Search results for: feed forward network
5491 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 2985490 A Novel Gateway Location Algorithm for Wireless Mesh Networks
Authors: G. M. Komba
Abstract:
The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM
Procedia PDF Downloads 3735489 Effect of Ginger Diets on in vitro Fermentation Characteristics, Enteric Methane Production and Performance of West African Dwarf Sheep
Authors: Dupe Olufunke Ogunbosoye, Thaofik Badmos Mustapha, Lanre Shaffihy Adeaga, R. O. Imam
Abstract:
Efforts have been made to reduce ruminants' methane emissions while improving animal productivity. Hence, an experiment was conducted to investigate the in vitro fermentation pattern, methane production, and performance of West African dwarf (WAD) rams-fed diets at graded levels of ginger. Sixteen (16) rams were randomly allocated into four dietary treatments with four animals per treatment in a completely randomized design for 84 days. Ginger powder was added at 0.00%, 0.25%, 0.50% and 0.75% as T1, T2, T3 and T4 respectively. The results indicated that at the 24-hour diet incubation, gas production, methane, metabolizable energy (ME), organic matter digestibility (OMD), and short-chain fatty acids (SCFA) concentrations decreased with the increasing level of ginger. Conversely, the sheep-fed T4 recorded the highest daily weight gain (47.61g/day), while the least daily weight gain (17.86g/day) was recorded in ram-fed T1. The daily weight gain of the rams fed T3 and T4 was similar but significantly different from the daily weight gain in T1 (17.86g/day) and T2 (29.76g/day). Daily feed intake was not significantly different across the treatments. T4 recorded the best response regarding feed conversion ratio (18.59) compared with other treatments. Based on the results obtained, rams fed T4 perform best in terms of growth and methane production. It is therefore concluded that the addition of ginger powder into the diet of sheep up to 0.75% enhances the growth rate of WAD sheep and reduces enteric methane production to create a smart nutrition system in ruminant animal production.Keywords: enteric methane, growth, in vitro, sheep, nutrition system
Procedia PDF Downloads 795488 Dynamic Cellular Remanufacturing System (DCRS) Design
Authors: Tariq Aljuneidi, Akif Asil Bulgak
Abstract:
Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability
Procedia PDF Downloads 3795487 Growth Performance and Nutrient Digestibility of Cirrhinus mrigala Fingerlings Fed on Sunflower Meal Based Diet Supplemented with Phytase
Authors: Syed Makhdoom Hussain, Muhammad Afzal, Farhat Jabeen, Arshad Javid, Tasneem Hameed
Abstract:
A feeding trial was conducted with Cirrhinus mrigala fingerlings to study the effects of microbial phytase with graded levels (0, 500, 1000, 1500, and 2000 FTUkg-1) by sunflower meal based diet on growth performance and nutrient digestibility. The chromic oxide was added as an indigestible marker in the diets. Three replicate groups of 15 fish (Average wt 5.98 g fish-1) were fed once a day and feces were collected twice daily. The results of present study showed improved growth and feed performance of Cirrhinus mrigala fingerlings in response to phytase supplementation. Maximum growth performance was obtained by the fish fed on test diet-III having 1000 FTU kg-1 phytase level. Similarly, nutrient digestibility was also significantly increased (p<0.05) by phytase supplementation. Digestibility coefficients for sunflower meal based diet increased 15.76%, 17.70%, and 12.70% for crude protein, crude fat and apparent gross energy as compared to the reference diet, respectively at 1000 FTU kg-1 level. Again, maximum response of nutrient digestibility was recorded at the phytase level of 1000 FTU kg-1 diet. It was concluded that the phytase supplementation to sunflower meal based diet at 1000 FTU kg-1 level is optimum to release adequate chelated nutrients for maximum growth performance of C. mrigala fingerlings. Our results also suggested that phytase supplementation to sunflower meal based diet can help in the development of sustainable aquaculture by reducing the feed cost and nutrient discharge through feces in the aquatic ecosystem.Keywords: sunflower meal, Cirrhinus mrigala, growth, nutrient digestibility, phytase
Procedia PDF Downloads 3045486 Instant Fire Risk Assessment Using Artifical Neural Networks
Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan
Abstract:
Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index
Procedia PDF Downloads 1385485 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China
Authors: Weikang Peng
Abstract:
The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network
Procedia PDF Downloads 225484 Router 1X3 - RTL Design and Verification
Authors: Nidhi Gopal
Abstract:
Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.Keywords: data packets, networking, router, routing
Procedia PDF Downloads 8155483 Estimated Heat Production, Blood Parameters and Mitochondrial DNA Copy Number of Nellore Bulls with High and Low Residual Feed Intake
