Search results for: return to work outcomes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17378

Search results for: return to work outcomes

3338 Impact of Soot on NH3-SCR, NH3 Oxidation and NH3 TPD over Cu/SSZ-13 Zeolite

Authors: Lidija Trandafilovic, Kirsten Leistner, Marie Stenfeldt, Louise Olsson

Abstract:

Ammonia Selective Catalytic Reduction (NH3 SCR), is one of the most efficient post combustion abatement technologies for removing NOx from diesel engines. In order to remove soot, diesel particulate filters (DPF) are used. Recently, SCR coated filters have been introduced, which captures soot and simultaneously is active for ammonia SCR. There are large advantages with using SCR coated filters, such as decreased volume and also better light off characteristics, since both the SCR function as well as filter function is close to the engine. The objective of this work was to examine the effect of soot, produced using an engine bench, on Cu/SSZ-13 catalysts. The impact of soot on Cu/SSZ-13 in standard SCR, NH3 oxidation, NH3 temperature programmed desorption (TPD), as well as soot oxidation (with and without water) was examined using flow reactor measurements. In all experiments, prior to the soot loading, the fresh activity of Cu/SSZ-13 was recorded with stepwise increasing the temperature from 100°C till 600°C. Thereafter, the sample was loaded with soot and the experiment was repeated in the temperature range from 100°C till 700°C. The amount of CO and CO2 produced in each experiment is used to calculate the soot oxidized at each steady state temperature. The soot oxidized during the heating to next temperature step is included, e.g. the CO+CO2 produced when increasing the temperature to 600°C is added to the 600°C step. The influence of the two factors seem to be of the most importance to soot oxidation: ammonia and water. The influence of water on soot oxidation shift the maximum of CO2 and CO production towards lower temperatures, thus water increases the soot oxidation. Moreover, when adding ammonia to the system it is clear that the soot oxidation is lowered in the presence of ammonia, resulting in larger integrated COx at 500°C for O2+H2O, while opposite results at 600 °C was received where more was oxidised for O2+H2O+NH3 case. To conclude the presence of ammonia reduces the soot oxidation, which is in line with the ammonia TPD results where we found ammonia storage on the soot. Interestingly, during ammonia SCR conditions the activity for soot oxidation is regained at 500°C. At this high temperature the SCR zone is very short, thus the majority of the catalyst is not exposed to ammonia and therefore the inhibition effect of ammonia is not observed.

Keywords: NH3-SCR, Cu/SSZ-13, soot, zeolite

Procedia PDF Downloads 236
3337 Green Tea Extract: Its Potential Protective Effect on Bleomycin Induced Lung Injuries in Rats

Authors: Azza EL-Medany, Jamila EL-Medany

Abstract:

Lung fibrosis is a common side effect of the chemotherapeutic agent, bleomycin. Current evidence suggests that reactive oxygen species may play a key role in the development of lung fibrosis. The present work studied the effect of green tea extract on bleomycin–induced lung fibrosis in rats. Animals were divided into three groups: (1) Saline control group; (2) bleomycin group in which rats were injected with bleomycin (15mg/kg,i.p.) three times a week for four weeks; (3) bleomycin and green tea group in which green tea extract was given to rats (100mg/kg/day, p.o) a week prior to bleomycin and daily during bleomycin injections for 4 weeks until the end of the experiment. Bleomycin–induced pulmonary injury and lung fibrosis that was indicated by increased lung hydroxyproline content, elevated nitric oxide synthase, myeoloperoxidase (MPO), platelet activating factor (PAF), tumor necrosis factor α (TNF_α), transforming growth factor 1β (TGF1β) and angiotensin converting enzyme (ACE) activity in lung tissues. On the other hand, bleomycin induced a reduction in reduced glutathione concentration (GSH). Moreover, bleomycin resulted in a severe histological changes in lung tissues revealed as lymphocytes and neutrophils infiltration, increased collagen deposition and fibrosis. Co-administration of bleomycin and green tea extract reduced bleomycin–induced lung injury as evaluated by the significant reduction in hydroxyproline content, nitric oxide synthase activity, levels of MPO, PAF, TNF-α, and ACE in lung tissues. Furthermore, green tea extract ameliorated bleomycin– induced reduction in GSH concentration. Finally, histological evidence supported the ability of green tea extract to attenuate bleomycin–induced lung fibrosis and consolidation. Thus, the finding of the present study provides that green tea may serve as a novel target for potential therapeutic treatment of lung fibrosis.

