Search results for: interactive learning environments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9334

Search results for: interactive learning environments

7984 Distance Learning and Modern Challenges of Education Management in Georgia

Authors: Giorgi Gaganidze, Eter Kharaishvili

Abstract:

The atypical crisis has created new challenges in the education system. Globally, including in Georgia, traditional methods of managing the education system have appeared particularly vulnerable. In addition, new opportunities for the introduction of innovative management of learning processes have emerged. The aim of the research is to identify the main challenges in the field of education management in the distance learning process in Georgia and to develop recommendations on the opportunities for the introduction of innovative management. The paper substantiates the relevance of the research, in particular, it notes that in Georgia, as in many countries, distance learning in higher education institutions became particularly crucial during the Covid-19 pandemic. What is more, theoretical and practical aspects of distance learning are less proven, and a number of problems have been identified in the field of education management in Georgia. The article justifies the need to study the challenges of distance learning for the formation of a sustainable education management system. Within the bibliographic research, there are grouped the opinions of researchers on the modern problems of distance learning and education management in the article. Based on scientific papers, the expectations formed about distance learning are studied, and the main focus is on the existing problems of education management during the atypical crisis. The article discusses the forms and opportunities of distance learning in different countries, evaluates different approaches and challenges to distance learning, and justifies the role of education management in effective distance learning. The paper uses various theoretical-methodological tools of research, including desk research on the research topic; Data selection-grouping, problem identification is carried out by analysis, synthesis, sampling, induction, and other methods;SWOT analysis is used to assess the strengths, weaknesses, opportunities, and threats of distance education and management; The level of student satisfaction with distance learning is determined through the Population-based / Census-based approach; The results of the research are processed by SPSS program. Quantitative research and semi-structured interviews with relevant focus groups were conducted to identify working directions for innovative management of distance learning and education. Research has shown that the demand for distance education is growing in Georgia, but the need to introduce innovative education management remains a particular challenge. Conclusions have been made on the introduction of innovative education management, and the relevant recommendations have been developed.

Keywords: distance learning, management challenges, education management, innovative management

Procedia PDF Downloads 125
7983 Undergraduates' Development of Interpersonal and Cooperative Competence in Service-Learning

Authors: Huixuan Xu

Abstract:

The present study was set out to investigate the extent to which and how service-learning fostered a sample of 138 Hong Kong undergraduates’ interpersonal competence and cooperative orientation development. Interpersonal competence is presented when an individual shows empathy with others, provides intelligent advice to others and has practical judgment. Cooperative orientation reflects individuals’ willingness to work with others to achieve common goals. A quality service-learning programme may exhibit the features of provision of meaningful service, close link to curriculum, continuous reflection, youth voice, and diversity. Mixed methods were employed in the present study. Pre-posttest survey was administered to capture individual undergraduates’ development of interpersonal competence and cooperative orientation over a period of four months. The respondents’ evaluation of service-learning elements was administered in the post-test survey. Focus groups were conducted after the end of the service-learning to further explore how the certain service-learning elements promoted individual undergraduates’ development of interpersonal competence and cooperative orientation. Three main findings were reported from the study. (1) The scores of interpersonal competence increased significantly from the pretest to the posttest, while the change of cooperative orientation was not significant. (2) Cooperative orientation and interpersonal competence were correlated positively with the overall course quality respectively, which suggested that the more a service-learning course complied with quality practice, the students became more competent in interpersonal competence and cooperative orientation. (3) The following service-learning elements showed higher impacts: (a) direct contact with service recipients, which engaged students in practicing interpersonal skills; (b) individual participants’ being exposed to a situation that required communication and dialogue with people from diverse backgrounds with different views; (c) experiencing interpersonal conflicts among team members and having the conflicts solved; (d) students’ taking a leading role in a project-based service. The present study provides compelling evidence about what elements in a service-learning program may foster undergraduates’ development of cooperative orientation and interpersonal competence. Implications for the design of service-learning programmes are provided.

Keywords: undergraduates, interpersonal competence, cooperation orientation, service-learning

Procedia PDF Downloads 256
7982 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 71
7981 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program

Authors: Bobby Hoffman

Abstract:

One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.

