Search results for: Process models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20447

Search results for: Process models

19067 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 78
19066 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques

Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.

Keywords: forecasting, time series, auto regression, ARCH, ARMA

Procedia PDF Downloads 348
19065 Adsorption Studies of Lead from Aqueos Solutions on Cocount Shell Activated Carbon

Authors: G. E. Sharaf El-Deen, S. E. A. Sharaf El-Deen

Abstract:

Activated carbon was prepared from coconut shell (ACS); a discarded agricultural waste was used to produce bioadsorbent through easy and environmental friendly processes. This activated carbon based biosorbent was evaluated for adsorptive removal of lead from water. The characterisation results showed this biosorbent had very high specific surface area and functional groups. The adsorption equilibrium data was well described by Langmuir, whilst kinetics data by pseudo-first order, pseudo-second order and Intraparticle diffusion models. The adsorption process could be described by the pseudo-second order kinetic.

Keywords: coconut shell, activated carbon, adsorption isotherm and kinetics, lead removal

Procedia PDF Downloads 308
19064 On Periodic Integer-Valued Moving Average Models

Authors: Aries Nawel, Bentarzi Mohamed

Abstract:

This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.

Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data

Procedia PDF Downloads 202
19063 In Exploring Local Community Empowerment and Participation in Blue Tourism Activities

Authors: Philasande Runeli, Lynn Jonas

Abstract:

Empowerment suggests participation is working collaboratively towards shared objectives, obtaining resources and critically analysing one’s social and political differences are all necessary steps in the empowering process. The aim of leadership empowerment is to give a team the resources and encouragement they need to work more productively together. This study explores potential ways to increase local empowerment and participation in blue tourism activities in an urban coastal context in South Africa. Blue tourism, which refers to the application of sustainability practices to tourism activities in coastal and marine settings, has the potential to significantly improve socioeconomic conditions in coastal communities. However, people's engagement in these activities remain restricted. The study uses a constructivist research paradigm and employs a qualitative method, conducting semi-structured interviews with community members from three different communities gaining in-depth perspectives from them. The study's goal is to identify impediments and potential for community participation in blue tourism, as well as offering practical solutions for promoting long-term and inclusive participation. Initial key findings highlight critical barriers to participation, emphasising the importance of skills development, policy alignment with local needs, and public-private partnerships as key components of community empowerment. This study offers policymakers and stakeholders recommendations for promoting inclusive blue tourism initiatives. The recommended initiatives emphasise the significance of skills development, infrastructure investment, and sustainable tourism models in ensuring economic empowerment and environmental conservation in urban coastal communities in developing states.

Keywords: blue tourism, community empowerment and participation, sustainable tourism models, inclusive participation

Procedia PDF Downloads 19
19062 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 321
19061 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
19060 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 39
19059 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 143
19058 Systems Engineering and Project Management Process Modeling in the Aeronautics Context: Case Study of SMEs

Authors: S. Lemoussu, J. C. Chaudemar, R. A. Vingerhoeds

Abstract:

The aeronautics sector is currently living an unprecedented growth largely due to innovative projects. In several cases, such innovative developments are being carried out by Small and Medium sized-Enterprises (SMEs). For instance, in Europe, a handful of SMEs are leading projects like airships, large civil drones, or flying cars. These SMEs have all limited resources, must make strategic decisions, take considerable financial risks and in the same time must take into account the constraints of safety, cost, time and performance as any commercial organization in this industry. Moreover, today, no international regulations fully exist for the development and certification of this kind of projects. The absence of such a precise and sufficiently detailed regulatory framework requires a very close contact with regulatory instances. But, SMEs do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses additional challenges for those SMEs that have system integration responsibilities and that must provide all the necessary means of compliance to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The final objective of our research is thus to provide a methodological framework supporting SMEs in their development taking into account recent innovation and institutional rules of the sector. We aim to provide a contribution to the problematic by developing a specific Model-Based Systems Engineering (MBSE) approach. Airspace regulation, aeronautics standards and international norms on systems engineering are taken on board to be formalized in a set of models. This paper presents the on-going research project combining Systems Engineering and Project Management process modeling and taking into account the metamodeling problematic.

