to owner related factors, consultant related factors and other factors are signified in the literature review. These classified events that lead to variation orders were introduced in a survey with 19 events to observe their frequency of occurrence, and their time and cost impacts. The survey data was obtained from 87 participants that included clients, consultants, and contractors and a database of 42 scenarios was created. A model is then developed to help assist project managers in predicting the frequency of variations and account for a budget for any additional costs and minimize any delays that can take place. Two experts with more than 25 years of experience were given the model to verify that the model was working effectively. The model was then validated on a residential compound that was completed in July 2016 to prove that the model actually produces acceptable results.Keywords: construction, cost impact, Egypt, time impact, variation orders
Procedia PDF Downloads 182757 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers
Authors: Fayyaz Rasool, Shakeela Parveen
Abstract:
The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita
Procedia PDF Downloads 449