Search results for: balance training
4084 Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot
Authors: Aliya Grig, Konstantin Sokolov, Igor Shatalin
Abstract:
The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a userKeywords: AI, empathetic, chatbot, AI models
Procedia PDF Downloads 934083 The Imperative of Adult Education in the Knowledge Society
Authors: Najim Akorede Babalola
Abstract:
Adult Education is a multi and interdisciplinary in nature that cut across different fields of study which includes education, social sciences, engineering even information technologies that dominate the contemporary world among others. In the past, Adult Education has been used as an instrument of civilization by teaching people how to read and write as well as earning a better living. The present world has witnessed a transition from industrial age to information age which is also known as knowledge society needs Adult Education for knowledge acquisition and update of existing knowledge. An individual needs Adult Education in either of its various forms (on-the-job-training, in-service training, extramural classes, vocational education, continuing education among others) in order to develop towards the information society trends; this is because Adult Education is a process of transforming an individual through acquisition of relevant skills and knowledge for personal as well as societal development. Evidence abounds in the literature that Adult Education has not only assisted people in the medieval period but still assisting people in this modern society in changing and transforming their lives for a better living. This study, therefore, raised a salient question that with different ideas and innovations brought by the contemporary world, is Adult Education relevant? It is on this basis that this study intends to examine the relevance of Adult Education in the past and present in order to determine its future relevance.Keywords: adult education, multi and inter-disciplinary, knowledge society, skill acquisition
Procedia PDF Downloads 3504082 Practical Skill Education for Doctors in Training: Economical and Efficient Methods for Students to Receive Hands-on Experience
Authors: Nathaniel Deboever, Malcolm Breeze, Adrian Sheen
Abstract:
Basic surgical and suturing techniques are a fundamental requirement for all doctors. In order to gain confidence and competence, doctors in training need to obtain sufficient teaching and just as importantly: practice. Young doctors with an apt level of expertise on these simple surgical skills, which are often used in the Emergency Department, can help alleviate some pressure during a busy evening. Unfortunately, learning these skills can be quite difficult during medical school or even during junior doctor years. The aim of this project was to adequately train medical students attending University of Sydney’s Nepean Clinical School through a series of workshops highlighting practical skills, with hopes to further extend this program to junior doctors in the hospital. The sessions instructed basic skills via tutorials, demonstrations, and lastly, the sessions cemented these proficiencies with practical sessions. During such an endeavor, it is fundamental to employ models that appropriately resemble what students will encounter in the clinical setting. The sustainability of workshops is similarly important to the continuity of such a program. To address both these challenges, the authors have developed models including suturing platforms, knot tying, and vessel ligation stations, as well as a shave and punch biopsy models and ophthalmologic foreign body device. The unique aspect of this work is that we utilized hands-on teaching sessions, to address a gap in doctors-in-training and junior doctor curriculum. Presented to you through this poster are our approaches to creating models that do not employ animal products and therefore do not necessitate particular facilities or discarding requirements. Covering numerous skills that would be beneficial to all young doctors, these models are easily replicable and affordable. This exciting work allows for countless sessions at low cost, providing enough practice for students to perform these skills confidently as it has been shown through attendee questionnaires.Keywords: medical education, surgical models, surgical simulation, surgical skills education
Procedia PDF Downloads 1574081 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training
Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li
Abstract:
Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning
Procedia PDF Downloads 2614080 The Effects of Electrical Muscle Stimulation (EMS) towards Male Skeletal Muscle Mass
Authors: Mohd Faridz Ahmad, Amirul Hakim Hasbullah
Abstract:
Electrical Muscle Stimulation (EMS) has been introduced to the world in the 19th and 20th centuries and has globally gained increasing attention on its usefulness. EMS is known as the application of electrical current transcutaneous to muscles through electrodes to induce involuntary contractions that can lead to the increment of muscle mass and strength. This study can be used as an alternative to help people especially those living a sedentary lifestyle to improve their muscle activity without having to go through a heavy workout session. Therefore, this study intended to investigate the effectiveness of EMS training in 5 weeks interventions towards male body composition. It was a quasi-experimental design, held at the Impulse Studio Bangsar, which examined the effects of EMS training towards skeletal muscle mass among the subjects. Fifteen subjects (n = 15) were selected to assist in this study. The demographic data showed that, the average age of the subjects was 43.07 years old ± 9.90, height (173.4 cm ± 9.09) and weight was (85.79 kg ± 18.07). Results showed that there was a significant difference on the skeletal muscle mass (p = 0.01 < 0.05), upper body (p = 0.01 < 0.05) and lower body (p = 0.00 < 0.05). Therefore, the null hypothesis has been rejected in this study. As a conclusion, the application of EMS towards body composition can increase the muscle size and strength. This method has been proven to be able to improve athlete strength and thus, may be implemented in the sports science area of knowledge.Keywords: body composition, EMS, skeletal muscle mass, strength
Procedia PDF Downloads 4904079 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 834078 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID
Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis
Abstract:
Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.Keywords: artificial intelligence, COVID, neural network, machine learning
Procedia PDF Downloads 934077 Automatic Tagging and Accuracy in Assamese Text Data
Authors: Chayanika Hazarika Bordoloi
Abstract:
This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.Keywords: CRF, morphology, tagging, tagset
Procedia PDF Downloads 1944076 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 634075 Response to Name Training in Autism Spectrum Disorder (ASD): A New Intervention Model
Authors: E. Verduci, I. Aguglia, A. Filocamo, I. Macrì, R. Scala, A. Vinci
Abstract:
One of the first indicator of autism spectrum disorder (ASD) is a decreasing tendency or failure to respond to name (RTN) call. Despite RTN is important for social and language developmentand it’s a common target for early interventions for children with ASD, research on specific treatments is insufficient and does not consider the importance of the discrimination between the own name and other names. The purpose of the current study was to replicate an assessment and treatment model proposed by Conine et al. (2020) to teach children with ASD to respond to their own name and to not respond to other names (RTO). The model includes three different phases (baseline/screening, treatment, and generalization), and itgradually introduces the different treatment components, starting with the most naturalistic ones (such as social interaction) and adding more intrusive components (such as tangible reinforcements, prompt and fading procedures) if necessary. The participants of this study were three children with ASD diagnosis: D. (5 years old) with a low frequency of RTN, M. (7 years old) with a RTN unstable and no ability of discrimination between his name and other names, S. (3 years old) with a strong RTN but a constant response to other names. Moreover, the treatment for D. and M. consisted of social and tangible reinforcements (treatment T1), for S. the purpose of the treatment was to teach the discrimination between his name and the others. For all participants, results suggest the efficacy of the model to acquire the ability to selectively respond to the own name and the generalization of the behavior with other people and settings.Keywords: response to name, autism spectrum disorder, progressive training, ABA
Procedia PDF Downloads 844074 Role of Imaging in Alzheimer's Disease Trials: Impact on Trial Planning, Patient Recruitment and Retention
Authors: Kohkan Shamsi
Abstract:
Background: MRI and PET are now extensively utilized in Alzheimer's disease (AD) trials for patient eligibility, efficacy assessment, and safety evaluations but including imaging in AD trials impacts site selection process, patient recruitment, and patient retention. Methods: PET/MRI are performed at baseline and at multiple follow-up timepoints. This requires prospective site imaging qualification, evaluation of phantom data, training and continuous monitoring of machines for acquisition of standardized and consistent data. This also requires prospective patient/caregiver training as patients must go to multiple facilities for imaging examinations. We will share our experience form one of the largest AD programs. Lesson learned: Many neurological diseases have a similar presentation as AD or could confound the assessment of drug therapy. The inclusion of wrong patients has ethical and legal issues, and data could be excluded from the analysis. Centralized eligibility evaluation read process will be discussed. Amyloid related imaging abnormalities (ARIA) were observed in amyloid-β trials. FDA recommended regular monitoring of ARIA. Our experience in ARIA evaluations in large phase III study at > 350 sites will be presented. Efficacy evaluation: MRI is utilized to evaluate various volumes of the brain. FDG PET or amyloid PET agents has been used in AD trials. We will share our experience about site and central independent reads. Imaging logistic issues that need to be handled in the planning phase will also be discussed as it can impact patient compliance thereby increasing missing data and affecting study results. Conclusion: imaging must be prospectively planned to include standardizing imaging methodologies, site selection process and selecting assessment criteria. Training should be transparently conducted and documented. Prospective patient/caregiver awareness of imaging requirement is essential for patient compliance and reduction in missing imaging data.Keywords: Alzheimer's disease, ARIA, MRI, PET, patient recruitment, retention
Procedia PDF Downloads 1154073 The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method
Authors: A. Zerarka, W. Djoudi
Abstract:
The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions.Keywords: coth functions, csch functions, nonlinear partial differential equation, travelling wave solutions
Procedia PDF Downloads 6634072 Evaluation of Regional Anaesthesia Practice in Plastic Surgery: A Retrospective Cross-Sectional Study
Authors: Samar Mousa, Ryan Kerstein, Mohanad Adam
Abstract:
Regional anaesthesia has been associated with favourable outcomes in patients undergoing a wide range of surgeries. Beneficial effects have been demonstrated in terms of postoperative respiratory and cardiovascular endpoints, 7-day survival, time to ambulation and hospital discharge, and postoperative analgesia. Our project aimed at assessing the regional anaesthesia practice in the plastic surgery department of Buckinghamshire trust and finding out ways to improve the service in collaboration with the anaesthesia team. It is a retrospective study associated with a questionnaire filled out by plastic surgeons and anaesthetists to get the full picture behind the numbers. The study period was between 1/3/2022 and 23/5/2022 (12 weeks). The operative notes of all patients who had an operation under plastic surgery, whether emergency or elective, were reviewed. The criteria of suitable candidates for the regional block were put by the consultant anaesthetists as follows: age above 16, single surgical site (arm, forearm, leg, foot), no drug allergy, no pre-existing neuropathy, no bleeding disorders, not on ant-coagulation, no infection to the site of the block. For 12 weeks, 1061 operations were performed by plastic surgeons. Local cases were excluded leaving 319 cases. Of the 319, 102 patients were suitable candidates for regional block after applying the previously mentioned criteria. However, only seven patients had their operations under the regional block, and the rest had general anaesthesia that could have been easily avoided. An online questionnaire was filled out by both plastic surgeons and anaesthetists of different training levels to find out the reasons behind the obvious preference for general over regional anaesthesia, even if this was against the patients’ interest. The questionnaire included the following points: training level, time taken to give GA or RA, factors that influence the decision, percentage of RA candidates that had GA, reasons behind this percentage, recommendations. Forty-four clinicians filled out the questionnaire, among which were 23 plastic surgeons and 21 anaesthetists. As regards the training level, there were 21 consultants, 4 associate specialists, 9 registrars, and 10 senior house officers. The actual percentage of patients who were good candidates for RA but had GA instead is 93%. The replies estimated this percentage as between 10-30%. 29% of the respondents thought that this percentage is because of surgeons’ preference to have GA rather than RA for their operations without medical support for the decision. 37% of the replies thought that anaesthetists prefer giving GA even if the patient is a suitable candidate for RA. 22.6% of the replies thought that patients refused to have RA, and 11.3% had other causes. The recommendations were in 5 main accesses, which are protocols and pathways for regional blocks, more training opportunities for anaesthetists on regional blocks, providing a separate block room in the hospital, better communication between surgeons and anaesthetists, patient education about the benefits of regional blocks.Keywords: regional anaesthesia, regional block, plastic surgery, general anaesthesia
