Search results for: occupational noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1669

Search results for: occupational noise

319 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science

Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier

Abstract:

Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared

Keywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis

Procedia PDF Downloads 118
318 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 140
317 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 414
316 Safer Staff: A Survey of Staff Experiences of Violence and Aggression at Work in Coventry and Warwickshire Partnership National Health Service Trust

Authors: Rupinder Kaler, Faith Ndebele, Nadia Saleem, Hafsa Sheikh

Abstract:

Background: Workplace related violence and aggression seems to be considered an acceptable occupational hazard for staff in mental health services. There is literature evidence that healthcare workers in mental health settings are at higher risk from aggression from patients. Aggressive behaviours pose a physical and psychological threat to the psychiatric staff and can result in stress, burnout, sickness, and exhaustion. Further evidence informs that health professionals are the most exposed to psychological disorders such as anxiety, depression and post-traumatic stress disorder. Fear that results from working in a dangerous environment and exhaustion can have a damaging impact on patient care and healthcare relationship. Aim: The aim of this study is to investigate the prevalence and impact of aggressive behaviour on staff working at Coventry and Warwickshire Partnership Trust. Methodology: The study methodology included carrying out a manual, anonymised, multi-disciplinary cross-sectional survey questionnaire across all clinical and non-clinical staff at CWPT from both inpatient and community settings. Findings: The unsurprising finding was that of higher prevalence of aggressive behaviours in in-patients in comparison to community staff. Conclusion: There is a high rate of verbal and physical aggression at work and this has a negative impact on the staff emotional and physical well- being. There is also a higher reliance on colleagues for support on an informal basis than formal organisational support systems. Recommendations: A workforce that is well and functioning is the biggest resource for an organisation. Staff safety during working hours is everyone's responsibility and sits with both individual staff members and the organisation. Post-incident organisational support needs to be consolidated, and hands-on, timely support offered to help maintain emotionally well staff on CWPT. The authors recommend development of preventative and practical protocols for aggression with patient and carer involvement. Post-incident organisational support needs to be consolidated, and hands-on, timely support offered to help maintain emotionally well staff on CWPT.

Keywords: safer staff, survey of staff experiences, violence and aggression, mental health

Procedia PDF Downloads 203
315 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 276
314 Reaching New Levels: Using Systems Thinking to Analyse a Major Incident Investigation

Authors: Matthew J. I. Woolley, Gemma J. M. Read, Paul M. Salmon, Natassia Goode

Abstract:

The significance of high consequence, workplace failures within construction continues to resonate with a combined average of 12 fatal incidents occurring daily throughout Australia, the United Kingdom, and the United States. Within the Australian construction domain, more than 35 serious, compensable injury incidents are reported daily. These alarming figures, in conjunction with the continued occurrence of fatal and serious, occupational injury incidents globally suggest existing approaches to incident analysis may not be achieving required injury prevention outcomes. One reason may be that, incident analysis methods used in construction have not kept pace with advances in the field of safety science and are not uncovering the full range system-wide contributory factors that are required to achieve optimal levels of construction safety performance. Another reason underpinning this global issue may also be the absence of information surrounding the construction operating and project delivery system. For example, it is not clear who shares the responsibility for construction safety in different contexts. To respond to this issue, to the author’s best knowledge, a first of its kind, control structure model of the construction industry is presented and then used to analyse a fatal construction incident. The model was developed by applying and extending the Systems Theoretic and Incident Model and Process method to hierarchically represent the actors, constraints, feedback mechanisms, and relationships that are involved in managing construction safety performance. The Causal Analysis based on Systems Theory (CAST) method was then used to identify the control and feedback failures involved in the fatal incident. The conclusions from the Coronial investigation into the event are compared with the findings stemming from the CAST analysis. The CAST analysis highlighted additional issues across the construction system that were not identified in the coroner’s recommendations, suggested there is a potential benefit in applying a systems theory approach to incident analysis in construction. The findings demonstrate the utility applying systems theory-based methods to the analysis of construction incidents. Specifically, this study shows the utility of the construction control structure and the potential benefits for project leaders, construction entities, regulators, and construction clients in controlling construction performance.

