Search results for: high viscosity ratio
22092 High-Speed Electrical Drives and Applications: A Review
Authors: Vaishnavi Patil, K. M. Kurundkar
Abstract:
Electrical Drives play a vital role in industry development and applications. Drives have an inevitable part in the needs of various fields such as industry, commercial, and domestic applications. The development of material technology, Power Electronics devices, and accompanying applications led to the focus of industry and researchers on high-speed electrical drives. Numerous articles charted the applications of electrical machines and various converters for high-speed applications. The choice depends on the application under study. This paper goals to highlight high-speed applications, main challenges, and some applications of electrical drives in the field.Keywords: high-speed, electrical machines, drives, applications
Procedia PDF Downloads 6822091 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forword, membrane, solar, water treatment
Procedia PDF Downloads 8122090 A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications
Authors: Noha Al Majid, Said Mazer, Moulhime El Bekkali, Catherine Algani, Mahmoud Mehdi
Abstract:
A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB.Keywords: low noise amplifier, V-band, MMIC technology, LNA, amplifier, cascode, pseudomorphic high electron mobility transistor (PHEMT), high linearity
Procedia PDF Downloads 51522089 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites
Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo
Abstract:
Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst
Procedia PDF Downloads 37722088 Bio-Surfactant Production and Its Application in Microbial EOR
Authors: A. Rajesh Kanna, G. Suresh Kumar, Sathyanaryana N. Gummadi
Abstract:
There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.Keywords: bio-surfactant, bacteria, interfacial tension, sand column
Procedia PDF Downloads 40222087 Comparison of the Anthropometric Obesity Indices in Prediction of Cardiovascular Disease Risk: Systematic Review and Meta-analysis
Authors: Saeed Pourhassan, Nastaran Maghbouli
Abstract:
Statement of the problem: The relationship between obesity and cardiovascular diseases has been studied widely(1). The distribution of fat tissue gained attention in relation to cardiovascular risk factors during lang-time research (2). American College of Cardiology/American Heart Association (ACC/AHA) is widely and the most reliable tool to be used as a cardiovascular risk (CVR) assessment tool(3). This study aimed to determine which anthropometric index is better in discrimination of high CVR patients from low risks using ACC/AHA score in addition to finding the best index as a CVR predictor among both genders in different races and countries. Methodology & theoretical orientation: The literature in PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched by two independent investigators using the keywords "anthropometric indices," "cardiovascular risk," and "obesity." The search strategy was limited to studies published prior to Jan 2022 as full-texts in the English language. Studies using ACC/AHA risk assessment tool as CVR and those consisted at least 2 anthropometric indices (ancient ones and novel ones) are included. Study characteristics and data were extracted. The relative risks were pooled with the use of the random-effect model. Analysis was repeated in subgroups. Findings: Pooled relative risk for 7 studies with 16,348 participants were 1.56 (1.35-1.72) for BMI, 1.67(1.36-1.83) for WC [waist circumference], 1.72 (1.54-1.89) for WHR [waist-to-hip ratio], 1.60 (1.44-1.78) for WHtR [waist-to-height ratio], 1.61 (1.37-1.82) for ABSI [A body shape index] and 1.63 (1.32-1.89) for CI [Conicity index]. Considering gender, WC among females and WHR among men gained the highest RR. The heterogeneity of studies was moderate (α²: 56%), which was not decreased by subgroup analysis. Some indices such as VAI and LAP were evaluated just in one study. Conclusion & significance: This meta-analysis showed WHR could predict CVR better in comparison to BMI or WHtR. Some new indices like CI and ABSI are less accurate than WHR and WC. Among women, WC seems to be a better choice to predict cardiovascular disease risk.Keywords: obesity, cardiovascular disease, risk assessment, anthropometric indices
Procedia PDF Downloads 10222086 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice
Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza
Abstract:
Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E
Procedia PDF Downloads 42722085 Preparation and Characterization of Calcium Phosphate Cement
Authors: W. Thepsuwan, N. Monmaturapoj
Abstract:
Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution.Keywords: calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties
Procedia PDF Downloads 39022084 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement
Authors: Chien-Song Chyang
Abstract:
For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle
Procedia PDF Downloads 17922083 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON
Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian
Abstract:
Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour
Procedia PDF Downloads 31622082 Effect of Water Hyacinth on Behaviour of Reinforced Concrete Beams
Authors: Ahmed Shaban Abdel Hay Gabr
Abstract:
Water hyacinth (W-H) has an adverse effect on Nile river in Egypt, it absorbs high quantities of water, it needs to serve these quantities especially at this time, so by burning W-H, it can be used in concrete mix to reduce the permeability of concrete and increase both the compressive and splitting strength. The effect of W-H on non-structural concrete properties was studied, but there is a lack of studies about the behavior of structural concrete containing W-H. Therefore, in the present study, the behavior of 15 RC beams with 100 x 150 mm cross section, 1250 mm span, different reinforcement ratios and different W-H ratios were studied by testing the beams under two-point bending test. The test results showed that Water Hyacinth is compatible with RC which yields promising results.Keywords: beams, reinforcement ratio, reinforced concrete, water hyacinth
Procedia PDF Downloads 44722081 Students Perceptions on the Relevance of High School Mathematics in University Education in South Africa
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
In this study we investigated the relevance of high school mathematics in university education. The paper particularly focused on whether the concepts taught in high school are enough for engineering courses at diploma level. The study identified particular concepts that are required in engineering courses whether they were adequately covered in high school. A questionnaire was used to investigate whether relevant topics were covered in high school. The respondents were 228 first year students at the Central University of Technology in the Faculty of Engineering and Information Technology. The study indicates that there are some topics such as integration, complex numbers and matrices that are not done at high schools and are required in engineering courses at university. It is further observed that some students did not cover the topics that are in the current syllabus. Female students enter the university less prepared than their male counterparts. More than 30% of the respondents in this study felt that high school mathematics was not useful for them to be able to do engineering courses.Keywords: high school mathematics, university education, SPSS package, students' perceptions
Procedia PDF Downloads 28522080 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms
Authors: Saurav S. Rath, Birendra K. David
Abstract:
Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.Keywords: computational fluid dynamics, morphology, quality-by-design, rheology
Procedia PDF Downloads 26922079 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation
Authors: Yongjian Gu
Abstract:
Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ
Procedia PDF Downloads 19622078 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study
Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo
Abstract:
This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.Keywords: cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization
Procedia PDF Downloads 26522077 Determining Factors Influencing the Total Funding in Islamic Banking of Indonesia
Authors: Euphrasia Susy Suhendra, Lies Handrijaningsih
Abstract:
The banking sector as an intermediary party or intermediaries occupies a very important position in bridging the needs of working capital investment in the real sector with funds owner. This will certainly make money more effectively to improve the economic value added. As an intermediary, Islamic banks raise funds from the public and then distribute in the form of financing. In practice, the distribution of funding that is run by Islamic Banking is not as easy as, in theory, because, in fact, there are many financing problems; some are caused by lacking the assessment and supervision of banks to customers. This study aims to analyze the influence of the Third Party Funds, Return on Assets (ROA), Non Performing Financing (NPF), and Financing Deposit Ratio (FDR) to Total Financing provided to the Community by Islamic Banks in Indonesia. The data used is monthly data released by Bank of Indonesia in Islamic Banking Statistics in the time period of January 2009 - December 2013. This study uses cointegration test to see the long-term relationship, and use error correction models to examine the relationship of short-term. The results of this study indicate that the Third Party Fund has a short-term effect on total funding, Return on Assets has a long term effect on the total financing, Non Performing Financing has long-term effects of total financing, and Financing deposit ratio has the effect of short-term and long-term of the total financing provided by Islamic Banks in Indonesia.Keywords: Islamic banking, third party fund, return on asset, non-performing financing, financing deposit ratio