Keywords: assessment, distance learning, educational psychology, knowledge transfer

Procedia PDF Downloads 177
7980 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 435
7979 The Effect of Problem-Based Mobile-Assisted Tasks on Spoken Intelligibility of English as a Foreign Language Learners

Authors: Loghman Ansarian, Teoh Mei Lin

Abstract:

In an attempt to increase oral proficiency of Iranian EFL learners, the researchers compared the effect of problem-based mobile-assisted language learning with the conventional language learning approach (Communicative Language Teaching) in Iran. The experimental group (n=37) went through PBL instruction and the control group (n=33) went through conventional instruction. The results of quantitative data analysis after 26 sessions of treatment revealed that PBL could positively affect participants' knowledge of grammar, vocabulary, spoken fluency, and pronunciation; however, in terms of task achievement, no significant effect was found. This study can have pedagogical implications for language teachers, and material developers.

Keywords: problem-based learning, spoken intelligibility, Iranian EFL context, cognitive learning

Procedia PDF Downloads 175
7978 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 211
7977 Building on Local People Capacities as Key Resources in Making Livable Environments

Authors: Ouassim Chemrouk, Naima Chabbi-Chemrouk

Abstract:

Contemporary settlements and urban places are becoming increasingly complex involving technologically advanced building materials, and mechanical systems for controlling environmental quality such as thermal comfort, lighting, acoustics and other building performances. These systems, which rely exclusively on the utilization of nonrenewable energy are often expensive and environment pollutants. The proposed paper illustrates the important role of traditional knowledge and practice and what is sometimes called intangible cultural heritage assume in the design of the built environment. It shows that some traditional “ways of doing” that are transmitted at local scales from generation to generation could be built upon to become key resources for more livable urban places. Based on evidence from documentary sources and field surveys, it also shows how different attempts were made to translate some traditional practices and local know-how in the proposal of new urban schemes.

Keywords: key resource, know-how, local people, capacity building, liveable built environments

Procedia PDF Downloads 210
7976 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.

Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation

Procedia PDF Downloads 172
7975 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 550
7974 Challenges to Collaborative Learning in Architectural Education in the Middle East

Authors: Lizmol Mathew, Divya Thomas, Shiney Rajan

Abstract:

Educational paradigm all over the globe is undergoing significant reform today. Because of this, so-called flipped classroom model is becoming increasingly popular in higher education. Flipped classroom has proved to be more effective than traditional lecture based model as flipped classroom model promotes active learning by encouraging students to work on in collaborative tasks and peer-led learning during the class-time. However, success of flipped classrooms relies on students’ ability and their attitudes towards collaboration and group work. This paper examines: 1) Students’ attitudes towards collaborative learning; 2) Main challenges to successful collaboration from students’ experience and 3) Students’ perception of criteria for successful team work. 4) Recommendations for enhancing collaborative learning. This study’s methodology involves quantitative analysis of surveys collected from students enrolled in undergraduate Architecture program at Qatar University. Analysis indicates that in general students enrolled in the program do not have positive perceptions or experiences associated with group work. Positive and negative factors that influence collaborative learning in higher education have been identified. Recommendations for improving collaborative work experience have been proposed.

Keywords: architecture, collaborative learning, female, group work, higher education, Middle East, Qatar, student experience

Procedia PDF Downloads 331
7973 Use of Cloud-Based Virtual Classroom in Connectivism Learning Process to Enhance Information Literacy and Self-Efficacy for Undergraduate Students

Authors: Kulachai Kultawanich, Prakob Koraneekij, Jaitip Na-Songkhla

Abstract:

The way of learning has been changed into a new paradigm since the improvement of network and communication technology, so learners have to interact with massive amount of the information. Thus, information literacy has become a critical set of abilities required by every college and university in the world. Connectivism is considered to be an alternative way to design information literacy course in online learning environment, such as Virtual Classroom (VC). With the change of learning pedagogy, VC is employed to improve the social capability by integrating cloud-based technology. This paper aims to study the use of Cloud-based Virtual Classroom (CBVC) in Connectivism learning process to enhance information literacy and self-efficacy of twenty-one undergraduate students who registered in an e-publishing course at Chulalongkorn University. The data were gathered during 6 weeks of the study by using the following instruments: (1) Information literacy test (2) Information literacy rubrics (3) Information Literacy Self-Efficacy (ILSE) Scales and (4) Questionnaire. The result indicated that students have information literacy and self-efficacy posttest mean scores higher than pretest mean scores at .05 level of significant after using CBVC in Connectivism learning process. Additionally, the study identified that the Connectivism learning process proved useful for developing information rich environment and a sense of community, and the CBVC proved useful for developing social connection.