Keywords: construction project management, construction performance, incident analysis, systems thinking

Procedia PDF Downloads 131
313 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment

Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska

Abstract:

Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.

Keywords: accident assessment model, eye tracking, occupational safety, scaffolding

Procedia PDF Downloads 200
312 Design and Validation of the 'Teachers' Resilience Scale' for Assessing Protective Factors

Authors: Athena Daniilidou, Maria Platsidou

Abstract:

Resilience is considered to greatly affect the personal and occupational wellbeing and efficacy of individuals; therefore, it has been widely studied in the social and behavioral sciences. Given its significance, several scales have been created to assess resilience of children and adults. However, most of these scales focus on examining only the internal protective or risk factors that affect the levels of resilience. The aim of the present study is to create a reliable scale that assesses both the internal and the external protective factors that affect Greek teachers’ levels of resilience. Participants were 136 secondary school teachers (89 females, 47 males) from urban areas of Greece. Connor-Davidson Resilience Scale (CD-Risc) and Resilience Scale for Adults (RSA) were used to collect the data. First, exploratory factor analysis was employed to investigate the inner structure of each scale. For both scales, the analyses revealed a differentiated factor solution compared to the ones proposed by the creators. That prompt us to create a scale that would combine the best fitting subscales of the CD-Risc and the RSA. To this end, the items of the four factors with the best fit and highest reliability were used to create the ‘Teachers' resilience scale’. Exploratory factor analysis revealed that the scale assesses the following protective/risk factors: Personal Competence and Strength (9 items, α=.83), Family Cohesion Spiritual Influences (7 items, α=.80), Social Competence and Peers Support (7 items, α=.78) and Spiritual Influence (3 items, α=.58). This four-factor model explained 49,50% of the total variance. In the next step, a confirmatory factor analysis was performed on the 26 items of the derived scale to test the above factor solution. The fit of the model to the data was good (χ2/292 = 1.245, CFI = .921, GFI = .829, SRMR = .074, CI90% = .026-,056, RMSEA = 0.43), indicating that the proposed scale can validly measure the aforementioned four aspects of teachers' resilience and thus confirmed its factorial validity. Finally, analyses of variance were performed to check for individual differences in the levels of teachers' resilience in relation to their gender, age, marital status, level of studies, and teaching specialty. Results were consistent to previous findings, thus providing an indication of discriminant validity for the instrument. This scale has the advantage of assessing both the internal and the external protective factors of resilience in a brief yet comprehensive way, since it consists 26 items instead of the total of 58 of the CD-Risc and RSA scales. Its factorial inner structure is supported by the relevant literature on resilience, as it captures the major protective factors of resilience identified in previous studies.

Keywords: protective factors, resilience, scale development, teachers

Procedia PDF Downloads 298
311 Sound Absorbing and Thermal Insulating Properties of Natural Fibers (Coir/Jute) Hybrid Composite Materials for Automotive Textiles

Authors: Robel Legese Meko

Abstract:

Natural fibers have been used as end-of-life textiles and made into textile products which have become a well-proven and effective way of processing. Nowadays, resources to make primary synthetic fibers are becoming less and less as the world population is rising. Hence it is necessary to develop processes to fabricate textiles that are easily converted to composite materials. Acoustic comfort is closely related to the concept of sound absorption and includes protection against noise. This research paper presents an experimental study on sound absorption coefficients, for natural fiber composite materials: a natural fiber (Coir/Jute) with different blend proportions of raw materials mixed with rigid polyurethane foam as a binder. The natural fiber composite materials were characterized both acoustically (sound absorption coefficient SAC) and also in terms of heat transfer (thermal conductivity). The acoustic absorption coefficient was determined using the impedance tube method according to the ASTM Standard (ASTM E 1050). The influence of the structure of these materials on the sound-absorbing properties was analyzed. The experimental results signify that the porous natural coir/jute composites possess excellent performance in the absorption of high-frequency sound waves, especially above 2000 Hz, and didn’t induce a significant change in the thermal conductivity of the composites. Thus, the sound absorption performances of natural fiber composites based on coir/jute fiber materials promote environmentally friendly solutions.

