Search results for: real time stress detection
24581 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA
Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell
Abstract:
Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis
Procedia PDF Downloads 23024580 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs
Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara
Abstract:
In this paper, we consider a new real-life Heterogenous Electric Vehicle Routing Problem with Time Dependant Charging Costs and a Mixed Fleet (HEVRP-TDMF), in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time-dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with three different insertion strategies. All heuristics are tested on real data instances.Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem
Procedia PDF Downloads 46324579 The Effect of Human Capital and Oil Revenue on Income Distribution in Real Sample
Authors: Marjan Majdi, MohammadAli Moradi, Elham Samarikhalaj
Abstract:
Income distribution is one of the most topics in macro economic theories. There are many categories in economy such as income distribution that have the most influenced by economic policies. Human capital has an impact on economic growth and it has significant effect on income distributions. The results of this study confirm that the effects of oil revenue and human capital on income distribution are negative and significant but the value of the estimated coefficient is too small in a real sample in period time (1969-2006).Keywords: gini coefficient, human capital, income distribution, oil revenue
Procedia PDF Downloads 63624578 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU
Procedia PDF Downloads 29024577 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.Keywords: image detection, forgery image, copy-paste, attack detection
Procedia PDF Downloads 33824576 Temporal Fixed Effects: The Macroeconomic Implications on Industry Return
Authors: Mahdy Elhusseiny, Richard Gearhart, Mariam Alyammahi
Abstract:
In this study we analyse the impact of a number of major macroeconomic variables on industry-specific excess rates of return. In later specifications, we include time and recession fixed effects, to potentially capture time-specific trends that may have been changing over our panel. We have a number of results that bear mentioning. Seasonal and temporal factors found to have very large role in sector-specific excess returns. Increases in M1(money supply) decreases bank, insurance, real estate, and telecommunications, while increases industrial and transportation excess returns. The results indicate that the market return increases every sector-specific rate of return. The 2007 to 2009 recession significantly reduced excess returns in the bank, real estate, and transportation sectors.Keywords: macroeconomic factors, industry returns, fixed effects, temporal factors
Procedia PDF Downloads 7624575 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 22524574 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 30524573 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 25924572 Estimation of Stress-Strength Parameter for Burr Type XII Distribution Based on Progressive Type-II Censoring
Authors: A. M. Abd-Elfattah, M. H. Abu-Moussa
Abstract:
In this paper, the estimation of stress-strength parameter R = P(Y < X) is considered when X; Y the strength and stress respectively are two independent random variables of Burr Type XII distribution. The samples taken for X and Y are progressively censoring of type II. The maximum likelihood estimator (MLE) of R is obtained when the common parameter is unknown. But when the common parameter is known the MLE, uniformly minimum variance unbiased estimator (UMVUE) and the Bayes estimator of R = P(Y < X) are obtained. The exact condence interval of R based on MLE is obtained. The performance of the proposed estimators is compared using the computer simulation.Keywords: Burr Type XII distribution, progressive type-II censoring, stress-strength model, unbiased estimator, maximum-likelihood estimator, uniformly minimum variance unbiased estimator, confidence intervals, Bayes estimator
Procedia PDF Downloads 45624571 Pressure Losses on Realistic Geometry of Tracheobronchial Tree
Authors: Michaela Chovancova, Jakub Elcner
Abstract:
Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree.Keywords: pressure gradient, airways resistance, real geometry of bronchial tree, breathing
Procedia PDF Downloads 32224570 Effect of 8-OH-DPAT on the Behavioral Indicators of Stress and on the Number of Astrocytes after Exposure to Chronic Stress
Authors: Ivette Gonzalez-Rivera, Diana B. Paz-Trejo, Oscar Galicia-Castillo, David N. Velazquez-Martinez, Hugo Sanchez-Castillo