Keywords: bleomycin, lung fibrosis, green tea, oxygen species

Procedia PDF Downloads 452
3336 Numerical Investigation of Turbulent Inflow Strategy in Wind Energy Applications

Authors: Arijit Saha, Hassan Kassem, Leo Hoening

Abstract:

Ongoing climate change demands the increasing use of renewable energies. Wind energy plays an important role in this context since it can be applied almost everywhere in the world. To reduce the costs of wind turbines and to make them more competitive, simulations are very important since experiments are often too costly if at all possible. The wind turbine on a vast open area experiences the turbulence generated due to the atmosphere, so it was of utmost interest from this research point of view to generate the turbulence through various Inlet Turbulence Generation methods like Precursor cyclic and Kaimal Spectrum Exponential Coherence (KSEC) in the computational simulation domain. To be able to validate computational fluid dynamic simulations of wind turbines with the experimental data, it is crucial to set up the conditions in the simulation as close to reality as possible. This present work, therefore, aims at investigating the turbulent inflow strategy and boundary conditions of KSEC and providing a comparative analysis alongside the Precursor cyclic method for Large Eddy Simulation within the context of wind energy applications. For the generation of the turbulent box through KSEC method, firstly, the constrained data were collected from an auxiliary channel flow, and later processing was performed with the open-source tool PyconTurb, whereas for the precursor cyclic, only the data from the auxiliary channel were sufficient. The functionality of these methods was studied through various statistical properties such as variance, turbulent intensity, etc with respect to different Bulk Reynolds numbers, and a conclusion was drawn on the feasibility of KSEC method. Furthermore, it was found necessary to verify the obtained data with DNS case setup for its applicability to use it as a real field CFD simulation.

Keywords: Inlet Turbulence Generation, CFD, precursor cyclic, KSEC, large Eddy simulation, PyconTurb

Procedia PDF Downloads 96
3335 Antihyperlipidemia Combination of Simvastatin and Herbal Drink (Conventional Drug Interaction Potential Study and Herbal As Prevention Adverse Effect on Combination Therapy Hyperlipidemia)

Authors: Gesti Prastiti, Maylina Adani, Yuyun darma A. N., M. Khilmi F., Yunita Wahyu Pratiwi

Abstract:

Combination therapy may allow interaction on two drugs or more that can give adverse effects on patients. Simvastatin is a drug of antihyperlipidemia it can interact with drugs which work on cytochrome P450 CYP3A4 because it can interfere the performance of simvastatin. Flavonoid found in plants can inhibit the cytochrome P450 CYP3A4 if taken with simvastatin and can increase simvastatin levels in the body and increases the potential side effects of simvastatin such as myopati and rhabdomyolysis. Green tea leaves and mint are herbal medicine which has the effect of antihiperlipidemia. This study aims to determine the potential interaction of simvastatin with herbal drinks (green tea leaves and mint). This research method are experimental post-test only control design. Test subjects were divided into 5 groups: normal group, negative control group, simvastatin group, a combination of green tea group and the combination group mint leaves. The study was conducted over 32 days and total cholesterol levels were analyzed by enzymatic colorimetric test method. Results of this study is the obtainment of average value of total cholesterol in each group, the normal group (65.92 mg/dL), the negative control group the average total cholesterol test in the normal group was (69.86 mg/dL), simvastatin group (58.96 mg/dL), the combination of green tea group (58.96 mg/dL), and the combination of mint leaves (63.68 mg/dL). The conclusion is between simvastatin combination therapy with herbal drinks have the potential for pharmacodynamic interactions with a synergistic effect, antagonist, and a powerful additive, so the combination therapy are no more effective than a single administration of simvastatin therapy.