Authors: Welder A. Baldassini, Jon J. Ramsey, Marcos R. Chiaratti, Amália S. Chaves, Renata H. Branco, Sarah F. M. Bonilha, Dante P. D. Lanna
Abstract:
With increased production costs there is a need for animals that are more efficient in terms of meat production. In this context, the role of mitochondrial DNA (mtDNA) on physiological processes in liver, muscle and adipose tissues may account for inter-animal variation in energy expenditures and heat production. The purpose this study was to investigate if the amounts of mtDNA in liver, muscle and adipose tissue (subcutaneous and visceral depots) of Nellore bulls are associated with residual feed intake (RFI) and estimated heat production (EHP). Eighteen animals were individually fed in a feedlot for 90 days. RFI values were obtained by regression of dry matter intake (DMI) in relation to average daily gain (ADG) and mid-test metabolic body weight (BW). The animals were classified into low (more efficient) and high (less efficient) RFI groups. The bulls were then randomly distributed in individual pens where they were given excess feed twice daily to result in 5 to 10% orts for 90 d with diet containing 15% crude protein and 2.7 Mcal ME/kg DM. The heart rate (HR) of bulls was monitored for 4 consecutive days and used for calculation of EHP. Electrodes were fitted to bulls with stretch belts (POLAR RS400; Kempele, Finland). To calculate oxygen pulse (O2P), oxygen consumption was obtained using a facemask connected to the gas analyzer (EXHALYZER, ECOMedics, Zurich, Switzerland) and HR were simultaneously measured for 15 minutes period. Daily oxygen (O2) consumption was calculated by multiplying the volume of O2 per beat by total daily beats. EHP was calculated multiplying O2P by the average HR obtained during the 4 days, assuming 4.89 kcal/L of O2 to measure daily EHP that was expressed in kilocalories/day/kilogram metabolic BW (kcal/day/kg BW0.75). Blood samples were collected between days 45 and 90th after the beginning of the trial period in order to measure the concentration of hemoglobin and hematocrit. The bulls were slaughtered in an experimental slaughter house in accordance with current guidelines. Immediately after slaughter, a section of liver, a portion of longissimus thoracis (LT) muscle, plus a portion of subcutaneous fat (surrounding LT muscle) and portions of visceral fat (kidney, pelvis and inguinal fat) were collected. Samples of liver, muscle and adipose tissues were used to quantify mtDNA copy number per cell. The number of mtDNA copies was determined by normalization of mtDNA amount against a single copy nuclear gene (B2M). Mean of EHP, hemoglobin and hematocrit of high and low RFI bulls were compared using two-sample t-tests. Additionally, the one-way ANOVA was used to compare mtDNA quantification considering the mains effects of RFI groups. We found lower EHP (83.047 vs. 97.590 kcal/day/kgBW0.75; P < 0.10), hemoglobin concentration (13.533 vs. 15.108 g/dL; P < 0.10) and hematocrit percentage (39.3 vs. 43.6 %; P < 0.05) in low compared to high RFI bulls, respectively, which may be useful traits to identify efficient animals. However, no differences were observed between the mtDNA content in liver, muscle and adipose tissue of Nellore bulls with high and low RFI.Keywords: bioenergetics, Bos indicus, feed efficiency, mitochondria
Procedia PDF Downloads 2485482 Social Media, Networks and Related Technology: Business and Governance Perspectives
Authors: M. A. T. AlSudairi, T. G. K. Vasista
Abstract:
The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks
Procedia PDF Downloads 4525481 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System
Authors: Latif Yanar, Muammer Kaçan
Abstract:
Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations
Procedia PDF Downloads 5935480 The Misuse of Social Media in Order to Exploit "Generation Y"; The Tactics of IS
Authors: Ali Riza Perçin, Eser Bingül
Abstract:
Internet technologies have created opportunities with which people share their ideologies, thoughts and products. This virtual world, named social media has given the chance of gathering individual users and people from the world's remote locations and establishing an interaction between them. However, to an increasingly higher degree terrorist organizations today use the internet and most notably social-network media to create the effects they desire through a series of on-line activities. These activities, designed to support their activities, include information collection (intelligence), target selection, propaganda, fundraising and recruitment to name a few. Meanwhile, these have been used as the most important tool for recruitment especially from the different region of the world, especially disenfranchised youth, in the West in order to mobilize support and recruit “foreign fighters.” The recruits have obtained the statue, which is not accessible in their society and have preferred the style of life that is offered by the terrorist organizations instead of their current life. Like other terrorist groups, for a while now the terrorist organization Islamic State (IS) in Iraq and Syria has employed a social-media strategy in order to advance their strategic objectives. At the moment, however, IS seems to be more successful in their on-line activities than other similar organizations. IS uses social media strategically as part of its armed activities and for the sustainability of their military presence in Syria and Iraq. In this context, “Generation Y”, which could exist at the critical position and undertake active role, has been examined. Additionally, the explained characteristics of “Generation Y” have been put forward and the duties of families and society have been stated as well.Keywords: social media, "generation Y", terrorist organization, islamic state IS