Keywords: coir/jute fiber, sound absorption coefficients, compression molding, impedance tube, thermal insulating properties, SEM analysis

Procedia PDF Downloads 112
310 Comprehensive Geriatric Assessments: An Audit into Assessing and Improving Uptake on Geriatric Wards at King’s College Hospital, London

Authors: Michael Adebayo, Saheed Lawal

Abstract:

The Comprehensive Geriatric Assessment (CGA) is the multidimensional tool used to assess elderly, frail patients either on admission to hospital care or at a community level in primary care. It is a tool designed with the aim of using a holistic approach to managing patients. A Cochrane review of CGA use in 2011 found that the likelihood of being alive and living in their own home rises by 30% post-discharge. RCTs have also discovered 10–15% reductions in readmission rates and reductions in institutionalization, and resource use and costs. Past audit cycles at King’s College Hospital, Denmark Hill had shown inconsistent evidence of CGA completion inpatient discharge summaries (less than 50%). Junior Doctors in the Health and Ageing (HAU) wards have struggled to sustain the efforts of past audit cycles due to the quick turnover in staff (four-month placements for trainees). This 7th cycle created a multi-faceted approach to solving this problem amongst staff and creating lasting change. Methods: 1. We adopted multidisciplinary team involvement to support Doctors. MDT staff e.g. Nurses, Physiotherapists, Occupational Therapists and Dieticians, were actively encouraged to fill in the CGA document. 2. We added a CGA Document Pro-forma to “Sunrise EPR” (Trust computer system). These CGAs were to automatically be included the discharge summary. 3. Prior to assessing uptake, we used a spot audit questionnaire to assess staff awareness/knowledge of what a CGA was. 4. We designed and placed posters highlighting domains of CGA and MDT roles suited to each domain on geriatric “Health and Ageing Wards” (HAU) in the hospital. 5. We performed an audit of % discharge summaries which include CGA and MDT role input. 6. We nominated ward champions on each ward from each multidisciplinary specialty to monitor and encourage colleagues to actively complete CGAs. 7. We initiated further education of ward staff on CGA's importance by discussion at board rounds and weekly multidisciplinary meetings. Outcomes: 1. The majority of respondents to our spot audit were aware of what a CGA was, but fewer had used the EPR document to complete one. 2. We found that CGAs were not being commenced for nearly 50% of patients discharged on HAU wards and the Frailty Assessment Unit.

Keywords: comprehensive geriatric assessment, CGA, multidisciplinary team, quality of life, mortality

Procedia PDF Downloads 85
309 Evaluating the Potential of Microwave Treatment as a Rock Pre-Conditioning Method in Achieving a More Sustainable Mining

Authors: Adel Ahmadi Hosseini, Fatemeh Tavanaei, Alessandro Navarra, Ferri Hassani

Abstract:

Mining engineering, as a part of geoscience, must address modern concerns. Traditional mining methods incorporate drill and blast technologies, which are followed by different issues, including excessive noise, vibration, air pollution, and safety hazards. Over the past two decades, mining engineers have sought alternative solutions to move from drill and blast to continuous methods to prevent such issues and improve sustainability in mining. Among the suggested methods, microwave treatment has shown promising results by creating micro/macro cracks in the rock structure prior to the operations. This research utilizes an energy-based analysis methodology to evaluate the efficiency of the microwave treatment in improving mining operations. The data analysis shows that increasing the input microwave energy dosage intensifies the rock damage. However, this approach can decrease the energy efficiency of the method by more than 50% in some cases. In this study, rock samples were treated with three power levels (3 kW, 7 kW, and 12 kW) and two energy dosages (20 kWh/t and 50 kWh/t), resulting in six conditions. To evaluate the impact of microwave treatment on the geomechanical behavior of the rocks, Unconfined Compressive Strength (UCS) tests were conducted on the microwave-treated samples, yielding stress-strain curves. Using the stress-strain curves, the effect of the different powers and energy dosages of microwaves are discussed. This research shows the potential of using microwave treatment to lead the industry to more sustainable mining.