Abstract:
Prolonged exposure to stress can cause disorders related with dysfunction in the prefrontal cortex such as generalized anxiety and depression. These disorders involve alterations in neurotransmitter systems; the serotonergic system—a target of the drugs that are commonly used as a treatment to these disorders—is one of them. Recent studies suggest that 5-HT1A receptors play a pivotal role in the serotonergic system regulation and in stress responses. In the same way, there is increasing evidence that astrocytes are involved in the pathophysiology of stress. The aim of this study was to examine the effects of 8-OH-DPAT, a selective agonist of 5-HT1A receptors, in the behavioral signs of anxiety and anhedonia as well as in the number of astrocytes in the medial prefrontal cortex (mPFC) after exposure to chronic stress. They used 50 male Wistar rats of 250-350 grams housed in standard laboratory conditions and treated in accordance with the ethical standards of use and care of laboratory animals. A protocol of chronic unpredictable stress was used for 10 consecutive days during which the presentation of stressors such as motion restriction, water deprivation, wet bed, among others, were used. 40 rats were subjected to the stress protocol and then were divided into 4 groups of 10 rats each, which were administered 8-OH-DPAT (Tocris, USA) intraperitoneally with saline as vehicle in doses 0.0, 0.3, 1.0 and 2.0 mg/kg respectively. Another 10 rats were not subjected to the stress protocol or the drug. Subsequently, all the rats were measured in an open field test, a forced swimming test, sucrose consume, and a cero maze test. At the end of this procedure, the animals were sacrificed, the brain was removed and the tissue of the mPFC (Bregma: 4.20, 3.70, 2.70, 2.20) was processed in immunofluorescence staining for astrocytes (Anti-GFAP antibody - astrocyte maker, ABCAM). Statistically significant differences were found in the behavioral tests of all groups, showing that the stress group with saline administration had more indicators of anxiety and anhedonia than the control group and the groups with administration of 8-OH-DPAT. Also, a dose dependent effect of 8-OH-DPAT was found on the number of astrocytes in the mPFC. The results show that 8-OH-DPAT can modulate the effect of stress in both behavioral and anatomical level. Also they indicate that 5-HT1A receptors and astrocytes play an important role in the stress response and may modulate the therapeutic effect of serotonergic drugs, so they should be explored as a fundamental part in the treatment of symptoms of stress and in the understanding of the mechanisms of stress responses.Keywords: anxiety, prefrontal cortex, serotonergic system, stress
Procedia PDF Downloads 32524569 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.Keywords: big data, evolutionary computing, cloud, precision technologies
Procedia PDF Downloads 18924568 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs
Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny
Abstract:
As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning
Procedia PDF Downloads 21124567 Thermoregulatory Responses of Holstein Cows Exposed to Intense Heat Stress
Authors: Rodrigo De A. Ferrazza, Henry D. M. Garcia, Viviana H. V. Aristizabal, Camilla De S. Nogueira, Cecilia J. Verissimo, Jose Roberto Sartori, Roberto Sartori, Joao Carlos P. Ferreira
Abstract:
Environmental factors adversely influence sustainability in livestock production system. Dairy herds are the most affected by heat stress among livestock industries. This clearly implies in development of new strategies for mitigating heat, which should be based on physiological and metabolic adaptations of the animal. In this study, we incorporated the effect of climate variables and heat exposure time on the thermoregulatory responses in order to clarify the adaptive mechanisms for bovine heat dissipation under intense thermal stress induced experimentally in climate chamber. Non-lactating Holstein cows were contemporaneously and randomly assigned to thermoneutral (TN; n=12) or heat stress (HS; n=12) treatments during 16 days. Vaginal temperature (VT) was measured every 15 min with a microprocessor-controlled data logger (HOBO®, Onset Computer Corporation, Bourne, MA, USA) attached to a modified vaginal controlled internal drug release insert (Sincrogest®, Ourofino, Brazil). Rectal temperature (RT), respiratory rate (RR) and heart rate (HR) were measured twice a day (0700 and 1500h) and dry matter intake (DMI) was estimated daily. The ambient temperature and air relative humidity were 25.9±0.2°C and 73.0±0.8%, respectively for TN, and 36.3± 0.3°C and 