Keywords: hyperlipidemia, simvastatin, herbal drinks, green tea leaves, mint leaves, drug interactions

Procedia PDF Downloads 395
3334 Drippers Scaling Inhibition of the Localized Irrigation System by Green Inhibitors Based on Plant Extracts

Authors: Driouiche Ali, Karmal Ilham

Abstract:

The Agadir region is characterized by a dry climate, ranging from arid attenuated by oceanic influences to hyper-arid. The water mobilized in the agricultural sector of greater Agadir is 95% of underground origin and comes from the water table of Chtouka. The rest represents the surface waters of the Youssef Ben Tachfine dam. These waters are intended for the irrigation of 26880 hectares of modern agriculture. More than 120 boreholes and wells are currently exploited. Their depth varies between 10 m and 200 m and the unit flow rates of the boreholes are 5 to 50 l/s. A drop in the level of the water table of about 1.5 m/year, on average, has been observed during the last five years. Farmers are thus called upon to improve irrigation methods. Thus, localized or drip irrigation is adopted to allow rational use of water. The importance of this irrigation system is due to the fact that water is applied directly to the root zone and its compatibility with fertilization. However, this irrigation system faces a thorny problem which is the clogging of pipes and drippers. This leads to a lack of uniformity of irrigation over time. This so-called scaling phenomenon, the consequences of which are harmful (cleaning or replacement of pipes), leads to considerable unproductive expenditure. The objective set by this work is the search for green inhibitors likely to prevent this phenomenon of scaling. This study requires a better knowledge of these waters, their physico-chemical characteristics and their scaling power. Thus, using the "LCGE" controlled degassing technique, we initially evaluated, on pure calco-carbonic water at 30°F, the scaling-inhibiting power of some available plant extracts in our region of Souss-Massa. We then carried out a comparative study of the efficacy of these green inhibitors. The action of the most effective green inhibitor on real agricultural waters was then studied.

Keywords: green inhibitors, localized irrigation, plant extracts, scaling inhibition

Procedia PDF Downloads 82
3333 Enhancing Higher Education Teaching and Learning Processes: Examining How Lecturer Evaluation Make a Difference

Authors: Daniel Asiamah Ameyaw

Abstract:

This research attempts to investigate how lecturer evaluation makes a difference in enhancing higher education teaching and learning processes. The research questions to guide this research work states first as, “What are the perspectives on the difference made by evaluating academic teachers in order to enhance higher education teaching and learning processes?” and second, “What are the implications of the findings for Policy and Practice?” Data for this research was collected mainly through interviewing and partly documents review. Data analysis was conducted under the framework of grounded theory. The findings showed that for individual lecturer level, lecturer evaluation provides a continuous improvement of teaching strategies, and serves as source of data for research on teaching. At the individual student level, it enhances students learning process; serving as source of information for course selection by students; and by making students feel recognised in the educational process. At the institutional level, it noted that lecturer evaluation is useful in personnel and management decision making; it assures stakeholders of quality teaching and learning by setting up standards for lecturers; and it enables institutions to identify skill requirement and needs as a basis for organising workshops. Lecturer evaluation is useful at national level in terms of guaranteeing the competencies of graduates who then provide the needed manpower requirement of the nation. Besides, it mentioned that resource allocation to higher educational institution is based largely on quality of the programmes being run by the institution. The researcher concluded, that the findings have implications for policy and practice, therefore, higher education managers are expected to ensure that policy is implemented as planned by policy-makers so that the objectives can successfully be achieved.

Keywords: academic quality, higher education, lecturer evaluation, teaching and learning processes

Procedia PDF Downloads 143
3332 Sensing of Cancer DNA Using Resonance Frequency

Authors: Sungsoo Na, Chanho Park

Abstract:

Lung cancer is one of the most common severe diseases driving to the death of a human. Lung cancer can be divided into two cases of small-cell lung cancer (SCLC) and non-SCLC (NSCLC), and about 80% of lung cancers belong to the case of NSCLC. From several studies, the correlation between epidermal growth factor receptor (EGFR) and NSCLCs has been investigated. Therefore, EGFR inhibitor drugs such as gefitinib and erlotinib have been used as lung cancer treatments. However, the treatments result showed low response (10~20%) in clinical trials due to EGFR mutations that cause the drug resistance. Patients with resistance to EGFR inhibitor drugs usually are positive to KRAS mutation. Therefore, assessment of EGFR and KRAS mutation is essential for target therapies of NSCLC patient. In order to overcome the limitation of conventional therapies, overall EGFR and KRAS mutations have to be monitored. In this work, the only detection of EGFR will be presented. A variety of techniques has been presented for the detection of EGFR mutations. The standard detection method of EGFR mutation in ctDNA relies on real-time polymerase chain reaction (PCR). Real-time PCR method provides high sensitive detection performance. However, as the amplification step increases cost effect and complexity increase as well. Other types of technology such as BEAMing, next generation sequencing (NGS), an electrochemical sensor and silicon nanowire field-effect transistor have been presented. However, those technologies have limitations of low sensitivity, high cost and complexity of data analyzation. In this report, we propose a label-free and high-sensitive detection method of lung cancer using quartz crystal microbalance based platform. The proposed platform is able to sense lung cancer mutant DNA with a limit of detection of 1nM.

