Search results for: location routing problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9315

Search results for: location routing problem

7965 Outsourcing the Front End of Innovation

Authors: B. Likar, K. Širok

Abstract:

The paper presents a new method for efficient innovation process management. Even though the innovation management methods, tools and knowledge are well established and documented in literature, most of the companies still do not manage it efficiently. Especially in SMEs the front end of innovation - problem identification, idea creation and selection - is often not optimally performed. Our eMIPS methodology represents a sort of "umbrella methodology"- a well-defined set of procedures, which can be dynamically adapted to the concrete case in a company. In daily practice, various methods (e.g. for problem identification and idea creation) can be applied, depending on the company's needs. It is based on the proactive involvement of the company's employees supported by the appropriate methodology and external experts. The presented phases are performed via a mixture of face-to-face activities (workshops) and online (eLearning) activities taking place in eLearning Moodle environment and using other e-communication channels. One part of the outcomes is an identified set of opportunities and concrete solutions ready for implementation. The other also very important result is connected to innovation competences for the participating employees related with concrete tools and methods for idea management. In addition, the employees get a strong experience for dynamic, efficient and solution oriented managing of the invention process. The eMIPS also represents a way of establishing or improving the innovation culture in the organization. The first results in a pilot company showed excellent results regarding the motivation of participants and also as to the results achieved.

Keywords: creativity, distance learning, front end, innovation, problem

Procedia PDF Downloads 328
7964 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing

Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake

Abstract:

Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.

Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors

Procedia PDF Downloads 177
7963 [Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Crank-Nicolson scheme, Lax-Richtmyer theorem, stability, consistency, Peclet number, Greschgorin circle

Procedia PDF Downloads 223
7962 Green Closed-Loop Supply Chain Network Design Considering Different Production Technologies Levels and Transportation Modes

Authors: Mahsa Oroojeni Mohammad Javad

Abstract:

Globalization of economic activity and rapid growth of information technology has resulted in shorter product lifecycles, reduced transport capacity, dynamic and changing customer behaviors, and an increased focus on supply chain design in recent years. The design of the supply chain network is one of the most important supply chain management decisions. These decisions will have a long-term impact on the efficacy and efficiency of the supply chain. In this paper, a two-objective mixed-integer linear programming (MILP) model is developed for designing and optimizing a closed-loop green supply chain network that, to the greatest extent possible, includes all real-world assumptions such as multi-level supply chain, the multiplicity of production technologies, and multiple modes of transportation, with the goals of minimizing the total cost of the chain (first objective) and minimizing total emissions of emissions (second objective). The ε-constraint and CPLEX Solver have been used to solve the problem as a single-objective problem and validate the problem. Finally, the sensitivity analysis is applied to study the effect of the real-world parameters’ changes on the objective function. The optimal management suggestions and policies are presented.

Keywords: closed-loop supply chain, multi-level green supply chain, mixed-integer programming, transportation modes

Procedia PDF Downloads 80
7961 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 194
7960 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients

Procedia PDF Downloads 374
7959 Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies

Authors: Ayse Ozturk

Abstract:

The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling process

Keywords: cognition, collective learning, mathematical modeling competencies, problem-solving

Procedia PDF Downloads 159
7958 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 189
7957 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 217
7956 Dengue Virus Infection Rate in Mosquitoes Collected in Thailand Related to Environmental Factors

Authors: Chanya Jetsukontorn

Abstract:

Dengue hemorrhagic fever is the most important Mosquito-borne disease and the major public health problem in Thailand. The most important vector is Aedes aegypti. Environmental factors such as temperature, relative humidity, and biting rate affect dengue virus infection. The most effective measure for prevention is controlling of vector mosquitoes. In addition, surveillance of field-caught mosquitoes is imperative for determining the natural vector and can provide an early warning sign at risk of transmission in an area. In this study, Aedes aegypti mosquitoes were collected in Amphur Muang, Phetchabun Province, Thailand. The mosquitoes were collected in the rainy season and the dry season both indoor and outdoor. During mosquito’s collection, the data of environmental factors such as temperature, humidity and breeding sites were observed and recorded. After identified to species, mosquitoes were pooled according to genus/species, and sampling location. Pools consisted of a maximum of 10 Aedes mosquitoes. 70 pools of 675 Aedes aegypti were screened with RT-PCR for flaviviruses. To confirm individual infection for determining True infection rate, individual mosquitoes which gave positive results of flavivirus detection were tested for dengue virus by RT-PCR. The infection rate was 5.93% (4 positive individuals from 675 mosquitoes). The probability to detect dengue virus in mosquitoes at the neighbour’s houses was 1.25 times, especially where distances between neighboring houses and patient’s houses were less than 50 meters. The relative humidity in dengue-infected villages with dengue-infected mosquitoes was significantly higher than villages that free from dengue-infected mosquitoes. Indoor biting rate of Aedes aegypti was 14.87 times higher than outdoor, and biting times of 09.00-10.00, 10.00-11.00, 11.00-12.00 yielded 1.77, 1.46, 0.68mosquitoes/man-hour, respectively. These findings confirm environmental factors were related to Dengue infection in Thailand. Data obtained from this study will be useful for the prevention and control of the diseases.

