Search results for: collaborative tasks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2336

Search results for: collaborative tasks

986 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 424
985 Corporate Governance and Business Ethical Values in Organisation: AStudyof Unilag Holdings

Authors: Mr. Aribisala Oluwadamilare Olufolarin

Abstract:

The objective of this research was to examine how corporate governance and ethical business values impact both the performance of the organization and its employees, as it is essential for any organization to uphold good ethics and corporate governance. The study was conducted at Unilag Holdings Limited (UniHOLDs) to demonstrate that organizations may experience losses if they do not have proper corporate governance and business ethical values in place. The employees' perception of corporate governance and ethics is crucial for the organization. The research indicated a connection between corporate governance and business ethics values, and therefore, correlation analysis was utilized, making it statistically reliable. The results of the test show a strong positive correlation (r=.812, N=94, P<.01) between corporate governance and business ethical values. A questionnaire was distributed to employees at Unilag Holdings Limited (UniHOLDs), with 94 out of 130 completed and returned. The findings indicate that ethical values contribute to employee productivity, and productive employees have a beneficial impact on the organization's performance. Additionally, the study revealed that employees tend to adhere to rules regardless of their ethical nature. To address this, the organization should ensure that top-level managers do not assign unethical tasks to their subordinates. The study recommends that the organization should consistently practice corporate governance and business ethics. The company needs to make sure that its stakeholders continue to support its way of doing things.

Keywords: business ethics, business ethical values, corporate governance, organization

Procedia PDF Downloads 4
984 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 145
983 Outdoor Anomaly Detection with a Spectroscopic Line Detector

Authors: O. J. G. Somsen

Abstract:

One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application

Keywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection

Procedia PDF Downloads 479
982 Development of Highly Repellent Silica Nanoparticles Treatment for Protection of Bio-Based Insulation Composite Material

Authors: Nadia Sid, Alan Taylor, Marion Bourebrab

Abstract:

The construction sector is on the critical path to decarbonise the European economy by 2050. In order to achieve this objective it must enable reducing its CO2 emission by 90% and its energy consumption by as much as 50%. For this reason, a new class of low environmental impact construction materials named “eco-material” are becoming increasingly important in the struggle against climate change. A European funded collaborative project ISOBIO coordinated by TWI is aimed at taking a radical approach to the use of bio-based aggregates to create novel construction materials that are usable in high volume in using traditional methods, as well as developing markets such as exterior insulation of existing house stocks. The approach taken for this project is to use finely chopped material protected from bio-degradation through the use of functionalized silica nanoparticles. TWI is exploring the development of novel inorganic-organic hybrid nano-materials, to be applied as a surface treatment onto bio-based aggregates. These nanoparticles are synthesized by sol-gel processing and then functionalised with silanes to impart multifunctionality e.g. hydrophobicity, fire resistance and chemical bonding between the silica nanoparticles and the bio-based aggregates. This talk will illustrate the approach taken by TWI to design the functionalized silica nanoparticles by using a material-by-design approach. The formulation and synthesize process will be presented together with the challenges addressed by those hybrid nano-materials. The results obtained with regards to the water repellence and fire resistance will be displayed together with preliminary public results of the ISOBIO project. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641927).

Keywords: bio-sourced material, composite material, durable insulation panel, water repellent material

Procedia PDF Downloads 237
981 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 93
980 Corporate Governance and Business Ethical Values in Organisation: A Study of Unilag Holdings

Authors: Aribisala Oluwadamilare Olufolarin

Abstract:

The objective of this research was to examine how corporate governance and ethical business values impact both the performance of the organization and its employees, as it is essential for any organization to uphold good ethics and corporate governance. The study was conducted at Unilag Holdings Limited (UniHOLDs) to demonstrate that organizations may experience losses if they do not have proper corporate governance and business ethical values in place. The employees' perception of corporate governance and ethics is crucial for the organization. The research indicated a connection between corporate governance and business ethics values, and therefore, correlation analysis was utilized, making it statistically reliable. The results of the test show a strong positive correlation (r=.812, N=94, P<.01) between corporate governance and business ethical values. A questionnaire was distributed to employees at Unilag Holdings Limited (UniHOLDs), with 94 out of 130 completed and returned. The findings indicate that ethical values contribute to employee productivity, and productive employees have a beneficial impact on the organization's performance. Additionally, the study revealed that employees tend to adhere to rules regardless of their ethical nature. To address this, the organization should ensure that top-level managers do not assign unethical tasks to their subordinates. The study recommends that the organization should consistently practice corporate governance and business ethics. The company needs to make sure that its stakeholders continue to support its way of doing things.

Keywords: business ethics, business ethical values, corporate governance and organization, corporate governance

Procedia PDF Downloads 2
979 Father Involvement in Delaying Sexual Debut among Adolescents in Nigeria Schools

Authors: Ofole Ndidi

Abstract:

Context: Empirical studies show that through dual primary attachment mothers and fathers contribute to children’s development and behaviours. While the contribution of mothers is well documented in past researches, fathers’ involvement in Nigeria has received much less attention. As such, exploring fathers’ involvement in sexual behaviours will provide insight for policy implementation and programming designed to delay sexual debut among sexually inexperienced young people in Nigeria. Objective of study: This study examined the extent to which father involvement (father’s parenting style, attitude, father-child communication, father’s marital status, and father’s socio-economic status) could predict delay in sexual debut of a representative sample of Nigeria adolescents in lower secondary. Materials and Methods: Multistage sampling technique was adopted to draw a cross section of 1023 adolescents with the age range of 10-23 years and mean years of 12±2.1 who reported sexually inexperience from six geographical zones in Nigeria. Multiple Regressions was used to analyze the data collected with four standardized self-report measures at 0.05 level of significance. Results: Findings of this study revealed that the independent variables (father’s parenting style, paternal attitudes, paternal–child communication, paternal marital status and paternal socio–economic status) contributed significantly to the delay of sexual debut. However, fathers’ attitude made the most potent contribution (β = 0.255, P < 0.05). Conclusions: The outcomes of this study have implications for programs that are designed to reduce high-risk behaviors among adolescents. It concluded that sexuality education and interventions should involve the fathers in a more integrated and collaborative fashion.

Keywords: father, sexual debut, adolescents, Nigeria

Procedia PDF Downloads 309
978 Performance Comparison of Thread-Based and Event-Based Web Servers

Authors: Aikaterini Kentroti, Theodore H. Kaskalis

Abstract:

Today, web servers are expected to serve thousands of client requests concurrently within stringent response time limits. In this paper, we evaluate experimentally and compare the performance as well as the resource utilization of popular web servers, which differ in their approach to handle concurrency. More specifically, Central Processing Unit (CPU)- and I/O intensive tests were conducted against the thread-based Apache and Go as well as the event-based Nginx and Node.js under increasing concurrent load. The tests involved concurrent users requesting a term of the Fibonacci sequence (the 10th, 20th, 30th) and the content of a table from the database. The results show that Go achieved the best performance in all benchmark tests. For example, Go reached two times higher throughput than Node.js and five times higher than Apache and Nginx in the 20th Fibonacci term test. In addition, Go had the smallest memory footprint and demonstrated the most efficient resource utilization, in terms of CPU usage. Instead, Node.js had by far the largest memory footprint, consuming up to 90% more memory than Nginx and Apache. Regarding the performance of Apache and Nginx, our findings indicate that Hypertext Preprocessor (PHP) becomes a bottleneck when the servers are requested to respond by performing CPU-intensive tasks under increasing concurrent load.

Keywords: apache, Go, Nginx, node.js, web server benchmarking

Procedia PDF Downloads 96
977 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled

Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov

Abstract:

This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.

Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS

Procedia PDF Downloads 337
976 Performants: Making the Organization of Concerts Easier

Authors: Ioannis Andrianakis, Panagiotis Panagiotopoulos, Kyriakos Chatzidimitriou, Dimitrios Tampakis, Manolis Falelakis

Abstract:

Live music, whether performed in organized venues, restaurants, hotels or any other spots, creates value chains that support and develop local economies and tourism development. In this paper, we describe PerformAnts, a platform that increases the mobility of musicians and their accessibility to remotely located venues by rationalizing the cost of live acts. By analyzing the event history and taking into account their potential availability, the platform provides bespoke recommendations to both bands and venues while also facilitating the organization of tours and helping rationalize transportation expenses by realizing an innovative mechanism called “chain booking”. Moreover, the platform provides an environment where complicated tasks such as technical and financial negotiations, concert promotion or copyrights are easily manipulated by users using best practices. The proposed solution provides important benefits to the whole spectrum of small/medium size concert organizers, as the complexity and the cost of the production are rationalized. The environment is also very beneficial for local talent, musicians that are very mobile, venues located away from large urban areas or in touristic destinations, and managers who will be in a position to coordinate a larger number of musicians without extra effort.

Keywords: machine learning, music industry, creative industries, web applications

Procedia PDF Downloads 94
975 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 142
974 Postmodern Navy to Transnational Adaptive Navy: Positive Peace with Borderless Institutional Network

Authors: Serkan Tezgel

Abstract:

Effectively managing threats and power that transcend national boundaries requires a reformulation from the traditional post-modern navy to an adaptive and institutional transnational navy. By analyzing existing soft power concept, post-modern navy, and sea power, this study proposes the transnational navy, founded on the triangle of main attributes of transnational companies, 'Global Competitiveness, Local Responsiveness, Worldwide Learning and Innovation Sharing', a new model which will lead to a positive peace with an institutional network. This transnational model necessitates 'Transnational Navies' to help establish peace with collective and transnational understanding during a transition period 'Reactive Postmodern Navy' has been experiencing. In this regard, it is fairly claimed that a new paradigm shift will revolve around sea power to establish good order at sea with collective and collaborative initiatives and bound to breed new theories and ideas in the forthcoming years. However, there are obstacles to overcome. Postmodern navies, currently shaped by 'Collective Maritime Security' and 'Collective Defense' concepts, can not abandon reactive applications and acts. States deploying postmodern navies to realize their policies on international platforms and seapower structures shaped by the axis of countries’ absolute interests resulted in multipolar alliances and coalitions, but the establishment of the peace. These obstacles can be categorized into three tiers in establishing a unique transnational model navy: Strategic, Organizational and Management challenges. To overcome these obstacles and challenges, postmodern navies should transform into cooperative, collective and independent soft transnational navies with the transnational mentality, global commons, and institutional network. Such an adaptive institution can help the world navigate to a positive peace.

Keywords: postmodern navy, transnational navy, transnational mentality, institutional network

Procedia PDF Downloads 518
973 Artificial Intelligence Impact on the Australian Government Public Sector

Authors: Jessica Ho

Abstract:

AI has helped government, businesses and industries transform the way they do things. AI is used in automating tasks to improve decision-making and efficiency. AI is embedded in sensors and used in automation to help save time and eliminate human errors in repetitive tasks. Today, we saw the growth in AI using the collection of vast amounts of data to forecast with greater accuracy, inform decision-making, adapt to changing market conditions and offer more personalised service based on consumer habits and preferences. Government around the world share the opportunity to leverage these disruptive technologies to improve productivity while reducing costs. In addition, these intelligent solutions can also help streamline government processes to deliver more seamless and intuitive user experiences for employees and citizens. This is a critical challenge for NSW Government as we are unable to determine the risk that is brought by the unprecedented pace of adoption of AI solutions in government. Government agencies must ensure that their use of AI complies with relevant laws and regulatory requirements, including those related to data privacy and security. Furthermore, there will always be ethical concerns surrounding the use of AI, such as the potential for bias, intellectual property rights and its impact on job security. Within NSW’s public sector, agencies are already testing AI for crowd control, infrastructure management, fraud compliance, public safety, transport, and police surveillance. Citizens are also attracted to the ease of use and accessibility of AI solutions without requiring specialised technical skills. This increased accessibility also comes with balancing a higher risk and exposure to the health and safety of citizens. On the other side, public agencies struggle with keeping up with this pace while minimising risks, but the low entry cost and open-source nature of generative AI led to a rapid increase in the development of AI powered apps organically – “There is an AI for That” in Government. Other challenges include the fact that there appeared to be no legislative provisions that expressly authorise the NSW Government to use an AI to make decision. On the global stage, there were too many actors in the regulatory space, and a sovereign response is needed to minimise multiplicity and regulatory burden. Therefore, traditional corporate risk and governance framework and regulation and legislation frameworks will need to be evaluated for AI unique challenges due to their rapidly evolving nature, ethical considerations, and heightened regulatory scrutiny impacting the safety of consumers and increased risks for Government. Creating an effective, efficient NSW Government’s governance regime, adapted to the range of different approaches to the applications of AI, is not a mere matter of overcoming technical challenges. Technologies have a wide range of social effects on our surroundings and behaviours. There is compelling evidence to show that Australia's sustained social and economic advancement depends on AI's ability to spur economic growth, boost productivity, and address a wide range of societal and political issues. AI may also inflict significant damage. If such harm is not addressed, the public's confidence in this kind of innovation will be weakened. This paper suggests several AI regulatory approaches for consideration that is forward-looking and agile while simultaneously fostering innovation and human rights. The anticipated outcome is to ensure that NSW Government matches the rising levels of innovation in AI technologies with the appropriate and balanced innovation in AI governance.

Keywords: artificial inteligence, machine learning, rules, governance, government

Procedia PDF Downloads 70
972 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition

Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao

Abstract:

Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.

Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity

Procedia PDF Downloads 78
971 Using Indigenous Games to Demystify Probability Theorem in Ghanaian Classrooms: Mathematical Analysis of Ampe

Authors: Peter Akayuure, Michael Johnson Nabie

Abstract:

Similar to many colonized nations in the world, one indelible mark left by colonial masters after Ghana’s independence in 1957 has been the fact that many contexts used to teach statistics and probability concepts are often alien and do not resonate with the social domain of our indigenous Ghanaian child. This has seriously limited the understanding, discoveries, and applications of mathematics for national developments. With the recent curriculum demands of making the Ghanaian child mathematically literate, this qualitative study involved video recordings and mathematical analysis of play sessions of an indigenous girl game called Ampe with the aim to demystify the concepts in probability theorem, which is applied in mathematics related fields of study. The mathematical analysis shows that the game of Ampe, which is widely played by school girls in Ghana, is suitable for learning concepts of the probability theorems. It was also revealed that as a girl game, the use of Ampe provides good lessons to educators, textbook writers, and teachers to rethink about the selection of mathematics tasks and learning contexts that are sensitive to gender. As we undertake to transform teacher education and student learning, the use of indigenous games should be critically revisited.

Keywords: Ampe, mathematical analysis, probability theorem, Ghanaian girl game

Procedia PDF Downloads 369
970 The Global-Local Dimension in Cognitive Control after Left Lateral Prefrontal Cortex Damage: Evidence from the Non-Verbal Domain

Authors: Eleni Peristeri, Georgia Fotiadou, Ianthi-Maria Tsimpli

Abstract:

The local-global dimension has been studied extensively in healthy controls and preference for globally processed stimuli has been validated in both the visual and auditory modalities. Critically, the local-global dimension has an inherent interference resolution component, a type of cognitive control, and left-prefrontal-cortex-damaged (LPFC) individuals have exhibited inability to override habitual response behaviors in item recognition tasks that involve representational interference. Eight patients with damage in the left PFC (age range: 32;5 to 69;0. Mean age: 54;6 yrs) and twenty age- and education-matched language-unimpaired adults (mean age: 56;7yrs) have participated in the study. Distinct performance patterns were found between the language-unimpaired and the LPFC-damaged group which have mainly stemmed from the latter’s difficulty with inhibiting global stimuli in incongruent trials. Overall, the local-global attentional dimension affects LPFC-damaged individuals with non-fluent aphasia in non-language domains implicating distinct types of inhibitory processes depending on the level of processing.