Keywords: cancer DNA, resonance frequency, quartz crystal microbalance, lung cancer

Procedia PDF Downloads 233
3331 [Keynote Talk]: Study of Cooperative Career Education between Universities and Companies

Authors: Azusa Katsumata

Abstract:

Where there is collaboration between universities and companies in the educational context, companies seek ‘knowledge’ from universities and provide a ‘place of practice’ to them. Several universities have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered Tokyo Tourism, a Project-Based Learning course, as a first-year career education course until 2016. In cooperation with a travel agency, students participate in planning actual tourism products for foreigners visiting Japan, undertake tours serving as guides. This paper aims to study the 'learning platform' created by a series of processes such as the fieldwork, planning tours, the presentation, selling the tourism products, and guiding the tourists. We conducted a questionnaire to measure the development of work-related skills in class. From the results of the questionnaire, we can see, in the example of this class, that students demonstrated an increased desire to be pro-active and an improved motivation to learn. Students have not, however, acquired policy or business skills. This is appropriate for first-year careers education, but we need to consider how this can be incorporated into future courses. In the questionnaire filled out by the students after the class, the following results were found. Planning and implementing travel products while learning from each other, and helping the teams has led to improvements in the student workforce. This course is a collaborative project between Japanese universities and the 2020 Tokyo Olympics and Paralympic Games committee.

Keywords: university career education, platform of learning, project-based learning, collaboration between university and company

Procedia PDF Downloads 161
3330 Gnss Aided Photogrammetry for Digital Mapping

Authors: Muhammad Usman Akram

Abstract:

This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.

Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry

Procedia PDF Downloads 32
3329 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 287
3328 A Suggestive Framework for Measuring the Effectiveness of Social Media: An Irish Tourism Study

Authors: Colm Barcoe, Garvan Whelan

Abstract:

Over the past five years, visitations of American holidaymakers to Ireland have grown exponentially owing to the online strategies of Tourism Ireland, a Destination Marketer (DMO) with a meagre budget which is extended by their understanding of best practices to maximise their monetary allowance. This suggested framework incorporates a range of Key Performance Indicators (KPI’s) such as financial, marketing, and operational that offer a scale of measurement from which the Irish DMO can monitor the success of each promotional campaign when targeting the US and Canada. These are presented not as final solutions but rather as suggestions based on empirical evidence obtained from both primary and secondary sources. This research combines the wisdom extracted through qualitative methodologies with the objective of understanding the processes that drive both emergent and agile strategies. The Study extends the work relative to performance and examines the role of social media in the context of promoting Ireland to North America. There are two main themes that are identified and analysed in this investigation, these are the approach of the DMO when advocating Ireland as a brand and the benefits of digital platforms set against a proposed scale of KPIs, such as destination marketing, brand positioning, and identity development. The key narrative of this analysis is to focus on the power of social media when capitalising upon marketing opportunities, operating on a relatively small budget. This will always be a relevant theme of discussion due to the responsibility of an organisation like Tourism Ireland operating under the restraints imposed by government funding. The overall conclusions of this research may help inform those concerned with the implementing of social media strategies develop clearer models of measurement when promoting a destination to North America. The suggestions of this study will benefit small and medium enterprises particularly.

Keywords: destination marketing, framework, measure, performance

Procedia PDF Downloads 154
3327 Factors Affecting M-Government Deployment and Adoption

Authors: Saif Obaid Alkaabi, Nabil Ayad

Abstract:

Governments constantly seek to offer faster, more secure, efficient and effective services for their citizens. Recent changes and developments to communication services and technologies, mainly due the Internet, have led to immense improvements in the way governments of advanced countries carry out their interior operations Therefore, advances in e-government services have been broadly adopted and used in various developed countries, as well as being adapted to developing countries. The implementation of advances depends on the utilization of the most innovative structures of data techniques, mainly in web dependent applications, to enhance the main functions of governments. These functions, in turn, have spread to mobile and wireless techniques, generating a new advanced direction called m-government. This paper discusses a selection of available m-government applications and several business modules and frameworks in various fields. Practically, the m-government models, techniques and methods have become the improved version of e-government. M-government offers the potential for applications which will work better, providing citizens with services utilizing mobile communication and data models incorporating several government entities. Developing countries can benefit greatly from this innovation due to the fact that a large percentage of their population is young and can adapt to new technology and to the fact that mobile computing devices are more affordable. The use of models of mobile transactions encourages effective participation through the use of mobile portals by businesses, various organizations, and individual citizens. Although the application of m-government has great potential, it does have major limitations. The limitations include: the implementation of wireless networks and relative communications, the encouragement of mobile diffusion, the administration of complicated tasks concerning the protection of security (including the ability to offer privacy for information), and the management of the legal issues concerning mobile applications and the utilization of services.

Keywords: e-government, m-government, system dependability, system security, trust

Procedia PDF Downloads 381
3326 Community Pharmacist's Perceptions, Attitude and Role in Oral Health Promotion and Diseases Prevention

Authors: Bushra Alghamdi, Alla Alsharif, Hamzah Aljohani, Saba Kassim

Abstract:

Introduction: Collaborative work has always been acknowledged as a fundamental concept in delivering oral health care. Aim: This study aimed to assess the perception and attitude of pharmacists in oral health promotion and to determine the confident levels of pharmacists in delivering advice on oral health problems. Methods: An observational cross-sectional survey, using self-administered anonymous questionnaires, was conducted between March and April 2017. The study recruited a convenience sample of registered community pharmacists who were working in local private pharmaceutical stores in the urban area of Madinah, Kingdom of Saudi Arabia (KSA). A preliminary descriptive analysis was performed. Results: Thirty-five pharmacists have completed the surveys. All participants were males, with a mean age of 35.5 ( ± 6.92) years. Eighty-six percent of the participants reported that pharmacists should have a role in oral health promotion. Eighty percent have reported adequate level of confident when giving advice on most of the common oral health problems that include; oral health related risk behaviors such as tobacco cessation (46%), bleeding gums (63%) and sensitive teeth (60%). However, higher percentages of pharmacists have reported low confident levels when giving advice in relation to specific domain of dentistry, such as lost dental fillings (57%), loose crowns (60%), trauma to teeth (40%), denture-related problems (51%) and oral cancer (6.9%). Conclusion: Community pharmacists recognized their potential role in promoting oral health in KSA. Community pharmacists had varying levels of ability and confidence to offer support for oral health. The study highlighted that inner professional collaboration between pharmacists and dental care healthcare should be enhanced.

Keywords: community, oral health, promotion, pharmacist

Procedia PDF Downloads 197
3325 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study

Authors: Amit Kumar

Abstract:

Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.

Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality

Procedia PDF Downloads 280
3324 QSAR Modeling of Germination Activity of a Series of 5-(4-Substituent-Phenoxy)-3-Methylfuran-2(5H)-One Derivatives with Potential of Strigolactone Mimics toward Striga hermonthica

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Cristina Prandi, Piermichele Kobauri

Abstract:

The present study is based on molecular modeling of a series of twelve 5-(4-substituent-phenoxy)-3-methylfuran-2(5H)-one derivatives which have potential of strigolactones mimics toward Striga hermonthica. The first step of the analysis included the calculation of molecular descriptors which numerically describe the structures of the analyzed compounds. The descriptors ALOGP (lipophilicity), AClogS (water solubility) and BBB (blood-brain barrier penetration), served as the input variables in multiple linear regression (MLR) modeling of germination activity toward S. hermonthica. Two MLR models were obtained. The first MLR model contains ALOGP and AClogS descriptors, while the second one is based on these two descriptors plus BBB descriptor. Despite the braking Topliss-Costello rule in the second MLR model, it has much better statistical and cross-validation characteristics than the first one. The ALOGP and AClogS descriptors are often very suitable predictors of the biological activity of many compounds. They are very important descriptors of the biological behavior and availability of a compound in any biological system (i.e. the ability to pass through the cell membranes). BBB descriptor defines the ability of a molecule to pass through the blood-brain barrier. Besides the lipophilicity of a compound, this descriptor carries the information of the molecular bulkiness (its value strongly depends on molecular bulkiness). According to the obtained results of MLR modeling, these three descriptors are considered as very good predictors of germination activity of the analyzed compounds toward S. hermonthica seeds. This article is based upon work from COST Action (FA1206), supported by COST (European Cooperation in Science and Technology).