Keywords: Aedes aegypti, Dengue virus, environmental factors, one health, PCR

Procedia PDF Downloads 145
7955 A New OvS Approach in Assembly Line Balancing Problem

Authors: P. Azimi, B. Behtoiy, A. A. Najafi, H. R. Charmchi

Abstract:

According to the previous studies, one of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.

Keywords: assembly line balancing problem, optimization via simulation, production planning

Procedia PDF Downloads 526
7954 Optimization of Topology-Aware Job Allocation on a High-Performance Computing Cluster by Neural Simulated Annealing

Authors: Zekang Lan, Yan Xu, Yingkun Huang, Dian Huang, Shengzhong Feng

Abstract:

Jobs on high-performance computing (HPC) clusters can suffer significant performance degradation due to inter-job network interference. Topology-aware job allocation problem (TJAP) is such a problem that decides how to dedicate nodes to specific applications to mitigate inter-job network interference. In this paper, we study the window-based TJAP on a fat-tree network aiming at minimizing the cost of communication hop, a defined inter-job interference metric. The window-based approach for scheduling repeats periodically, taking the jobs in the queue and solving an assignment problem that maps jobs to the available nodes. Two special allocation strategies are considered, i.e., static continuity assignment strategy (SCAS) and dynamic continuity assignment strategy (DCAS). For the SCAS, a 0-1 integer programming is developed. For the DCAS, an approach called neural simulated algorithm (NSA), which is an extension to simulated algorithm (SA) that learns a repair operator and employs them in a guided heuristic search, is proposed. The efficacy of NSA is demonstrated with a computational study against SA and SCIP. The results of numerical experiments indicate that both the model and algorithm proposed in this paper are effective.

Keywords: high-performance computing, job allocation, neural simulated annealing, topology-aware

Procedia PDF Downloads 118
7953 The Correlation between Hypomania, Creative Potential and Type of Major in Undergraduate Students

Authors: Dhea Kothari

Abstract:

There is an extensive amount of research that has examined the positive relationship between creativity and hypomania in terms of creative accomplishments, eminence, behaviors, occupations. Previous research had recruited participants based on creative occupations or stages of hypomania or bipolar disorder. This thesis focused on the relationship between hypomania and creative cognitive potential, such as divergent thinking and insight problem-solving. This was examined at an undergraduate educational level by recruiting students majoring in art, majoring in natural sciences (NSCI) and those double majoring in arts and NSCI. Participants were given a modified Alternate Uses Task (AUT) to measure divergent thinking and a set of rebus puzzles to measure insight problem-solving. Both tasks involved a level of overcoming functional fixedness. A negative association was observed between hypomania and originality of responses on the AUT when an object with low functional fixedness was given to all participants. On the other hand, a positive association was found between hypomania and originality of responses on the AUT when an object with high functional fixedness was given to the participants majoring in NSCI. Therefore, the research suggests that an increased ability to overcome functional fixedness might be central to individuals with hypomania and individuals with higher creative cognitive potential.

Keywords: creative cognition, convergent thinking, creativity, divergent thinking, insight, major type, problem-solving

Procedia PDF Downloads 94
7952 On the Interactive Search with Web Documents

Authors: Mario Kubek, Herwig Unger

Abstract:

Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-of-the-art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents

Keywords: DocAnalyser, interactive web search, search word extraction, query formulation, source topic detection, topic tracking

Procedia PDF Downloads 393
7951 An Enhanced Harmony Search (ENHS) Algorithm for Solving Optimization Problems

Authors: Talha A. Taj, Talha A. Khan, M. Imran Khalid

Abstract:

Optimization techniques attract researchers to formulate a problem and determine its optimum solution. This paper presents an Enhanced Harmony Search (ENHS) algorithm for solving optimization problems. The proposed algorithm increases the convergence and is more efficient than the standard Harmony Search (HS) algorithm. The paper discusses the novel techniques in detail and also provides the strategy for tuning the decisive parameters that affects the efficiency of the ENHS algorithm. The algorithm is tested on various benchmark functions, a real world optimization problem and a constrained objective function. Also, the results of ENHS are compared to standard HS, and various other optimization algorithms. The ENHS algorithms prove to be significantly better and more efficient than other algorithms. The simulation and testing of the algorithms is performed in MATLAB.