60.9±0.9%, respectively for HS. Respiratory rate of HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm; P<0.001) than TN (39.70±0.71bpm), followed by rising of RT (39.87°C±0.07 for HS versus 38.56±0.03°C for TN; P<0.001) and VT (39.82±0.10°C for HS versus 38.26±0.03°C for TN; P<0.001). A diurnal pattern was detected, with higher (P<0.01) afternoon temperatures than morning and this effect was aggravated for HS cows. There was decrease (P<0.05) of HR for HS cows (62.13±0.99bpm) compared to TN (66.23±0.79bpm), but the magnitude of the differences was not the same over time. From the third day, there was a decrease of DMI for HS in attempt to maintain homeothermy, while TN cows increased DMI (8.27kg±0.33kg d-1 for HS versus 14.03±0.29kg d-1 for TN; P<0.001). By regression analysis, RT and RR better reflected the response of cows to changes in the Temperature Humidity Index and the effect of climate variables from the previous day to influence the physiological parameters and DMI was more important than the current day, with ambient temperature the most important factor. Comparison between acute (0 to 3 days) and chronic (13 to 16 days) exposure to heat stress showed decreasing of the slope of the regression equations for RR and DMI, suggesting an adaptive adjustment, however with no change for RT. In conclusion, intense heat stress exerted strong influence on the thermoregulatory mechanisms, but the acclimation process was only partial.Keywords: acclimation, bovine, climate chamber, hyperthermia, thermoregulation
Procedia PDF Downloads 21824566 An Integrated DANP-PROMETHEE II Approach for Air Traffic Controllers’ Workload Stress Problem
Authors: Jennifer Loar, Jason Montefalcon, Kissy Mae Alimpangog, Miriam Bongo
Abstract:
The demanding, professional roles that air traffic controllers (ATC) play in air transport operation provided the main motivation of this paper. As the controllers’ workload stress becomes more complex due to various stressors, the challenge to overcome these in the pursuit of improving the efficiency of controllers and safety level of aircrafts has been relevant. Therefore, in order to determine the main stressors and surface the best alternative, two widely-known multi-criteria decision-making (MCDM) methods, DANP and PROMETHEE II, are applied. The proposed method is demonstrated in a case study at Mactan Civil Aviation Authority of the Philippines (CAAP). The results showed that the main stressors are high air traffic volume, extraneous traffic, unforeseen events, limitations and reliability of equipment, noise/distracter, micro climate, bad posture, relations with supervisors and colleagues, private life conditions/relationships, and emotional conditions. In the outranking of alternatives, compartmentalization is believed to be the most preferred alternative to overcome controllers’ workload stress. This implies that compartmentalization can best be applied to reduce controller workload stress.Keywords: air traffic controller, DANP, MCDM, PROMETHEE II, workload stress
Procedia PDF Downloads 26924565 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 28724564 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 22324563 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 10224562 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe
Authors: Elsadig Naseraddeen Ahmed Mohamed
Abstract:
In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon
Procedia PDF Downloads 17524561 Low Probability of Intercept (LPI) Signal Detection and Analysis Using Choi-Williams Distribution
Authors: V. S. S. Kumar, V. Ramya
Abstract:
In the modern electronic warfare, the signal scenario is changing at a rapid pace with the introduction of Low Probability of Intercept (LPI) radars. In the modern battlefield, radar system faces serious threats from passive intercept receivers such as Electronic Attack (EA) and Anti-Radiation Missiles (ARMs). To perform necessary target detection and tracking and simultaneously hide themselves from enemy attack, radar systems should be LPI. These LPI radars use a variety of complex signal modulation schemes together with pulse compression with the aid of advancement in signal processing capabilities of the radar such that the radar performs target detection and tracking while simultaneously hiding enemy from attack such as EA etc., thus posing a major challenge to the ES/ELINT receivers. Today an increasing number of LPI radars are being introduced into the modern platforms and weapon systems so these LPI radars created a requirement for the armed forces to develop new techniques, strategies and equipment to counter them. This paper presents various modulation techniques used in generation of LPI signals and development of Time Frequency Algorithms to analyse those signals.Keywords: anti-radiation missiles, cross terms, electronic attack, electronic intelligence, electronic warfare, intercept receiver, low probability of intercept