Keywords: chemometrics, germination activity, molecular modeling, QSAR analysis, strigolactones

Procedia PDF Downloads 287
3323 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 477
3322 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: fashion, infringement, blockchain, artificial intelligence, textiles supply chain

Procedia PDF Downloads 261
3321 A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic

Authors: Mohannad Mayyas, Farshid Pahlevani, Veena Sahajwalla

Abstract:

Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C.

Keywords: automotive shredder residue, nano-ceramics, waste treatment, titanium nitride, thermal conversion

Procedia PDF Downloads 295
3320 Effect of Inoculation with Consortia of Plant-Growth Promoting Bacteria on Biomass Production of the Halophyte Salicornia ramosissima

Authors: Maria João Ferreira, Natalia Sierra-Garcia, Javier Cremades, Carla António, Ana M. Rodrigues, Helena Silva, Ângela Cunha

Abstract:

Salicornia ramosissima, a halophyte that grows naturally in coastal areas of the northern hemisphere, is often considered the most promising halophyte candidate for extensive crop cultivation and saline agriculture practices. The expanding interest in this plant surpasses its use as gourmet food and includes their potential application as a source of bioactive compounds for the pharmaceutical industry. Despite growing well in saline soils, sustainable and ecologically friendly techniques to enhance crop production and the nutritional value of this plant are still needed. The root microbiome of S. ramosissima proved to be a source of taxonomically diverse plant growth-promoting bacteria (PGPB). Halotolerant strains of Bacillus, Salinicola, Pseudomonas, and Brevibacterium, among other genera, exhibit a broad spectrum of plant-growth promotion traits [e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization, Nitrogen fixation] and express a wide range of extracellular enzyme activities. In this work, three plant growth-promoting bacteria strains (Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20) isolated from the rhizosphere and the endosphere of S. ramosissima roots from different saltmarshes along the Portuguese coast were inoculated in S. ramosissima seeds. Plants germinated from inoculated seeds were grown for three months in pots filled with a mixture of perlite and estuarine sediment (1:1) in greenhouse conditions and later transferred to a growth chamber, where they were maintained two months with controlled photoperiod, temperature, and humidity. Pots were placed on trays containing the irrigation solution (Hoagland’s solution 20% added with 10‰ marine salt). Before reaching the flowering stage, plants were collected, and the fresh and dry weight of aerial parts was determined. Non-inoculated seeds were used as a negative control. Selected dried stems from the most promising treatments were later analyzed by GC-TOF-MS for primary metabolite composition. The efficiency of inoculation and persistence of the inoculum was assessed by Next Generation Sequencing. Inoculations with single strain EB3 and co-inoculations with EB3+RL18 and EB3+RL18+SP20 (All treatment) resulted in significantly higher biomass production (fresh and dry weight) compared to non-inoculated plants. Considering fresh weight alone, inoculation with isolates SP20 and RL18 also caused a significant positive effect. Combined inoculation with the consortia SP20+EB3 or SP20+RL18 did not significantly improve biomass production. The analysis of the profile of primary metabolites will provide clues on the mechanisms by which the growth-enhancement effect of the inoculants operates in the plants. These results sustain promising prospects for the use of rhizospheric and endophytic PGPB as biofertilizers, reducing environmental impacts and operational costs of agrochemicals and contributing to the sustainability and cost-effectiveness of saline agriculture. Acknowledgments: This work was supported by project Rhizomis PTDC/BIA-MIC/29736/2017 financed by Fundação para a Ciência e Tecnologia (FCT) through the Regional Operational Program of the Center (02/SAICT/2017) with FEDER funds (European Regional Development Fund, FNR, and OE) and by FCT through CESAM (UIDP/50017/2020 + UIDB/50017/2020), LAQV-REQUIMTE (UIDB/50006/2020). We also acknowledge FCT/FSE for the financial support to Maria João Ferreira through a PhD grant (PD/BD/150363/2019). We are grateful to Horta dos Peixinhos for their help and support during sampling and seed collection. We also thank Glória Pinto for her collaboration providing us the use of the growth chambers during the final months of the experiment and Enrique Mateos-Naranjo and Jennifer Mesa-Marín of the Departamento de Biología Vegetal y Ecología, the University of Sevilla for their advice regarding the growth of salicornia plants in greenhouse conditions.