Procedia PDF Downloads 46622076 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal
Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das
Abstract:
The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.Keywords: briquetting reduction, lean grade coal, smelting reduction, TMO
Procedia PDF Downloads 31922075 Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake
Authors: Naohiro Nakamura, Takuya Kinoshita, Hiroshi Fukuyama
Abstract:
The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration.Keywords: ARX model, response analysis, SRC building, the 2011 off the Pacific Coast of Tohoku Earthquake
Procedia PDF Downloads 16422074 Pressure-Robust Approximation for the Rotational Fluid Flow Problems
Authors: Medine Demir, Volker John
Abstract:
Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces
Procedia PDF Downloads 6722073 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 and CO) Production
Authors: Bedarnia Ishak
Abstract:
In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x) Td (Ni2+xFe3+2-x) OhO2-4 influenced the reducibility of materials and thus their catalytic performance.Keywords: NiFe2O4, dry reforming of methane, spinel oxide, oxide zenc
Procedia PDF Downloads 28222072 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics
Authors: Sleman Yahya Rasul
Abstract:
Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties
Procedia PDF Downloads 4322071 Strain Based Failure Criterion for Composite Notched Laminates
Authors: Ibrahim A. Elsayed, Mohamed H. Elalfy, Mostafa M. Abdalla
Abstract:
A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis.Keywords: anisotropy ratio, failure criteria, notched laminates, Omni-strain envelope, savin’s solution
Procedia PDF Downloads 11622070 Effect of Different Temperatures and Cold Storage on Pupaes Apanteles gelechiidivoris Marsh (Hymenoptera: Braconidae) Parasitoid of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)
Authors: Jessica Morales Perdomo, Daniel Rodriguez Caicedo, Fernando Cantor Rincon
Abstract:
Tuta absoluta known as the tomato leaf miner, is one of the main pests in tomato crops in South America and the main pest in many European countries. Apanteles gelechiidivoris is a parasitoid of third instar Tuta absoluta larvae. Our studies have demonstrated that this parasitoid can cause up to 80% mortality of T. absoluta larvae in the field. We investigated cold storage of A. gelechiidivoris pupae as a method of mass production of this parasitoid. This storage method does not interfere with biological characteristics of the parasitoid. In this study, we evaluated the effect of different temperatures (4, 8 and 12°C) and different time duration (7, 14, 21 or 28 days) of cold storage on biological parameters of A. gelechiidivoris pupae and adults. The biological parameters of the parasitoid evaluated were: adult emergence time, lifespan, parasitism percentage and sex ratio. We found that the adult emergence time was delayed when the parasitoid pupae were stored at 4°C and 8°C. The shortest adult emergence was recorded when pupae were stored for seven days. The lowest adult emergence was found for pupae stored at 4°C and decreased significantly as the days of storage increased. We found high percentages of adult emergence when pupae were stored at 8°C and 12°C for seven days. Adult lifespan decreased with increasing days of cold storage. Adults emerging from pupae stored at 8°C during seven and 14 days showed the longest lifespan (nine days). The lowest parasitism rate was recorded at 4°C at every time point. The highest percentage of parasitism (80%) was found at 8°C during seven days of storage. The treatments had no effect on adults the sex ratio. The results suggest that A. gelechiidivoris pupae can be stored for up to 14 days at 8°C without affecting the efficacy of the parasitoid in the field.Keywords: biological control, cold storage, massive rearing, quality control
Procedia PDF Downloads 37322069 Metal-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuels: Analysis from Molecular Dynamics Simulations
Authors: Aibek Kukpayev, Dhawal Shah
Abstract:
Combustion of sour fuels containing high amount of sulfur leads to the formation of sulfur oxides, which adversely harm the environment and has a negative impact on human health. Considering this, several legislations have been imposed to bring down the sulfur content in fuel to less than 10 ppm. In recent years, novel deep eutectic solvents (DESs) have been developed to achieve deep desulfurization, particularly to extract thiophenic compounds from liquid fuels. These novel DESs, considered as analogous to ionic liquids are green, eco-friendly, inexpensive, and sustainable. We herein, using molecular dynamic simulation, analyze the interactions of metal-based DESs with model oil consisting of thiophenic compounds. The DES used consists of polyethylene glycol (PEG-200) as a hydrogen bond donor, choline chloride (ChCl) or tetrabutyl ammonium chloride (TBAC) as a hydrogen bond acceptor, and cobalt chloride (CoCl₂) as metal salt. In particular, the combination of ChCl: PEG-200:CoCl₂ at a ratio 1:2:1 and the combination of TBAC:PEG-200:CoCl₂ at a ratio 1:2:0.25 were simulated, separately, with model oil consisting of octane and thiophenes at 25ᵒC and 1 bar. The results of molecular dynamics simulations were analyzed in terms of interaction energies between different components. The simulations revealed a stronger interaction between DESs/thiophenes as compared with octane/thiophenes, suggestive of an efficient desulfurization process. In addition, our analysis suggests that the choice of hydrogen bond acceptor strongly influences the efficiency of the desulfurization process. Taken together, the results also show the importance of the metal ion, although present in small amount, in the process, and the role of the polymer in desulfurization of the model fuel.Keywords: deep eutectic solvents, desulfurization, molecular dynamics simulations, thiophenes
Procedia PDF Downloads 14622068 Mechanical and Physical Properties of Wood Composite Panel from Recycled Plastic and Sawdust of Cordia alliodora (Ruiz and Pav.)
Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba, Usman Shehu
Abstract:
Wood plastic composite boards were made from sawn dust of Cordia alliodora and recycled polyethylene at a mixing ratio of 1.5ratio1, 2.5ratio1 and 3.5ratio1 and nominal densities of 600 kilograms per meter cube, 700 kilograms per meter cube, and 800 kilograms per meter cube, The material was hot pressed at 150-degree celsius to produce board of 250 millimeter by 250 millimeter by 6 millimeter of which 18 boards were produced. The experiment was subject to 3 by 3 factorial experiments in Completely Randomised Design (CRD). Analysis of variance and Duncan Multiple Range Test (DMRT) was adopted by 3 by 3 at 5 percent probability. The strength properties of the boards such as modulus of rupture (MOR) and modulus of elasticity (MOE) were investigated, while the dimensional properties of the board such as the water absorption (WA) and thickness swelling (TS) were as well determined after 12hrs and 24hrs of water immersion. The result showed that the mean values of MOE ranged from 9100.73 Newtons per square millimeters to 12086.96 Newtons per square millimeters while MOR values ranged from 48.26 Newtons per square millimeters to 103.09 Newtons per square millimeters. The values of WA and TS after 12hrs immersion ranged from 1.21 percent to 1.56 percent and 0.00 percent to 0.13 percent, respectively. The values of WA and TS after 24hrs of water immersion ranged from 1.66 percent to 2.99 percent and 0.02 percent to 0.18 percent, respectively. The higher the value of board density and the high-density polythene /sawdust ratio, the stronger, the stiffer and more dimensionally stable the wood plastic composite boards obtained. In addition, as the density of the board increases, the strength property of the boards increases. Hence the board will be suitable for internal construction materials.Keywords: wood Plastic composite, modulus of rupture, modulus of elasticity, dimensional stability
Procedia PDF Downloads 17822067 Anchorage Effect on Axial Strength of Fiber Reinforced Polymers Confined Rectangular Columns
Authors: Yavuz Yardim
Abstract:
FRP systems have been largely used to improve the performance of structural members, due to their high strength to weight ratio and corrosion resistance. Application of this strengthening procedure in circular columns has resulted quite beneficial in increasing their seismic and axial capacity. Whereas in the rectangular ones, strength enhancement was considerably less due to stress concentration in the corner. In this work three anchorage configurations are tested for their efficiency in increasing the uniformity of confinement pressure in the CFRP strengthened non-circular sections. There is a slight increase in the axial strength of specimens as a general trend. More specifically fan anchorage reached an increase of 17.5% compared to the unanchored specimens. The study shows that uniformity of confining pressure has increased by adding anchorage.Keywords: rectangular columns, FRP, confinement, anchorage