Procedia PDF Downloads 47224560 The Relationship among Exercise Participation, Job Stress and Job Satisfaction: A Study on Food Service Employees in Taiwan
Authors: Jui-Hsiu Chang
Abstract:
As an increasing number of restaurants are growing, the demand for man force in the food service industry is dramatically increasing as well. However, food service workers often complete the heavy workload, infrequent breaks, long hours and shifts. With the overwhelming workload, many workers have experienced high injury rates. As a result, the restaurant industry reports a higher employee turnover rate compare to other service industries in Taiwan. Restaurant managers are seeing ways to retain good employees in order to provide good quality service for daily operation. The purpose of this study was to explore the relationship among exercise participation, job stress and job satisfaction on the food service employees. In addition, to examine how the job stress affected their job satisfaction. A survey using a self-reported questionnaire was conducted to collect data, and 269 questionnaires were collected for data analysis. The obtained materials were analyzed using descriptive statistic, independent t-test, one-way ANOVA, linear regression analysis. The results show that 1. Job stress had a significantly negative influence on employees’ job satisfaction. 2. Exercise participation had significantly positive influence on employees’ job satisfaction. 3. Job stress and job satisfaction varied among the groups of respondent with different level of exercise involvement. Furthermore, the practical implications were proposed for the food service company management when developing daily operational strategies.Keywords: exercise participation, food service employees, job satisfaction, job stress
Procedia PDF Downloads 26824559 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 7824558 Developing a Methodology to Examine Psychophysiological Responses during Stress Exposure and Relaxation: An Experimental Paradigm
Authors: M. Velana, G. Rinkenauer
Abstract:
Nowadays, nurses are facing unprecedented amounts of pressure due to the ongoing global health demands. Work-related stress can cause a high physical and psychological workload, which can lead, in turn, to burnout. On the physiological level, stress triggers an initial activation of the sympathetic nervous and adrenomedullary systems resulting in increases in cardiac activity. Furthermore, activation of the hypothalamus-pituitary-adrenal axis provokes endocrine and immune changes leading to the release of cortisol and cytokines in an effort to re-establish body balance. Based on the current state of the literature, it has been identified that resilience and mindfulness exercises among nurses can effectively decrease stress and improve mood. However, it is still unknown what relaxation techniques would be suitable for and to what extent would be effective to decrease psychophysiological arousal deriving from either a physiological or a psychological stressor. Moreover, although cardiac activity and cortisol are promising candidates to examine the effectiveness of relaxation to reduce stress, it still remains to shed light on the role of cytokines in this process so as to thoroughly understand the body’s response to stress and to relaxation. Therefore, the main aim of the present study is to develop a comprehensive experimental paradigm and assess different relaxation techniques, namely progressive muscle relaxation and a mindfulness exercise originating from cognitive therapy by means of biofeedback, under highly controlled laboratory conditions. An experimental between-subject design will be employed, where 120 participants will be randomized either to a physiological or a psychological stress-related experiment. Particularly, the cold pressor test refers to a procedure in which the participants have to immerse their non-dominant hands into ice water (2-3 °C) for 3 min. The participants are requested to keep their hands in the water throughout the whole duration. However, they can immediately terminate the test in case it would be barely tolerable. A pre-test anticipation phase and a post-stress period of 3 min, respectively, are planned. The Trier Social Stress Test will be employed to induce psychological stress. During this laboratory stressor, the participants are instructed to give a 5-min speech in front of a committee of communication specialists. Before the main task, there is a 10-min