Keywords: halophytes, PGPB, rhizosphere engineering, biofertilizers, primary metabolite profiling, plant inoculation, Salicornia ramosissima

Procedia PDF Downloads 160
3319 Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder

Authors: Francisco Javier Montes Ruiz-Cabello, Guillermo Guerrero-Vacas, Sara Bermudez-Romero, Miguel Cabrerizo Vilchez, Miguel Angel Rodriguez-Valverde

Abstract:

Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored.

Keywords: galvanaized steel, superhydrophobic surfaces, sintering nanoparticles, zinc nanopowder

Procedia PDF Downloads 150
3318 The Impact of Lipids on Lung Fibrosis

Authors: G. Wojcik, J. Gindlhuber, A. Syarif, K. Hoetzenecker, P. Bohm, P. Vesely, V. Biasin, G. Kwapiszewska

Abstract:

Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship.

Keywords: collagen, fibroblasts, lipidomics, lung, pulmonary fibrosis

Procedia PDF Downloads 84
3317 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
3316 Vocational Rehabilitation for People with Disabilities: Employment Rates, Job Persistence and Wages

Authors: Hester Fass, Ofir Pinto

Abstract:

Research indicates gaps in education, employment rates and wages between people with disabilities and those without disabilities. One of the main tools available to reduce these gaps is vocational rehabilitation. In order to examine the effects of vocational rehabilitation, a follow-up study, based on comprehensive administrative data, was conducted. The study included 88,286 people with disabilities who participated in vocational rehabilitation of the National Insurance Institute of Israel (NII), and completed the process between 1999 and 2012. Research variables included: employment rates, job persistence and wage levels. This research, the first of its kind in Israel, has several unique aspects: a)a long-range follow-up study on people who completed vocational rehabilitation; b) examination of a broad population spectrum, including also people that are not eligible to disability pensions ; c) a comparison among those with work-related injuries, those injured in hostile acts and those injured in other circumstances; and finally d) the identification of the characteristics of those who are entitled to vocational rehabilitation but who do not participate in any vocational rehabilitation plan. The most notable results include: 1. Vocational rehabilitation contributed to employment, job persistence and wage levels. Participation in vocational rehabilitation resulted in an employment rate of 65% within two years after completing the program, and 73% eventually. Participation in a vocational rehabilitation plan also contributed to job persistence and wage levels. 2. Vocational rehabilitation plans aimed at integration in universal frameworks increased the chances of being employed, persisting at the job and receiving a higher wage than did the vocational rehabilitation aimed at selective frameworks (such as sheltered workshops). 3. The type of disability affected the chances of integration in a vocational rehabilitation plan and in the labor market. People with a disability from birth had greater chances of integration in a vocational rehabilitation plan, while the type of disability and its severity affected the chances of the person with disabilities to find employment.

Keywords: vocational rehabilitation, employment, job persistence, wages

Procedia PDF Downloads 453
3315 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 93
3314 Facile Synthesis of Sulfur Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity

Authors: Vishnu V. Pillai, Sunil P. Lonkar, Akhil M. Abraham, Saeed M. Alhassan

Abstract:

An effectual technology for wastewater treatment is a great demand now in order to encounter the water pollution caused by organic pollutants. Photocatalytic oxidation technology is widely used in removal of such unsafe contaminants. Among the semi-conducting metal oxides, robust and thermally stable TiO2 has emerged as a fascinating material for photocatalysis. Enhanced catalytic activity was observed for nanostructured TiO2 due to its higher surface, chemical stability and higher oxidation ability. However, higher charge carrier recombination and wide band gap of TiO2 limits its use as a photocatalyst in the UV region. It is desirable to develop a photocatalyst that can efficiently absorb the visible light, which occupies the main part of the solar spectrum. Hence, in order to extend its photocatalytic efficiency under visible light, TiO2 nanoparticles are often doped with metallic or non-metallic elements. Non-metallic doping of TiO2 has attracted much attention due to the low thermal stability and enhanced recombination of charge carriers endowed by metallic doping of TiO2. Amongst, sulfur doped TiO2 is most widely used photocatalyst in environmental purification. However, the most of S-TiO2 synthesis technique uses toxic chemicals and complex procedures. Hence, a facile, scalable and environmentally benign preparation process for S-TiO2 is highly desirable. In present work, we have demonstrated new and facile solid-state reaction method for S-TiO2 synthesis that uses abundant elemental sulfur as S source and moderate temperatures. The resulting nano-sized S-TiO2 has been successfully employed as visible light photocatalyst in methylene blue dye removal from aqueous media.