Keywords: aeronautics, certification, process modeling, project management, SME, systems engineering

Procedia PDF Downloads 165
19057 Recovery of Acetonitrile from Aqueous Solutions by Extractive Distillation: The Effect of Entrainer

Authors: Aleksandra Y. Sazonova, Valentina M. Raeva

Abstract:

The aim of this work was to apply extractive distillation for acetonitrile removal from water solutions, to validate thermodynamic criterion based on excess Gibbs energy to entrainer selection process for acetonitrile – water mixture separation and show its potential efficiency at isothermal conditions as well as at isobaric (conditions of real distillation process), to simulate and analyze an extractive distillation process with chosen entrainers: optimize amount of trays and feeds, entrainer/original mixture and reflux ratios. Equimolar composition of the feed stream was chosen for the process, comparison of the energy consumptions was carried out. Glycerol was suggested as the most energetically and ecologically suitable entrainer.

Keywords: acetonitrile, entrainer, extractive distillation, water

Procedia PDF Downloads 267
19056 Model Development for Real-Time Human Sitting Posture Detection Using a Camera

Authors: Jheanel E. Estrada, Larry A. Vea

Abstract:

This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.

Keywords: posture, spinal points, gyroscope, image processing, ergonomics

Procedia PDF Downloads 329
19055 In-Situ Studies of Cyclohexane Oxidation Using Laser Raman Spectroscopy for the Refinement of Mechanism Based Kinetic Models

Authors: Christine Fräulin, Daniela Schurr, Hamed Shahidi Rad, Gerrit Waters, Günter Rinke, Roland Dittmeyer, Michael Nilles

Abstract:

The reaction mechanisms of many liquid-phase reactions in organic chemistry have not yet been sufficiently clarified. Process conditions of several hundred degrees celsius and pressures to ten megapascals complicate the sampling and the determination of kinetic data. Space resolved in-situ measurements promises new insights. A non-invasive in-situ measurement technique has the advantages that no sample preparation is necessary, there is no change in sample mixture before analysis and the sampling do no lead to interventions in the flow. Thus, the goal of our research was the development of a contact-free spatially resolved measurement technique for kinetic studies of liquid phase reaction under process conditions. Therefore we used laser Raman spectroscopy combined with an optical transparent microchannel reactor. To show the performance of the system we choose the oxidation of cyclohexane as sample reaction. Cyclohexane oxidation is an economically important process. The products are intermediates for caprolactam and adipic acid, which are starting materials for polyamide 6 and 6.6 production. To maintain high selectivities of 70 to 90 %, the reaction is performed in industry at a low conversion of about six percent. As Raman spectroscopy is usually very selective but not very sensitive the detection of the small product concentration in cyclohexane oxidation is quite challenging. To meet these requirements, an optical experimental setup was optimized to determine the concentrations by laser Raman spectroscopy with respect to good detection sensitivity. With this measurement technique space resolved kinetic studies of uncatalysed and homogeneous catalyzed cyclohexane oxidation were carried out to obtain details about the reaction mechanism.

Keywords: in-situ laser raman spectroscopy, space resolved kinetic measurements, homogeneous catalysis, chemistry

Procedia PDF Downloads 334
19054 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
19053 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models

Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko

Abstract:

The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.

Keywords: sparse matrix, compressed format, Hubbard model, Anderson model

Procedia PDF Downloads 402
19052 Media Diplomacy in the Age of Social Networks towards a Conceptual Framework for Understanding Diplomatic Cyber Engagement

Authors: Mohamamd Ayish

Abstract:

This study addresses media diplomacy as an integral component of public diplomacy which emerged in the United States in the post-World War II era and found applications in other countries around the world. The study seeks to evolve a conceptual framework for understanding the practice of public diplomacy through social networks, often referred to as social engagement diplomacy. This form of diplomacy is considered far more ahead of the other two forms associated with both government controlled and independent media. The cases of the Voice of America Arabic Service and the 1977 CBS interviews with the late Egyptian President Anwar Sadat and Israeli Prime Minister Menachem Begin are cited in this study as reflecting the two traditional models. The new social engagement model sees public diplomacy as an act of communication that seeks to effect changes in target audiences through a process of persuasion shaped by discourse orientations and technological features. The proposed conceptual framework for social, diplomatic engagement draws on an open communication environment, an empowered audience, an interactive and symmetrical process of communication, multimedia-based flows of information, direct and credible feedback, distortion and high risk. The writer believes this study would be helpful in providing appropriate knowledge pertaining to our understanding of social diplomacy and furnishing concrete insights into how diplomats could harness virtual space to maximize their goals in the global environment.

Keywords: diplomacy, engagement, social, globalization

Procedia PDF Downloads 276
19051 A Study on Optimum Shape in According to Equivalent Stress Distributions at the Die and Plug in the Multi-Pass Drawing Process

Authors: Yeon-Jong Jeong, Mok-Tan Ahn, Seok-Hyeon Park, Seong-Hun Ha, Joon-Hong Park, Jong-Bae Park

Abstract:

Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factors influencing the productivity and formability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and formability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.

Keywords: multi-pass shape drawing, equivalent stress, FEM, finite element method, optimum shape

Procedia PDF Downloads 481
19050 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication

Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali

Abstract:

Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.

Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws

Procedia PDF Downloads 6
19049 Application of Signature Verification Models for Document Recognition

Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova

Abstract:

In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.

Keywords: signature recognition, biometric data, artificial intelligence, neural networks

Procedia PDF Downloads 148
19048 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process

Authors: A. Benhadji, M. Taleb Ahmed

Abstract:

Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.

Keywords: AOP, COD, detergent, PEP, wastewater

Procedia PDF Downloads 119
19047 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 196
19046 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication

Authors: Farhan A. Alenizi

Abstract:

Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one.

Keywords: watermarking, mesh objects, local roughness, Laplacian Smoothing

Procedia PDF Downloads 160
19045 Analysis of Possible Equipment in the Reduction Unit of a Low Tonnage Liquefied Natural Gas Production Plant

Authors: Pavel E. Mikriukov

Abstract:

The demand for natural gas (NG) is increasing every year around the world, so it is necessary to produce and transport NG in large quantities. To solve this problem, liquefied natural gas (LNG) plants are used, using different equipment and different technologies to achieve the required LNG quality. To determine the best efficiency of the LNG liquefaction plant, it is necessary to analyze the equipment used in this process and identify other technological solutions for LNG production using more productive and energy-efficient equipment. Based on this, mathematical models of the technological process of the LNG plant were created, which are based on a two-circuit system of heat exchange equipment and a nitrogen isolated cycle for NG cooling. The final liquefaction of natural gas is performed on the construction of the basic principle of the Joule-Thompson effect. The pressure and temperature drop are considered on different types of equipment such as throttle valve, which was used in the basic scheme; turbo expander and supersonic separator, which act as new equipment, to be compared with the efficiency of the basic scheme of the unit. New configurations of LNG plants are suggested, which can be used in almost all LNG facilities. As a result of the analysis, it turned out that the turbo expander and the supersonic separator have comparatively equal potential in comparison with the baseline scheme execution on the throttle valve. A more rational method of selecting the technology and the equipment used for natural gas liquefaction can improve the efficiency of low-tonnage plants and reduce the cost of gas for own needs.

Keywords: gas liquefaction, gas, Joule-Thompson effect, LNG, low-tonnage LNG, supersonic separator, Throttle valve, turbo expander

Procedia PDF Downloads 111
19044 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 454
19043 Multi-Pass Shape Drawing Process Design for Manufacturing of Automotive Reinforcing Agent with Closed Cross-Section Shape using Finite Element Method Analysis

Authors: Mok-Tan Ahn, Hyeok Choi, Joon-Hong Park

Abstract:

Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factor influencing the productivity and moldability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and moldability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. The purpose of this study, Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.