Procedia PDF Downloads 35922066 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness
Abstract:
Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb
Procedia PDF Downloads 8722065 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 & Co) Production
Authors: Bouhenni Mohamed Saif El Islam
Abstract:
In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x)Td (Ni2+xFe3+2-x)OhO2-4 influenced the reducibility of materials and thus their catalytic performance.Keywords: NiFe2O4, dry reforming of methane, spinel oxide, XCO2
Procedia PDF Downloads 38222064 Direct Cost of Anesthesia in Traumatic Patients with Massive Bleeding: A Prospective Micro-Costing Study
Authors: Asamaporn Puetpaiboon, Sunisa Chatmongkolchart, Nalinee Kovitwanawong, Osaree Akaraborworn
Abstract:
Traumatic patients with massive bleeding require intensive resuscitation. The actual cost of anesthesia per case has never been clarified, so our study aimed to quantify the direct cost, and cost-to-charge ratio of anesthetic care in traumatic patients with intraoperative massive bleeding. This study was a prospective, observational, cost analysis study, conducted in Prince of Songkla University hospital, Thailand, with traumatic patients, of any mechanisms being recruited. Massive bleeding was defined as estimated blood loss of at least one blood volume in 24 hours, or a half of blood volume in 3 hours. The cost components were identified by the micro-costing method, and valued by the bottom-up approach. The direct cost was divided into 4 categories: the labor cost, the capital cost, the material cost and the cost of drugs. From September 2017 to August 2018, 10 patients with multiple injuries were included. Seven patients had motorcycle accidents, two patients fell from a height and another one was in a minibus accident. Two patients died on the operating table, and another two died within 48 hours. The median Sequential Organ Failure Assessment (SOFA) score was 8. The median intraoperative blood loss was 3,500 ml. The median direct cost, per case, was 250 United States Dollars (2017 exchange rate), and the cost-to-charge ratio was 0.53. In summary, the direct cost was nearly half of the hospital charge, for these traumatic patients with massive bleeding. However, our study did not analyze the indirect cost.Keywords: cost, cost-to-charge ratio, micro-costing, trauma
Procedia PDF Downloads 14822063 Earth Observations and Hydrodynamic Modeling to Monitor and Simulate the Oil Pollution in the Gulf of Suez, Red Sea, Egypt
Authors: Islam Abou El-Magd, Elham Ali, Moahmed Zakzouk, Nesreen Khairy, Naglaa Zanaty
Abstract:
Maine environment and coastal zone are wealthy with natural resources that contribute to the local economy of Egypt. The Gulf of Suez and Red Sea area accommodates diverse human activities that contribute to the local economy, including oil exploration and production, touristic activities, export and import harbors, etc, however, it is always under the threat of pollution due to human interaction and activities. This research aimed at integrating in-situ measurements and remotely sensed data with hydrodynamic model to map and simulate the oil pollution. High-resolution satellite sensors including Sentinel 2 and Plantlab were functioned to trace the oil pollution. Spectral band ratio of band 4 (infrared) over band 3 (red) underpinned the mapping of the point source pollution from the oil industrial estates. This ratio is supporting the absorption windows detected in the hyperspectral profiles. ASD in-situ hyperspectral device was used to measure experimentally the oil pollution in the marine environment. The experiment used to measure water behavior in three cases a) clear water without oil, b) water covered with raw oil, and c) water after a while from throwing the raw oil. The spectral curve is clearly identified absorption windows for oil pollution, particularly at 600-700nm. MIKE 21 model was applied to simulate the dispersion of the oil contamination and create scenarios for crises management. The model requires precise data preparation of the bathymetry, tides, waves, atmospheric parameters, which partially obtained from online modeled data and other from historical in-situ stations. The simulation enabled to project the movement of the oil spill and could create a warning system for mitigation. Details of the research results will be described in the paper.Keywords: oil pollution, remote sensing, modelling, Red Sea, Egypt
Procedia PDF Downloads 347