Keywords: left lateral prefrontal cortex damage (LPFC), local-global non-language attention, representational interference, non-fluent aphasia

Procedia PDF Downloads 467
969 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language

Authors: Samal Abzhanova, Saule Mussabekova

Abstract:

Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.

Keywords: interactive education, interactive methods, system of education, teaching a language

Procedia PDF Downloads 292
968 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle

Procedia PDF Downloads 452
967 Optimizing Electric Vehicle Charging with Charging Data Analytics

Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat

Abstract:

Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.

Keywords: charging data, electric vehicles, machine learning, waiting times

Procedia PDF Downloads 191
966 Research on Coordinated Development Mechanism of Semi-urbanized Areas under the Background of Guangdong-Hong Kong-Macao Greater Bay Area: A Case Study of 'Baiyun-Nanhai' Pilot Area

Authors: Cheng Fang Wang, Fu Li Gao, Jian Ying Zhou

Abstract:

The '1+4' integration pilot area in the border area of Guangzhou-Foshan is an important platform for Guangzhou-Foshan strategic cooperation, as well as a typical semi-urbanized area with mixed urban and rural landscapes, of which the Baiyun-Nanhai pilot area is one of them. Baiyun district and Nanhai district are only separated by the Pearl River. In this paper, the three dimensions, which include production, living, and ecology, have been put forward, as well as cross-regional multi-agency negotiation mechanism has been discussed. Taking 'Baiyun-Nanhai' pilot area as a case study, POI (Point of Interest) data to analyze the distribution characteristics of 'production-living-ecological space' from the spatial dimension has been introduced in this paper, as well as the land-use change of 'production-living-ecological space' in western region of Baiyun district in 2007 and 2017 from the temporal dimension has been analyzed. Based on the above analysis, the integration development strategy and rethinking of cross-administrative region based on 'production-living-ecological integration' mechanism have been discussed later. It will explore the mechanism of industrial collaborative innovation, infrastructure co-construction, and ecological co-protection in semi-urban areas across borders. And it is expected to provide a reference for the integrated construction of the Guangdong-Hong Kong-Macao Greater Bay Area.

Keywords: semi-urbanization, production-living-ecological integration, multi-agency negotiation, Guangzhou-Foshan integration, synergetic development

Procedia PDF Downloads 144
965 Implementing a Hospitalist Co-Management Service in Orthopaedic Surgery

Authors: Diane Ghanem, Whitney Kagabo, Rebecca Engels, Uma Srikumaran, Babar Shafiq

Abstract:

Hospitalist co-management of orthopaedic surgery patients is a growing trend across the country. It was created as a collaborative effort to provide overarching care to patients with the goal of improving their postoperative care and decreasing in-hospital medical complications. The aim of this project is to provide a guide for implementing and optimizing a hospitalist co-management service in orthopaedic surgery. Key leaders from the hospitalist team, orthopaedic team and quality, safety and service team were identified. Multiple meetings were convened to discuss the comanagement service and determine the necessary building blocks behind an efficient and well-designed co-management framework. After meticulous deliberation, a consensus was reached on the final service agreement and a written guide was drafted. Fundamental features of the service include the identification of service stakeholders and leaders, frequent consensus meetings, a well-defined framework, with goals, program metrics and unified commands, and a regular satisfaction assessment to update and improve the program. Identified pearls for co-managing orthopaedic surgery patients are standardization, timing, adequate patient selection, and two-way feedback between hospitalists and orthopaedic surgeons to optimize the protocols. Developing a service agreement is a constant work in progress, with meetings, discussions, revisions, and multiple piloting attempts before implementation. It is a partnership created to provide hospitals with a streamlined admission process where at-risk patients are identified early, and patient care is optimized regardless of the number or nature of medical comorbidities. A wellestablished hospitalist co-management service can increase patient care quality and safety, as well as health care value.