Keywords: microwave treatment, microwave energy dosage, sustainable mining, rock fragmentation

Procedia PDF Downloads 41
308 Co-Development of an Assisted Manual Harvesting Tool for Peach Palm That Avoids the Harvest in Heights

Authors: Mauricio Quintero Angel, Alexander Pereira, Selene Alarcón

Abstract:

One of the elements of greatest importance in agricultural production is the harvesting; an activity associated to different occupational health risks such as harvesting in high altitudes, the transport of heavy materials and the application of excessive muscle strain that leads to muscular-bone disorders. Therefore, there is an urgent necessity to improve and validate interventions to reduce exposition and risk to harvesters. This article has the objective of describing the co-development under the ergonomic analysis framework of an assisted manual harvesting tool for peach palm oriented to reduce the risk of death and accidents as it avoid the harvest in heights. The peach palm is a palm tree that is cultivated in Colombia, Perú, Brasil, Costa Rica, among others and that reaches heights of over 20 m, with stipes covered with spines. The fruits are drupes of variable size. For the harvesting of peach palm, in Colombia farmers use the “Marota” or “Climber”, a tool in a closed X shape built in wood, that has two supports adjusted at the stipe, that elevate alternately until reaching a point high enough to grab the bunch that is brought down using a rope. An activity of high risk since it is done at a high altitude without any type of protection and safety measures. The Marota is alternated with a rod, which as variable height between 5 and 12 Meters with a harness system at one end to hold the bunch that is lowered with the whole system (bamboo bunch). The rod is used from the ground or from the Marota in height. As an alternative to traditional tools, the Bajachonta was co-developed with farmers, a tool that employs a traditional bamboo hook system with modifications, to be able to hold it with a rope that passes through a pulley. Once the bunch is hitched, the hook system is detached and this stays attached to the peduncle of the palm tree, afterwards through a pulling force being exerted towards the ground by tensioning the rope, the bunch comes loose to be taken down using a rope and the pulley system to the ground, reducing the risk and efforts in the operation. The bajachonta was evaluated in tree productive zones of Colombia, with innovative farmers, were the adoption is highly probable, with some modifications to improve its efficiency and effectiveness, keeping in mind that the farmers perceive in it an advantage in the reduction of death and accidents by not having to harvest in heights.

Keywords: assisted harvesting, ergonomics, harvesting in high altitudes, participative design, peach palm

Procedia PDF Downloads 408
307 Physics-Informed Convolutional Neural Networks for Reservoir Simulation

Authors: Jiangxia Han, Liang Xue, Keda Chen

Abstract:

Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.

Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation

Procedia PDF Downloads 147
306 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE

Authors: Serin Darwish, Hakim Saibi, Amir Gabr

Abstract:

The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.