Keywords: ecofriendly, nanomaterials, methylene blue, photocatalysts

Procedia PDF Downloads 348
3313 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites

Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt

Abstract:

Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.

Keywords: copper based composites, mechanical properties, wear properties, microstructure

Procedia PDF Downloads 364
3312 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP

Authors: Diptiman Dinda, Shyamal Kumar Saha

Abstract:

In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.

Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection

Procedia PDF Downloads 440
3311 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods

Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo

Abstract:

The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.

Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines

Procedia PDF Downloads 621
3310 Empowering Children through Co-creation: Writing a Book with and for Children about Their First Steps Towards Urban Independence

Authors: Beata Patuszynska

Abstract:

Children are largely absent from Polish social discourse, a fact which is mirrored in urban planning processes. Their absence creates a vicious circle – an unfriendly urban space discourages children from going outside on their own, meaning adults do not see a need to make spaces more friendly for a group, not present. The pandemic and lockdown, with their closed schools and temporary ban on unaccompanied minors on the streets, have only reinforced this. The project – co-writing with children a book concerning their first steps into urban independence - aims at empowering children, enabling them to find their voice when it comes to urban space. The foundation for the book was data collected during research and workshops with children from Warsaw primary schools, aged 7-10 - the age they begin independent travel in the city. The project was carried out with the participation and involvement of children at each creative step. Children were (1) models: the narrator is an 7-year-old boy getting ready for urban independence. He shares his experience as well as the experience of his school friends and his 10-year-old sister, who already travels on her own. Children were (2) teachers: the book is based on authentic children’s stories and experience, along with the author’s findings from research undertaken with children. The material was extended by observations and conclusions made during the pandemic. Children were (3) reviewers: a series of draft chapters from the book underwent review by children during workshops performed in a school. The process demonstrated that all children experience similar pleasures and worries when it comes to interaction with urban space. Furthermore, they also have similar needs that need satisfying. In my article, I will discuss; (1) the advantages of creating together with children; (2) my conclusions on how to work with children in participatory processes; (3) research results: perceptions of urban space by children age 7-10, when they begin their independent travel in the city; the barriers to and pleasures derived from independent urban travel; the influence of the pandemic on children’s feelings and their behaviour in urban spaces.

Keywords: children, urban space, co-creation, participation, human rights

Procedia PDF Downloads 103
3309 Combustion Characteristic of Propane/Acetylene Fuel Blends Pool Fire

Authors: Yubo Bi, Xiao Chen, Shouxiang Lu

Abstract:

A kind of gas-fueled burner, named Burning Rate Emulator, was proposed for the purpose of the emulation of condensed fuel recently. The gaseous fuel can be pure combustible fuel gas or blends of gaseous fuel or inert gas. However, this concept was recently proposed without detailed study on the combustion characteristic of fuel blends. In this study, two kinds of common gaseous fuels were selected, propane and acetylene, to provide the combustion heat as well as a large amount of smoke, which widely exists in liquid and solid fuel burning process. A set of experiments were carried out using a gas-fueled burner with a diameter of 8 cm. The total volume flow rate of propane and acetylene was kept at 3 liters per minute. The volume fraction of propane varied from 0% to 100% at interval of 10%. It is found that the flame height increases with propane volume fraction, which may be caused by the increase of heat release rate, as the energy density of propane is larger than that of acetylene. The dimensionless flame height is correlated against dimensionless heat release rate, which shows a power function relationship. The radiation fraction of the flame does not show a monotonic relationship with propane volume fraction. With the increase of propane volume fraction from 0% to 100%, the value of radiation fraction increases first and reach a maximum value around 0.46 at a propane volume fraction of 10%, and then decreases continuously to a value of 0.25 at the propane volume fraction of 100%. The flame radiation is related to the soot in the flame. The trend of the radiation fraction reflects that there may be a synergistic effect of soot formation between propane and acetylene which can be guessed from the significantly high radiation fraction at a propane volume fraction of 10%. This work provides data for combustion of gaseous fuel blends pool fire and also give reference on the design of Burning Rate Emulator.

Keywords: Burning Rate Emulator, fuel blends pool fire, flame height, radiation fraction

Procedia PDF Downloads 228