Keywords: co-management, hospitalist co-management, implementation, orthopaedic surgery, quality improvement

Procedia PDF Downloads 86
964 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI

Authors: Genady Grabarnik, Serge Yaskolko

Abstract:

Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.

Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education

Procedia PDF Downloads 57
963 Corporate Governance and Business Ethical Values in Organisation: A Study of Unilag Holdings

Authors: Ogunmayi Bamidele, Aribisala Oluwadamilare Olufolarin

Abstract:

The objective of this research was to examine how corporate governance and ethical business values impact both the performance of the organization and its employees, as it is essential for any organization to uphold good ethics and corporate governance. The study was conducted at Unilag Holdings Limited (UniHOLDs) to demonstrate that organizations may experience losses if they do not have proper corporate governance and business ethical values in place. The employees' perception of corporate governance and ethics is crucial for the organization. The research indicated a connection between corporate governance and business ethics values, and therefore, correlation analysis was utilized, making it statistically reliable. The results of the test show a strong positive correlation (r=.812, N=94, P<.01) between corporate governance and business ethical values. A questionnaire was distributed to employees at Unilag Holdings Limited (UniHOLDs), with 94 out of 130 completed and returned. The findings indicate that ethical values contribute to employee productivity, and productive employees have a beneficial impact on the organization's performance. Additionally, the study revealed that employees tend to adhere to rules regardless of their ethical nature. To address this, the organization should ensure that top-level managers do not assign unethical tasks to their subordinates. The study recommends that the organization should consistently practice corporate governance and business ethics. The company needs to make sure that its stakeholders continue to support its way of doing things.

Keywords: business ethical values, corporate governance, organization, business ethics

Procedia PDF Downloads 15
962 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 107
961 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 174
960 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent

Authors: Kwame Amoah

Abstract:

Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.

Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence

Procedia PDF Downloads 82
959 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 105
958 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis

Authors: Sipu Guo, Silin Huang

Abstract:

Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.

Keywords: allostatic load, executive function, network analysis, rural adolescent

Procedia PDF Downloads 50
957 A Review of Blog Assisted Language Learning Research: Based on Bibliometric Analysis

Authors: Bo Ning Lyu

Abstract:

Blog assisted language learning (BALL) has been trialed by educators in language teaching with the development of Web 2.0 technology. Understanding the development trend of related research helps grasp the whole picture of the use of blog in language education. This paper reviews current research related to blogs enhanced language learning based on bibliometric analysis, aiming at (1) identifying the most frequently used keywords and their co-occurrence, (2) clustering research topics based on co-citation analysis, (3) finding the most frequently cited studies and authors and (4) constructing the co-authorship network. 330 articles were searched out in Web of Science, 225 peer-viewed journal papers were finally collected according to selection criteria. Bibexcel and VOSviewer were used to visualize the results. Studies reviewed were published between 2005 to 2016, most in the year of 2014 and 2015 (35 papers respectively). The top 10 most frequently appeared keywords are learning, language, blog, teaching, writing, social, web 2.0, technology, English, communication. 8 research themes could be clustered by co-citation analysis: blogging for collaborative learning, blogging for writing skills, blogging in higher education, feedback via blogs, blogging for self-regulated learning, implementation of using blogs in classroom, comparative studies and audio/video blogs. Early studies focused on the introduction of the classroom implementation while recent studies moved to the audio/video blogs from their traditional usage. By reviewing the research related to BALL quantitatively and objectively, this paper reveals the evolution and development trends as well as identifies influential research, helping researchers and educators quickly grasp this field overall and conducting further studies.

Keywords: blog, bibliometric analysis, language learning, literature review

Procedia PDF Downloads 208