Keywords: optimization, harmony search algorithm, MATLAB, electronic

Procedia PDF Downloads 463
7950 Model of Multi-Criteria Evaluation for Railway Lines

Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek

Abstract:

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Keywords: railway track, multi-criteria methods, evaluation, transportation model

Procedia PDF Downloads 469
7949 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: finite element method, level set, Newton, membrane

Procedia PDF Downloads 330
7948 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 354
7947 The Impact of E-commerce to Improve of Banking Services

Authors: Azzi Mohammed Amin

Abstract:

Summary: This note aims to demonstrate the impact that comes out of electronic commerce to improve the quality of banking services and to answer the questions raised in the problem; it also aims to find out the methods applied in the banks to improve the quality of banking. And it identified a conceptual framework for electronic commerce and electronic banking. In addition, the inclusion of case study includes the Algerian Popular Credit Bank to measure the impact of electronic commerce on the quality of banking services. Has been focusing on electronic banking services as a field of modern knowledge, including fields characterized by high module in content and content, where banking management concluded that the service and style of electronic submission is the only area to compete and improve their quality. After studying the exploration of some of the banks operating in Algeria, and concluded that the majority relies sites, especially on the Internet, to introduce themselves and their affiliates as well as the definition of customer coverage for traditional and electronic, which are still at the beginning of the road where only some plastic cards, e-Banking, Bank of cellular, ATM and fast transfers. The establishment of an electronic network that requires the use of an effective banking system overall settlement of all economic sectors also requires the Algerian banks to be ready to receive this technology through the modernization of management and modernization of services (expand the use of credit cards, electronic money, and expansion of the Internet). As well as the development of the banking media to contribute to the dissemination of electronic banking culture in the community. Has been reached that the use of the communications revolution has made e-banking services inevitable impose itself in determining the future of banks and development, has also been reached that there is the impact of electronic commerce on the improvement of banking services through the provision of the information base and extensive refresher on-site research and development, and apply strategies Marketing, all of which help banks to increase the performance of its services, despite the presence of some of the risks of the means of providing electronic service and not the nature of the service itself and clear impact also by changing the shape or location of service from traditional to electronic which works to reduce and the costs of providing high-quality service and thus access to the largest segment.

Keywords: e-commerce, e-banking, impact e-commerce, B2C

Procedia PDF Downloads 89
7946 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 108
7945 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 274
7944 Solving Flowshop Scheduling Problems with Ant Colony Optimization Heuristic

Authors: Arshad Mehmood Ch, Riaz Ahmad, Imran Ali Ch, Waqas Durrani

Abstract:

This study deals with the application of Ant Colony Optimization (ACO) approach to solve no-wait flowshop scheduling problem (NW-FSSP). ACO algorithm so developed has been coded on Matlab computer application. The paper covers detailed steps to apply ACO and focuses on judging the strength of ACO in relation to other solution techniques previously applied to solve no-wait flowshop problem. The general purpose approach was able to find reasonably accurate solutions for almost all the problems under consideration and was able to handle a fairly large spectrum of problems with far reduced CPU effort. Careful scrutiny of the results reveals that the algorithm presented results better than other approaches like Genetic algorithm and Tabu Search heuristics etc; earlier applied to solve NW-FSSP data sets.

Keywords: no-wait, flowshop, scheduling, ant colony optimization (ACO), makespan

Procedia PDF Downloads 434
7943 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance

Authors: George Zhou, Yunchan Chen, Candace Chien

Abstract:

Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.

Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning

Procedia PDF Downloads 88
7942 Coupling Random Demand and Route Selection in the Transportation Network Design Problem

Authors: Shabnam Najafi, Metin Turkay

Abstract:

Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.