Keywords: automotive reinforcing agent, multi-pass shape drawing, automotive parts, FEM analysis

Procedia PDF Downloads 455
19042 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera

Abstract:

At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.

Keywords: SERS, Raman, PLS-DA, kidney diseases

Procedia PDF Downloads 45
19041 Process Modeling and Problem Solving: Connecting Two Worlds by BPMN

Authors: Gionata Carmignani, Mario G. C. A. Cimino, Franco Failli

Abstract:

Business Processes (BPs) are the key instrument to understand how companies operate at an organizational level, taking an as-is view of the workflow, and how to address their issues by identifying a to-be model. In last year’s, the BP Model and Notation (BPMN) has become a de-facto standard for modeling processes. However, this standard does not incorporate explicitly the Problem-Solving (PS) knowledge in the Process Modeling (PM) results. Thus, such knowledge cannot be shared or reused. To narrow this gap is today a challenging research area. In this paper we present a framework able to capture the PS knowledge and to improve a workflow. This framework extends the BPMN specification by incorporating new general-purpose elements. A pilot scenario is also presented and discussed.

Keywords: business process management, BPMN, problem solving, process mapping

Procedia PDF Downloads 413
19040 An Application of a Feedback Control System to Minimize Unforeseen Disruption in a Paper Manufacturing Industry in South Africa

Authors: Martha E. Ndeley

Abstract:

Operation management is the key element within the manufacturing process. However, during this process, there are a number of unforeseen disruptions that causes the process to a standstill which are, machine breakdown, employees absenteeism, improper scheduling. When this happens, it forces the shop flow to a rescheduling process and these strategy reschedules only a limited part of the initial schedule to match up with the pre-schedule at some point with the objective to create a new schedule that is reliable which in the long run gets disrupted. In this work, we have developed feedback control system that minimizes any form of disruption before the impact becomes severe, the model was tested in a paper manufacturing industries and the results revealed that, if the disruption is minimized at the initial state, the impact becomes unnoticeable.

Keywords: disruption, machine, absenteeism, scheduling

Procedia PDF Downloads 306
19039 Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery

Authors: Shreedevi Moharana, Subashisa Dutta

Abstract:

The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography.

Keywords: crop parameters, index model, LISS IV imagery, plot scale, shape function

Procedia PDF Downloads 168
19038 RNA-seq Analysis of Liver from NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet

Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi

Abstract:

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease, often associated with type II diabetes, which sometimes progresses to more serious conditions such as liver fibrosis and hepatocellular carcinoma (HCC). NASH has become an important health problem worldwide, buttherapeutic agents for NASH have not yet been approved, and animal models with high clinical correlation are required. TheSTAM™ mouse shows the same pathological progression as human NASH patients and has been widely used for both drug efficacy and basic research, such as lipid profiling and gut microbiota research. In this study, we analyzed the RNA-seq data of STAM™mice at each pathological stage (steatosis, steatohepatitis, liver fibrosis, and HCC) and examined the clinical correlation at the genetic level. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin solution 2 days after birth and feeding with high fat dietafter 4 weeks of age. The mice were sacrificed and livers collected at 6, 8, 10, 12, 16, and 20 weeks of age. For liver samples, the left lateral lobe was snap frozen in liquid nitrogen and stored at -80˚C for RNA-seq analysis. Total RNA of the cells was isolated using RNeasy mini kit. The gene expression of the canonical pathways in NASH progression from steatosis to hepatocellular carcinoma were analyzed, such as immune system process, oxidation-reduction process, lipid metabolic process. Moreover, since it has been reported that genetic traits are involved in the development of NASH-HCC, we next analyzed the genetic mutations in the STAM™mice. The number of individuals showing mutations in Mtorinvolved in Insulin signaling increases as the disease progresses, especially in the liver cancer phase. These results indicated a clinical correlation of gene profiles in the STAM™mouse.

Keywords: steatosis, non-alcoholic steatohepatitis, fibrosis, hepatocellular carcinoma, RNA-seq

Procedia PDF Downloads 154