Keywords: Al-Ain, arid region, groundwater, microgravity

Procedia PDF Downloads 154
305 Long-Term Exposure, Health Risk, and Loss of Quality-Adjusted Life Expectancy Assessments for Vinyl Chloride Monomer Workers

Authors: Tzu-Ting Hu, Jung-Der Wang, Ming-Yeng Lin, Jin-Luh Chen, Perng-Jy Tsai

Abstract:

The vinyl chloride monomer (VCM) has been classified as group 1 (human) carcinogen by the IARC. Workers exposed to VCM are known associated with the development of the liver cancer and hence might cause economical and health losses. Particularly, for those work for the petrochemical industry have been seriously concerned in the environmental and occupational health field. Considering assessing workers’ health risks and their resultant economical and health losses requires the establishment of long-term VCM exposure data for any similar exposure group (SEG) of interest, the development of suitable technologies has become an urgent and important issue. In the present study, VCM exposures for petrochemical industry workers were determined firstly based on the database of the 'Workplace Environmental Monitoring Information Systems (WEMIS)' provided by Taiwan OSHA. Considering the existence of miss data, the reconstruction of historical exposure techniques were then used for completing the long-term exposure data for SEGs with routine operations. For SEGs with non-routine operations, exposure modeling techniques, together with their time/activity records, were adopted for determining their long-term exposure concentrations. The Bayesian decision analysis (BDA) was adopted for conducting exposure and health risk assessments for any given SEG in the petrochemical industry. The resultant excessive cancer risk was then used to determine the corresponding loss of quality-adjusted life expectancy (QALE). Results show that low average concentrations can be found for SEGs with routine operations (e.g., VCM rectification 0.0973 ppm, polymerization 0.306 ppm, reaction tank 0.33 ppm, VCM recovery 1.4 ppm, control room 0.14 ppm, VCM storage tanks 0.095 ppm and wastewater treatment 0.390 ppm), and the above values were much lower than that of the permissible exposure limit (PEL; 3 ppm) of VCM promulgated in Taiwan. For non-routine workers, though their high exposure concentrations, their low exposure time and frequencies result in low corresponding health risks. Through the consideration of exposure assessment results, health risk assessment results, and QALE results simultaneously, it is concluded that the proposed method was useful for prioritizing SEGs for conducting exposure abatement measurements. Particularly, the obtained QALE results further indicate the importance of reducing workers’ VCM exposures, though their exposures were low as in comparison with the PEL and the acceptable health risk.

Keywords: exposure assessment, health risk assessment, petrochemical industry, quality-adjusted life years, vinyl chloride monomer

Procedia PDF Downloads 195
304 Nursing Professionals’ Perception of the Work Environment, Safety Climate and Job Satisfaction in the Brazilian Hospitals during the COVID-19 Pandemic

Authors: Ana Claudia de Souza Costa, Beatriz de Cássia Pinheiro Goulart, Karine de Cássia Cavalari, Henrique Ceretta Oliveira, Edineis de Brito Guirardello

Abstract:

Background: During the COVID-19 pandemic, nursing represents the largest category of health professionals who were on the front line. Thus, investigating the practice environment and the job satisfaction of nursing professionals during the pandemic becomes fundamental since it reflects on the quality of care and the safety climate. The aim of this study was to evaluate and compare the nursing professionals' perception of the work environment, job satisfaction, and safety climate of the different hospitals and work shifts during the COVID-19 pandemic. Method: This is a cross-sectional survey with 130 nursing professionals from public, private and mixed hospitals in Brazil. For data collection, was used an electronic form containing the personal and occupational variables, work environment, job satisfaction, and safety climate. The data were analyzed using descriptive statistics and ANOVA or Kruskal-Wallis tests according to the data distribution. The distribution was evaluated by means of the Shapiro-Wilk test. The analysis was done in the SPSS 23 software, and it was considered a significance level of 5%. Results: The mean age of the participants was 35 years (±9.8), with a mean time of 6.4 years (±6.7) of working experience in the institution. Overall, the nursing professionals evaluated the work environment as favorable; they were dissatisfied with their job in terms of pay, promotion, benefits, contingent rewards, operating procedures and satisfied with coworkers, nature of work, supervision, and communication, and had a negative perception of the safety climate. When comparing the hospitals, it was found that they did not differ in their perception of the work environment and safety climate. However, they differed with regard to job satisfaction, demonstrating that nursing professionals from public hospitals were more dissatisfied with their work with regard to promotion when compared to professionals from private (p=0.02) and mixed hospitals (p< 0.01) and nursing professionals from mixed hospitals were more satisfied than those from private hospitals (p= 0.04) with regard to supervision. Participants working in night shifts had the worst perception of the work environment related to nurse participation in hospital affairs (p= 0.02), nursing foundations for quality care (p= 0.01), nurse manager ability, leadership and support (p= 0.02), safety climate (p< 0.01), job satisfaction related to contingent rewards (p= 0.04), nature of work (p= 0.03) and supervision (p< 0.01). Conclusion: The nursing professionals had a favorable perception of the environment and safety climate but differed among hospitals regarding job satisfaction for the promotion and supervision domains. There was also a difference between the participants regarding the work shifts, being the night shifts, those with the lowest scores, except for satisfaction with operational conditions.