Keywords: epsilon-constraint, multi-objective, network design, stochastic

Procedia PDF Downloads 647
7941 Digital Technologies in Cultural Entrepreneurial Practice in Tech Arts in Morocco: Design or Fine Arts

Authors: Hiba Taim

Abstract:

This abstract falls within the scope of entrepreneurship and regulates cultural and creative entrepreneurship. It tackles the topic of "The Ecosystem in Cultural and Creative Entrepreneurship in North Africa". This piece of work deals with the problem of the absence of the ecosystem in cultural and creative enterprises in North Africa, meaning the absence of a clear structure of the ecosystem in the field of cultural and creative entrepreneurship in North Africa. The aim of this research is to create an integrated ecosystem that brings together all those involved in cultural and creative entrepreneurship in North Africa: from training, financial support, continuing, international organizations, government banks, and means of communication. This study is significant not only because it suggests some activities to develop this system but also because it provides all of the information to cultural and creative entrepreneurs in order for them to create project opportunities and activate the entrepreneurship process. It will also enable the creation of opportunities to work among them and formulate common cultural policies to develop the quality of cultural and creative services in North Africa. This research paper uses a qualitative approach to gather information of good quality about the problem being tackled, as well as studying and analyzing different documents and conducting interviews with cultural entrepreneurs, which will help to collect all the information on the state of the ecosystem in North Africa. For the moment, this paperwork is at the stage of collecting preliminary data regarding the problem and developing appropriate schedules for all the phases of the research in order to be productive and deliver this study in the coming months.

Keywords: cultural innovation, design innovation, design thinking, cultural entrepreneurship

Procedia PDF Downloads 147
7940 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
7939 Rounding Technique's Application in Schnorr Signature Algorithm: Known Partially Most Significant Bits of Nonce

Authors: Wenjie Qin, Kewei Lv

Abstract:

In 1996, Boneh and Venkatesan proposed the Hidden Number Problem (HNP) and proved the most significant bits (MSB) of computational Diffie-Hellman key exchange scheme and related schemes are unpredictable bits. They also gave a method which is a lattice rounding technique to solve HNP in non-uniform model. In this paper, we put forward a new concept that is Schnorr-MSB-HNP. We also reduce the problem of solving Schnorr signature private key with a few consecutive most significant bits of random nonce (used at each signature generation) to Schnorr-MSB-HNP, then we use the rounding technique to solve the Schnorr-MSB-HNP. We have come to the conclusion that if there is a ‘miraculous box’ which inputs the random nonce and outputs 2loglogq (q is a prime number) most significant bits of nonce, the signature private key will be obtained by choosing 2logq signature messages randomly. Thus we get an attack on the Schnorr signature private key.

Keywords: rounding technique, most significant bits, Schnorr signature algorithm, nonce, Schnorr-MSB-HNP

Procedia PDF Downloads 233
7938 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: source point distribution, panel method, Rankine source, desingularized algorithm

Procedia PDF Downloads 365
7937 Promoting Students' Worldview Through Integrative Education in the Process of Teaching Biology in Grades 11 and 12 of High School

Authors: Saule Shazhanbayeva, Denise van der Merwe

Abstract:

Study hypothesis: Nazarbayev Intellectual School of Kyzylorda’s Biology teachers can use STEM-integrated learning to improve students' problem-solving ability and responsibility as global citizens. The significance of this study is to indicate how the use of STEM integrative learning during Biology lessons could contribute to forming globally-minded students who are responsible community members. For the purposes of this study, worldview is defined as a view that is broader than the country of Kazakhstan, allowing students to see the significance of their scientific contributions to the world as global citizens. The context of worldview specifically indicates that most students have never traveled outside of their city or region within Kazakhstan. In order to broaden student understanding, it is imperative that students are exposed to different world views and contrasting ideas within the educational setting of Biology as the science being used for the research. This exposure promulgates students understanding of the significance they have as global citizens alongside the obligations which would rest on them as scientifically minded global citizens. Integrative learning should be Biological Science - with Technology and engineering in the form of problem-solving, and Mathematics to allow improved problem-solving skills to develop within the students of Nazarbayev Intellectual School (NIS) of Kyzylorda. The school's vision is to allow students to realise their role as global citizens and become responsible community members. STEM allows integrations by combining four subject skills to solve topical problems designed by educators. The methods used are based on qualitative analysis: for students’ performance during a problem-solution scenario; and Biology teacher interviews to ascertain their understanding of STEM implementation and willingness to integrate it into current lessons. The research indicated that NIS is ready for a shift into STEM lessons to promote globally responsible students. The only additional need is for proper STEM integrative lesson method training for teachers.

Keywords: global citizen, STEM, Biology, high-school

Procedia PDF Downloads 72
7936 Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body

Authors: Kotaro Miura, Makoto Sakamoto, Yuji Tanabe

Abstract:

We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson’s ratio and the thickness of elastic layer.

Keywords: indentation, contact problem, stress distribution, coating materials, layer-substrate body

Procedia PDF Downloads 156