Procedia PDF Downloads 4285479 Tabu Search to Draw Evacuation Plans in Emergency Situations
Authors: S. Nasri, H. Bouziri
Abstract:
Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.Keywords: dynamic network flow, load dependent transit time, evacuation strategy, earliest arrival flow problem, tabu search metaheuristic
Procedia PDF Downloads 3725478 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers
Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang
Abstract:
In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.Keywords: centrality, patent coupling network, patent influence, social network analysis
Procedia PDF Downloads 555477 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.Keywords: ad-hoc network, MANET, ant colony routing, position based routing
Procedia PDF Downloads 4265476 A Corpus-Based Analysis of "MeToo" Discourse in South Korea: Coverage Representation in Korean Newspapers
Authors: Sun-Hee Lee, Amanda Kraley
Abstract:
The “MeToo” movement is a social movement against sexual abuse and harassment. Though the hashtag went viral in 2017 following different cultural flashpoints in different countries, the initial response was quiet in South Korea. This radically changed in January 2018, when a high-ranking senior prosecutor, Seo Ji-hyun, gave a televised interview discussing being sexually assaulted by a colleague. Acknowledging public anger, particularly among women, on the long-existing problems of sexual harassment and abuse, the South Korean media have focused on several high-profile cases. Analyzing the media representation of these cases is a window into the evolving South Korean discourse around “MeToo.” This study presents a linguistic analysis of “MeToo” discourse in South Korea by utilizing a corpus-based approach. The term corpus (pl. corpora) is used to refer to electronic language data, that is, any collection of recorded instances of spoken or written language. A “MeToo” corpus has been collected by extracting newspaper articles containing the keyword “MeToo” from BIGKinds, big data analysis, and service and Nexis Uni, an online academic database search engine, to conduct this language analysis. The corpus analysis explores how Korean media represent accusers and the accused, victims and perpetrators. The extracted data includes 5,885 articles from four broadsheet newspapers (Chosun, JoongAng, Hangyore, and Kyunghyang) and 88 articles from two Korea-based English newspapers (Korea Times and Korea Herald) between January 2017 and November 2020. The information includes basic data analysis with respect to keyword frequency and network analysis and adds refined examinations of select corpus samples through naming strategies, semantic relations, and pragmatic properties. Along with the exponential increase of the number of articles containing the keyword “MeToo” from 104 articles in 2017 to 3,546 articles in 2018, the network and keyword analysis highlights ‘US,’ ‘Harvey Weinstein’, and ‘Hollywood,’ as keywords for 2017, with articles in 2018 highlighting ‘Seo Ji-Hyun, ‘politics,’ ‘President Moon,’ ‘An Ui-Jeong, ‘Lee Yoon-taek’ (the names of perpetrators), and ‘(Korean) society.’ This outcome demonstrates the shift of media focus from international affairs to domestic cases. Another crucial finding is that word ‘defamation’ is widely distributed in the “MeToo” corpus. This relates to the South Korean legal system, in which a person who defames another by publicly alleging information detrimental to their reputation—factual or fabricated—is punishable by law (Article 307 of the Criminal Act of Korea). If the defamation occurs on the internet, it is subject to aggravated punishment under the Act on Promotion of Information and Communications Network Utilization and Information Protection. These laws, in particular, have been used against accusers who have publicly come forward in the wake of “MeToo” in South Korea, adding an extra dimension of risk. This corpus analysis of “MeToo” newspaper articles contributes to the analysis of the media representation of the “MeToo” movement and sheds light on the shifting landscape of gender relations in the public sphere in South Korea.Keywords: corpus linguistics, MeToo, newspapers, South Korea
Procedia PDF Downloads 2275475 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 1795474 Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum
Authors: Won Yeol Choi, Sangmo Kang
Abstract:
The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations.Keywords: fluid viscosity, hydrodynamics, similitude, propulsive force
Procedia PDF Downloads 3515473 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 6485472 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4455471 Effect of Food Supplies Holstein Calves Supplemented with Bacillus Subtilis PB6 in Morbidity and Mortality
Authors: Banca Patricia Pena Revuelta, Ramiro Gonzalez Avalos, Juan Leonardo Rocha Valdez, Jose Gonzalez Avalos, Karla Rodriguez Hernandez
Abstract:
Probiotics are a promising alternative to improve productivity and animals' health. In addition, they can be part of the composition of different types of products, including foods (functional foods), medicines, and dietary supplements. The objective of the present work was to evaluate the effect of the feeding of Holstein calves supplemented with bacillus subtilis PB6 in morbidity and mortality. 60 newborn animals were used, randomly included in 1 of 3 treatments. The treatments were as follows: T1 = control, T2 = 10 g / calf / day. The first takes within 20 min after birth, T3 = 10 g / calf/day. The first takes between 12 and 24 h after birth. In all the treatments, 432 L of pasteurized whole milk divided into two doses/day 07:00 and 15:00, respectively, were given for 60 days. The addition of bacillus subtilis PB6 was carried out in the milk tub at the time of feeding them. The first colostrum intake (2 L • intake) was given within 2 h after birth, after which they were given a second 6 h after the first one. The diseases registered to monitor the morbidity and mortality of the calves were: diarrhea and pneumonia. The registry was carried out from birth to 60 days of life. The parameter evaluated was food consumption. The variable statistical analysis was performed using analysis of variance, and comparison of means was performed using the Tukey test. The value of P < 0.05 was used to consider the statistical difference. The results of the present study in relation to the consumption of food show no statistical difference P < 0.05 between treatments (14,762, 11,698, and 12,403 kg of food average, respectively). Calves group to which they were not provided Bacillus subtilis PB6 obtained higher feed intake. The addition of Bacillus subtilis PB6 in feeding calves does not increase feed intake.Keywords: feeding, development, milk, probiotic
Procedia PDF Downloads 1505470 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process
Authors: Venkata Ramanaiah, Shabina Khanam
Abstract:
Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.Keywords: coal consumption, energy conservation, process integration, sponge iron plant
Procedia PDF Downloads 1455469 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 925468 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19
Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane
Abstract:
The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.Keywords: network analysis, building simulation, COVID-19
Procedia PDF Downloads 1615467 Exploring the Role of IPv6 in Enhancing IoT Communication and Green Network Optimization for Business Sustainability
Authors: Saqib Warsi
Abstract:
The Internet of Things (IoT) has become an essential component of modern communication networks, with IPv6 playing a pivotal role in addressing the challenges posed by the rapidly growing number of connected devices. IPv6 provides an expanded address space, offering a solution to the limitations of IPv4 while enhancing routing efficiency and security. This paper explores the impact of IPv6 in improving IoT communication, focusing on its operational benefits for businesses. Additionally, we examine the integration of green communication principles, which aim to reduce energy consumption and operational costs, thus promoting environmental sustainability and business efficiency. Through qualitative analysis and simulation-based modeling, this paper investigates the benefits of IPv6 in IoT environments and evaluates the role of green communication strategies in optimizing network performance. Traffic measurement tools and network performance simulators were employed to analyze the efficiency, sustainability, and scalability of IPv6 networks. By presenting a comprehensive framework for traffic analysis, modeling, and optimization, this research highlights the potential of combining IPv6 and green communication practices to drive business growth while promoting environmental sustainability. The findings provide valuable insights for businesses adopting more sustainable and efficient communication networks.Keywords: IPv6, Internet of Things (IoT), green communications, traffic measurement and modeling, network virtualization
Procedia PDF Downloads 45466 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 1565465 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 3445464 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles
Procedia PDF Downloads 1145463 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 7905462 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator
Procedia PDF Downloads 326