Keywords: health facility environment, job satisfaction, patient safety, nursing

Procedia PDF Downloads 158
303 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 181
302 Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka

Authors: Christian Ndubisi Madu, Benjamin C. Ozumba, Ifeanyi E. Madu, Valentine E. Nnadi, Ikenna C. Ezeasor

Abstract:

The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability.

Keywords: microgrid, energy efficiency, sustainability, energy security

Procedia PDF Downloads 375
301 An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine

Authors: Jia Li, Huacong Li, Xiaobao Han

Abstract:

Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals.

Keywords: variable cycle engine (VCE), full-state linear model, adaptive control, by-pass ratio

Procedia PDF Downloads 318
300 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 220
299 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search

Authors: Wenbo Wang, Yi-Fang Brook Wu

Abstract:

The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.

Keywords: fact checking, claim verification, deep learning, natural language processing

Procedia PDF Downloads 62
298 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 157
297 Common Health Problems of Filipino Overseas Household Service Workers: Implications for Wellness

Authors: Veronica Ramirez

Abstract:

For over 40 years now, the Philippines has been supplying Household Service Workers (HSWs) globally. As a requirement of the Philippine Overseas Employment Agency (POEA), all Filipinos applying for overseas work undergo medical examination and a certificate of good health is submitted to the foreign employer before hiring. However, there are workplace-related health problems that develop during employment such as musculoskeletal strain or injury, back pain, hypertension and other illnesses. Some workers are in good working conditions but are on call more than 12 hours per day. There are also those who experience heavy physical work with short rest periods or time off. They can also be easily exposed to disease outbreaks and epidemics. It was the objective of this study to determine the common health problems of Filipino Overseas Service Workers and analyze their implications to wellness in the workplace. Specifically, it sought to describe the work conditions of HSWs and determine the work-related factors affecting their health. It also identified the medical care they avail of and how they perceive their health and wellness as determinants of well-being. Finally, it proposes ways to promote wellness among HSWs. This study focused on physical illnesses and does not include mental problems experienced by HSWs. Using a questionnaire, primary data were gathered online and through survey of HSW rehires who were retaking Pre-Departure Orientation Seminar at recruitment agencies. The 2010 Health Benefit Availment data from the Overseas Workers Welfare Administration (OWWA) was also utilized. Descriptive analysis was employed on the data gathered. Key stakeholders in the migration industry were also interviewed. Previous research studies, reports and literature on migration and wellness were used as secondary data. The study found that Filipino overseas HSWs are vulnerable to physical injury and experience body pains such as back, hip and shoulder pain. Long hours of work, work hazards and lack of rest due to poor accommodations can aggravate their physical condition. Although health insurance and health care are available, HSWs are not aware how to avail them. On the basis of the findings, a Wellness Program can be designed that include health awareness, health care availment, occupational ergonomics, safety and health, work and leisure balance, developing emotional intelligence, anger management and spirituality.

Keywords: health, household service worker, overseas, wellness

Procedia PDF Downloads 259
296 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients

Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff

Abstract:

Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.

Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)

Procedia PDF Downloads 359
295 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites

Procedia PDF Downloads 286
294 The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline

Authors: Shiuh-Kuang Yang, Sheam-Chyun Lin, Jyin-Wen Cheng, Deng-Guei Hsu

Abstract:

The torsional mode of guided wave, T(0,1), has been applied to detect characteristics and defects in pipelines, especially in the cases of coated, elevated and buried pipes. The signals of minor corrosions would be covered by the noise, unfortunately, because the coated material and buried medium always induce a strong attenuation of the guided wave. Furthermore, the guided wave would be attenuated more seriously and make the signals hard to be identified when setting the array ring of the transducers on a general corrosion area of the pipe. The objective of this study is then to discuss the effects of the above-mentioned general corrosion on guided wave tests by experiments and signal processing techniques, based on the use of the finite element method, the two-dimensional Fourier transform and the continuous wavelet transform. Results show that the excitation energy would be reduced when the array ring set on the pipe surface having general corrosion. The non-uniformed contact surface also produces the unwanted asymmetric modes of the propagating guided wave. Some of them are even mixing together with T(0,1) mode and increase the difficulty of measurements, especially when a defect or local corrosion merged in the general corrosion area. It is also showed that the guided waves attenuation are increasing with the increasing corrosion depth or the rising inspection frequency. However, the coherent signals caused by the general corrosion would be decayed with increasing frequency. The results obtained from this research should be able to provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.

Keywords: guided wave, finite element method, two-dimensional fourier transform, wavelet transform, general corrosion, localized corrosion

Procedia PDF Downloads 404
293 Exploitation behind the Development of Home Batik Industry in Lawean, Solo, Central Java

Authors: Mukhammad Fatkhullah, Ayla Karina Budita, Cut Rizka Al Usrah, Kanita Khoirun Nisa, Muhammad Alhada Fuadilah Habib, Siti Muslihatul Mukaromah

Abstract:

Batik industry has become one of the leading industries in the economy of Indonesia. Since the recognition of batik as one of cultural wealth and national identity of Indonesia by UNESCO, batik production keeps increasing as a result of increasing demands for batik, whether from domestically or abroad. One of the rapid development batik industries in Indonesia is batik industry in Lawean Village, Solo, Central Java, Indonesia. This batik industry generally uses putting-out system where batik workers work in their own houses. With the implementation of this system, therefore employers don’t have to prepare Environmental Impact Analysis (EIA), social security for workers, overtime payment, space for working, and equipment for working. The implementation of putting-out system causes many problems, starting from environmental pollution, the loss of social rights of workers, and even exploitation of workers by batik entrepreneurs. The data used to describe this reality is the primary data from qualitative research with in-depth interview data collection technique. Informants were determined purposively. The theory used to perform data interpretation is the phenomenology of Alfred Schutz. Both qualitative and phenomenology are used in this study to describe batik workers exploitation in terms of the implementation of putting-out system on home batik industry in Lawean. The research result showed that workers in batik industry sector in Lawean were exploited with the implementation of putting-out system. The workers were strictly employed by the entrepreneurs, so that their job cannot be called 'part-time' job anymore. In terms of labor and time, the workers often work more than 12 hours per day and they often work overtime without receiving any overtime payment. In terms of work safety, the workers often have contact with chemical substances contained in batik making materials without using any protection, such as clothes work, which is worsened by the lack of standard or procedure in work that can cause physical damage, such as burnt and peeled off skin. Moreover, exposure and contamination of chemical materials make the workers and their families vulnerable to various diseases. Meanwhile, batik entrepreneurs did not give any social security (including health cost aid). Besides that, the researchers found that batik industry in home industry sector is not environmentally friendly, even damaging ecosystem because industrial waste disposed without EIA.

Keywords: exploitation, home batik industry, occupational health and safety, putting-out system

Procedia PDF Downloads 319
292 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 336
291 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 175
290 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 153