Keywords: cloud-based, virtual classroom, connectivism, information literacy

Procedia PDF Downloads 453
7972 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria

Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike

Abstract:

The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.

Keywords: influence, land, trend, value

Procedia PDF Downloads 364
7971 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing

Procedia PDF Downloads 164
7970 The Use of the Mediated Learning Experience in Response of Special Needs Education

Authors: Maria Luisa Boninelli

Abstract:

This study wants to explore the effects of a mediated intervention program in a primary school. The participants where 120 students aged 8-9, half of them Italian and half immigrants of first or second generation. The activities consisted on the cognitive enhancement of the participants through Feuerstein’s Instrumental Enrichment, (IE) and on an activity centred on body awareness and mediated learning experience. Given that there are limited studied on learners in remedial schools, the current study intented to hypothesized that participants exposed to mediation would yiel a significant improvement in cognitive functioning. Hypothesis One proposed that, following the intervention, improved Q1vata scores of the participants would occur in each of the groups. Hypothesis two postulated that participants within the Mediated Learning Experience would perform significantly better than those group of control. For the intervention a group of 60 participants constituted a group of Mediation sample and were exposed to Mediated Learning Experience through Enrichment Programm. Similiary the other 60 were control group. Both the groups have students with special needs and were exposed to the same learning goals. A pre-experimental research design, in particular a one-group pretest-posttest approach was adopted. All the participants in this study underwent pretest and post test phases whereby they completed measures according to the standard instructions. During the pretest phase, all the participants were simultaneously exposed to Q1vata test for logical and linguistic evaluation skill. During the mediation intervention, significant improvement was demonstrated with the group of mediation. This supports Feuerstein's Theory that initial poor performance was a result of a lack of mediated learning experience rather than inherent difference or deficiencies. Furthermore the use of an appropriate mediated learning enabled the participants to function adequately.

Keywords: cognitive structural modifiability, learning to learn, mediated learning experience, Reuven Feuerstein, special needs

Procedia PDF Downloads 378
7969 Exploring Moroccan Teachers Beliefs About Multilingualism

Authors: Belkhadir Radouane

Abstract:

In this study, author tried to explore the beliefs of some Moroccan teachers working in the delegations of Safi and Youcefia about the usefulness of first and second languages in learning the third language. More specifically, author attempted to see the extent to which these teachers believe that a first and second language can serve students in learning a third one. The first language in this context is Arabic, the second is French, and the third is English. The teachers’ beliefs were gathered through a questionnaire that was addressed via Google Forms. Then, the results were analyzed using the same application. It was found that teachers are positive about the usefulness of the first and second language in learning the third one, but most of them rarely use in a conscious way activities that serve this purpose.

Keywords: Bilinguilism, teachers beliefs, English as ESL, Morocco

Procedia PDF Downloads 55
7968 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 251
7967 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 198
7966 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 388
7965 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships

Authors: Jake Gonzalez, Tommy Dang

Abstract:

This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.

Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights

Procedia PDF Downloads 61
7964 Learners' Attitudes and Expectations towards Digital Learning Paths

Authors: Eirini Busack

Abstract:

Since the outbreak of the Covid-19 pandemic and the sudden transfer to online teaching, teachers have struggled to reconstruct their teaching and learning materials to adapt them to the new reality of online teaching and learning. Consequently, the pupils’ learning was disrupted during this orientation phase. Due to the above situation, teachers from all fields concluded that it is vital that their pupils should be able to continue their learning even without the teacher being physically present. Various websites and applications have been in use since then in hope that pupils will still enjoy a qualitative education; unfortunately, this was often not the case. To address this issue, it was therefore decided to focus the research on the development of digital learning paths. The fundamentals of these learning paths include the implementation of scenario-based learning (digital storytelling), the integration of media-didactic theory to make it pedagogically appropriate for learners, alongside instructional design knowledge and the drive to promote autonomous learners. This particular research is being conducted within the frame of the research project “Sustainable integration of subject didactic digital teaching-learning concepts” (InDiKo, 2020-2023), which is currently conducted at the University of Education Karlsruhe and investigates how pre-service teachers can acquire the necessary interdisciplinary and subject-specific media-didactic competencies to provide their future learners with digitally enhanced learning opportunities, and how these competencies can be developed continuously and sustainably. As English is one of the subjects involved in this project, the English Department prepared a seminar for the pre-service secondary teachers: “Media-didactic competence development: Developing learning paths & Digital Storytelling for English grammar teaching.” During this seminar, the pre-service teachers plan and design a Moodle-based differentiated lesson sequence on an English grammar topic that is to be tested by secondary school pupils. The focus of the present research is to assess the secondary school pupils’ expectations from an English grammar-focused digital learning path created by pre-service English teachers. The nine digital learning paths that are to be distributed to 25 pupils were produced over the winter and the current summer semester as the artifact of the seminar. Finally, the data to be quantitatively analysed and interpreted derive from the online questionnaires that the secondary school pupils fill in so as to reveal their expectations on what they perceive as a stimulating and thus effective grammar-focused digital learning path.

Keywords: digital storytelling, learning paths, media-didactics, autonomous learning

Procedia PDF Downloads 80
7963 Constructivist Grounded Theory of Intercultural Learning

Authors: Vaida Jurgile

Abstract:

Intercultural learning is one of the approaches taken to understand the cultural diversity of the modern world and to accept changes in cultural identity and otherness and the expression of tolerance. During intercultural learning, students develop their abilities to interact and communicate with their group members. These abilities help to understand social and cultural differences, to form one’s identity, and to give meaning to intercultural learning. Intercultural education recognizes that a true understanding of differences and similarities of another culture is necessary in order to lay the foundations for working together with others, which contributes to the promotion of intercultural dialogue, appreciation of diversity, and cultural exchange. Therefore, it is important to examine the concept of intercultural learning, revealed through students’ learning experiences and understanding of how this learning takes place and what significance this phenomenon has in higher education. At a scientific level, intercultural learning should be explored in order to uncover the influence of cultural identity, i.e., intercultural learning should be seen in a local context. This experience would provide an opportunity to learn from various everyday intercultural learning situations. Intercultural learning can be not only a form of learning but also a tool for building understanding between people of different cultures. The research object of the study is the process of intercultural learning. The aim of the dissertation is to develop a grounded theory of the process of learning in an intercultural study environment, revealing students’ learning experiences. The research strategy chosen in this study is a constructivist grounded theory (GT). GT is an inductive method that seeks to form a theory by applying the systematic collection, synthesis, analysis, and conceptualization of data. The targeted data collection was based on the analysis of data provided by previous research participants, which revealed the need for further research participants. During the research, only students with at least half a year of study experience, i.e., who have completed at least one semester of intercultural studies, were purposefully selected for the research. To select students, snowballing sampling was used. 18 interviews were conducted with students representing 3 different fields of sciences (social sciences, humanities, and technology sciences). In the process of intercultural learning, language expresses and embodies cultural reality and a person’s cultural identity. It is through language that individual experiences are expressed, and the world in which Others exist is perceived. The increased emphasis is placed on the fact that language conveys certain “signs’ of communication and perception with cultural value, enabling the students to identify the Self and the Other. Language becomes an important tool in the process of intercultural communication because it is only through language that learners can communicate, exchange information, and understand each other. Thus, in the process of intercultural learning, language either promotes interpersonal relationships with foreign students or leads to mutual rejection.

Keywords: intercultural learning, grounded theory, students, other

Procedia PDF Downloads 65
7962 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 67
7961 A Tool for Rational Assessment of Dynamic Trust in Networked Organizations

Authors: Simon Samwel Msanjila

Abstract:

Networked environments which provides platforms and environments for business organizations are configured in different forms depending on many factors including life time, member characteristics, communication structure, and business objectives, among others. With continuing advances in digital technologies the distance has become a less barrier for business minded collaboration among organizations. With the need and ease to make business collaborate nowadays organizations are sometimes forced to co-work with others that are either unknown or less known to them in terms of history and performance. A promising approach for sustaining established collaboration has been establishment of trust relationship among organizations based on assessed trustworthiness for each participating organization. It has been stated in research that trust in organization is dynamic and thus assessment of trust level must address such dynamic nature. This paper assess relevant aspects of trust and applies the concepts to propose a semi-automated system for assessing the Sustainability and Evolution of trust in organizations participating in specific objective in a networked organizations environment.