anticipation period. Subsequently, participants are requested to perform an unexpected arithmetic task. After stress exposure, the participants will perform one of the relaxation exercises (treatment condition) or watch a neutral video (control condition). Electrocardiography, salivary samples, and self-report will be collected at different time points. The preliminary results deriving from the pilot study showed that the aforementioned paradigm could effectively induce stress reactions and that relaxation might decrease the impact of stress exposure. It is of utmost importance to assess how the human body responds under different stressors and relaxation exercises so that an evidence-based intervention could be transferred in a clinical setting to improve nurses’ general health. Based on suggestive future laboratory findings, the research group plans to conduct a pilot-level randomized study to decrease stress and promote well-being among nurses who work in the stress-riddled environment of a hospital located in Northern Germany.Keywords: nurses, psychophysiology, relaxation, stress
Procedia PDF Downloads 11024557 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: camera calibration, corner detector, edge detector, saddle points
Procedia PDF Downloads 40624556 Characterization of Erodibility Using Soil Strength and Stress-Strain Indices for Soils in Some Selected Sites in Enugu State
Authors: C. C. Egwuonwu, N. A. A. Okereke, K. O. Chilakpu, S. O. Ohanyere
Abstract:
In this study, initial soil strength indices (qu) and stress-strain characteristics, namely failure strain (ϵf), area under the stress-strain curve up to failure (Is) and stress-strain modulus between no load and failure (Es) were investigated as potential indicators for characterizing the erosion resistance of two compacted soils, namely sandy clay loam (SCL) and clay loam (CL) in some selected sites in Enugu State, Nigeria. The unconfined compressive strength (used in obtaining strength indices) and stress-strain measurements were obtained as a function of moisture content in percentage (mc %) and dry density (γd). Test were conducted over a range of 8% to 30% moisture content and 1.0 g/cm3 to 2.0 g/cm3 dry density at applied loads of 20, 40, 80, 160 and 320 kPa. Based on the results, it was found out that initial soil strength alone was not a good indicator of erosion resistance. For instance, in the comparison of exponents of mc% and γd for jet index or erosion resistance index (Ji) and the strength measurements, qu and Es agree in signs for mc%, but are opposite in signs for γd. Therefore, there is an inconsistency in exponents making it difficult to develop a relationship between the strength parameters and Ji for this data set. In contrast, the exponents of mc% and γd for Ji and ϵf and Is are opposite in signs, there is potential for an inverse relationship. The measured stress-strain characteristics, however, appeared to have potential in providing useful information on erosion resistance. The models developed for the prediction of the extent or the susceptibility of soils to erosion and subjected to sensitivity test on some selected sites achieved over 90% efficiency in their functions.Keywords: characterization of erodibility, selected sites in Enugu state, soil strength, stress-strain indices
Procedia PDF Downloads 41424555 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 10424554 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 10424553 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 17024552 Influence of Composite Adherents Properties on the Dynamic Behavior of Double Lap Bonded Joint
Authors: P. Saleh, G. Challita, R. Hazimeh, K. Khalil
Abstract:
In this paper 3D FEM analysis was carried out on double lap bonded joint with composite adherents subjected to dynamic shear. The adherents are made of Carbon/Epoxy while the adhesive is epoxy Araldite 2031. The maximum average shear stress and the stress homogeneity in the adhesive layer were examined. Three fibers textures were considered: UD; 2.5D and 3D with same volume fiber then a parametric study based on changing the thickness and the type of fibers texture in 2.5D was accomplished. Moreover, adherents’ dissimilarity was also investigated. It was found that the main parameter influencing the behavior is the longitudinal stiffness of the adherents. An increase in the adherents’ longitudinal stiffness induces an increase in the maximum average shear stress in the adhesive layer and an improvement in the shear stress homogeneity within the joint. No remarkable improvement was observed for dissimilar adherents.Keywords: adhesive, composite adherents, impact shear, finite element
Procedia PDF Downloads 442