Keywords: trust evolution, trust sustainability, networked organizations, dynamic trust

Procedia PDF Downloads 431
7960 The Strategy of Teaching Digital Art in Classroom as a Way of Enhancing Pupils’ Artistic Creativity

Authors: Aber Salem Aboalgasm, Rupert Ward

Abstract:

Teaching art by digital means is a big challenge for the majority of teachers of art and artistic design courses in primary education schools. These courses can clearly identify relationships between art, technology and creativity in the classroom .The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom in order to improve creative ability in pupils aged between 9 and 11 years; it also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning drawing and using an e-drawing package, and for teachers who are interested in teaching their students modern digital art, and improving children’s creativity. This model is designed to show the strategy of teaching art through technology, in order for children to learn how to be creative. This will also help education providers to make suitable choices about which technological approaches they should choose to teach students and enhance their creative ability. To define the digital art tools that can benefit children develop their technical skills. It is also expected that use of this model will help to develop social interactive qualities that may improve intellectual ability.

Keywords: digital tools, motivation, creative activity, technical skill

Procedia PDF Downloads 463
7959 Are Some Languages Harder to Learn and Teach Than Others?

Authors: David S. Rosenstein

Abstract:

The author believes that modern spoken languages should be equally difficult (or easy) to learn, since all normal children learning their native languages do so at approximately the same rate and with the same competence, progressing from easy to more complex grammar and syntax in the same way. Why then, do some languages seem more difficult than others? Perhaps people are referring to the written language, where it may be true that mastering Chinese requires more time than French, which in turn requires more time than Spanish. But this may be marginal, since Chinese and French children quickly catch up to their Spanish peers in reading comprehension. Rather, the real differences in difficulty derive from two sources: hardened L1 language habits trying to cope with contrasting L2 habits; and unfamiliarity with unique L2 characteristics causing faulty expectations. It would seem that effective L2 teaching and learning must take these two sources of difficulty into consideration. The author feels that the latter (faulty expectations) causes the greatest difficulty, making effective teaching and learning somewhat different for each given foreign language. Examples from Chinese and other languages are presented.

Keywords: learning different languages, language learning difficulties, faulty language expectations

Procedia PDF Downloads 533
7958 Secure Intelligent Information Management by Using a Framework of Virtual Phones-On Cloud Computation

Authors: Mohammad Hadi Khorashadi Zadeh

Abstract:

Many new applications and internet services have been emerged since the innovation of mobile networks and devices. However, these applications have problems of security, management, and performance in business environments. Cloud systems provide information transfer, management facilities, and security for virtual environments. Therefore, an innovative internet service and a business model are proposed in the present study for creating a secure and consolidated environment for managing the mobile information of organizations based on cloud virtual phones (CVP) infrastructures. Using this method, users can run Android and web applications in the cloud which enhance performance by connecting to other CVP users and increases privacy. It is possible to combine the CVP with distributed protocols and central control which mimics the behavior of human societies. This mix helps in dealing with sensitive data in mobile devices and facilitates data management with less application overhead.

Keywords: BYOD, mobile cloud computing, mobile security, information management

Procedia PDF Downloads 317
7957 Literature Review: Adversarial Machine Learning Defense in Malware Detection

Authors: Leidy M. Aldana, Jorge E. Camargo

Abstract:

Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.

Keywords: Malware, adversarial, machine learning, defense, attack

Procedia PDF Downloads 63
7956 E-Learning Platform for School Kids

Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.

Abstract:

E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.

Keywords: math, education games, e-learning platform, artificial intelligence

Procedia PDF Downloads 156
7955 IoT Based Soil Moisture Monitoring System for Indoor Plants

Authors: Gul Rahim Rahimi

Abstract:

The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.

Keywords: IoT-based, soil moisture monitoring, indoor plants, water management

Procedia PDF Downloads 51