Procedia PDF Downloads 844071 A Multicenter Assessment on Psychological Well-Being Status among Medical Residents in the United Arab Emirates
Authors: Mahera Abdulrahman
Abstract:
Objective: Healthcare transformation from traditional to modern in the country recently prompted the need to address career choices, accreditation perception and satisfaction among medical residents. However, a concerted nationwide study to understand and address burnout in the medical residency program has not been conducted in the UAE and the region. Methods: A nationwide, multicenter, cross-sectional study was designed to evaluate professional burnout and depression among medical residents in order to address the gap. Results: Our results indicate that 75.5% (216/286) of UAE medical residents had moderate to high emotional exhaustion, 84% (249/298) had high depersonalization, and 74% (216/291) had a low sense of personal accomplishment. In aggregate, 70% (212/302) of medical residents were considered to be experiencing at least one symptom of burnout based on a high emotional exhaustion score or a high depersonalization score. Depression ranging from 6-22%, depending on the specialty was also striking given the fact the Arab culture lays high emphasis on family bonding. Interestingly 83% (40/48) of medical residents who had high scores for depression also reported burnout. Conclusion: Our data indicate that burnout and depression among medical residents is epidemic. There is an immediate need to address burnout through effective interventions at both the individual and institutional levels. It is imperative to reconfigure the approach to medical training for the well-being of the next generation of physicians in the Arab world.Keywords: mental health, Gulf, Arab, residency training, burnout, depression
Procedia PDF Downloads 2944070 Effects of Whole Body Vibration on Movement Variability Performing a Resistance Exercise with Different Ballasts and Rhythms
Authors: Sílvia tuyà Viñas, Bruno Fernández-Valdés, Carla Pérez-Chirinos, Monica Morral-Yepes, Lucas del Campo Montoliu, Gerard Moras Feliu
Abstract:
Some researchers stated that whole body vibration (WBV) generates postural destabilization, although there is no extensive research. Therefore, the aim of this study was to analyze movement variability when performing a half-squat with a different type of ballasts and rhythms with (V) and without (NV) WBV in male athletes using entropy. Twelve experienced in strength training males (age: 21.24 2.35 years, height: 176.83 5.80 cm, body mass: 70.63 8.58 kg) performed a half-squat with weighted vest (WV), dumbbells (D), and a bar with the weights suspended with elastic bands (B), in V and NV at 40 bpm and 60 bpm. Subjects performed one set of twelve repetitions of each situation, composed by the combination of the three factors. The movement variability was analyzed by calculating the Sample Entropy (SampEn) of the total acceleration signal recorded at the waist. In V, significant differences were found between D and WV (p<0.001; ES: 2.87 at 40 bpm; p<0.001; ES: 3.17 at 60 bpm) and between the B and WV at both rhythms (p<0.001; ES: 3.12 at 40 bpm; p<0.001; ES: 2.93 at 60 bpm) and a higher SampEn was obtained at 40 bpm with all ballasts (p<0.001; ES of WV: 1.22; ES of D: 4.49; ES of B: 4.03). No significant differences were found in NV. WBV is a disturbing and destabilizing stimulus. Strength and conditioning coaches should choose the combination of ballast and rhythm of execution according to the level and objectives of each athlete.Keywords: accelerometry, destabilization, entropy, movement variability, resistance training
Procedia PDF Downloads 1794069 The Long – Term Effects of a Prevention Program on the Number of Critical Incidents and Sick Leave Days: A Decade Perspective
Authors: Valerie Isaak
Abstract:
Background: This study explores the effectiveness of refresher training sessions of an intervention program at reducing the employees’ risk of injury due to patient violence in a forensic psychiatric hospital. Methods: The original safety intervention program that consisted of a 3 days’ workshop was conducted in the maximum-security ward of a psychiatric hospital in Israel. Ever since the original intervention, annual refreshers were conducted, highlighting one of the safety elements covered in the original intervention. The study examines the effect of the intervention program along with the refreshers over a period of 10 years in four wards. Results: Analysis of the data demonstrates that beyond the initial reduction following the original intervention, refreshers seem to have an additional positive long-term effect, reducing both the number of violent incidents and the number of actual employee injuries in a forensic psychiatric hospital. Conclusions: We conclude that such an intervention program followed by refresher training would promote employees’ wellbeing. A healthy work environment is part of management’s commitment to improving employee wellbeing at the workplace.Keywords: wellbeing, violence at work, intervention program refreshers, public sector mental healthcare
Procedia PDF Downloads 1374068 Feeling Sorry for Some Creditors
Authors: Hans Tjio, Wee Meng Seng
Abstract:
The interaction of contract and property has always been a concern in corporate and commercial law, where there are internal structures created that may not match the externally perceived image generated by the labels attached to those structures. We will focus, in particular, on the priority structures created by affirmative asset partitioning, which have increasingly come under challenge by those attempting to negotiate around them. The most prominent has been the AT1 bonds issued by Credit Suisse which were wiped out before its equity when the troubled bank was acquired by UBS. However, this should not have come as a surprise to those whose “bonds” had similarly been “redeemed” upon the occurrence of certain reference events in countries like Singapore, Hong Kong and Taiwan during their Minibond crisis linked to US sub-prime defaults. These were derivatives classified as debentures and sold as such. At the same time, we are again witnessing “liabilities” seemingly ranking higher up the balance sheet ladder, finding themselves lowered in events of default. We will examine the mechanisms holders of perpetual securities or preference shares have tried to use to protect themselves. This is happening against a backdrop that sees a rise in the strength of private credit and inter-creditor conflicts. The restructuring regime of the hybrid scheme in Singapore now, while adopting the absolute priority rule in Chapter 11 as the quid pro quo for creditor cramdown, does not apply to shareholders and so exempts them from cramdown. Complicating the picture further, shareholders are not exempted from cramdown in the Dutch scheme, but it adopts a relative priority rule. At the same time, the important UK Supreme Court decision in BTI 2014 LLC v Sequana [2022] UKSC 25 has held that directors’ duties to take account of creditor interests are activated only when a company is almost insolvent. All this has been complicated by digital assets created by businesses. Investors are quite happy to have them classified as property (like a thing) when it comes to their transferability, but then when the issuer defaults to have them seen as a claim on the business (as a choice in action), that puts them at the level of a creditor. But these hidden interests will not show themselves on an issuer’s balance sheet until it is too late to be considered and yet if accepted, may also prevent any meaningful restructuring.Keywords: asset partitioning, creditor priority, restructuring, BTI v Sequana, digital assets
Procedia PDF Downloads 764067 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator
Authors: Victoria L. Chester, Usha Kuruganti
Abstract:
The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.Keywords: EMG, forestry, human factors, wrist biomechanics
Procedia PDF Downloads 1474066 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars
Procedia PDF Downloads 1394065 Differential Analysis: Crew Resource Management and Profiles on the Balanced Inventory of Desirable Responding
Authors: Charalambos C. Cleanthous, Ryan Sain, Tabitha Black, Stephen Vera, Suzanne Milton
Abstract:
A concern when administering questionnaires is whether the participant is providing information that is accurate. The results may be invalid because the person is trying to present oneself in an unrealistic positive manner referred to as ‘faking good’, or in an unrealistic negative manner known as ‘faking bad’. The Balanced Inventory of Desirable Responding (BIDR) was used to assess commercial pilots’ responses on the two subscales of the BIDR: impression management (IM) and self-deceptive enhancement (SDE) that result in high or low scores. Thus, the BIDR produces four valid profiles: IM low and SDE low, IM high and SDE low, IM low and SDE high, and IM high and SDE high. The various profiles were used to compare the respondents’ answers to crew resource management (CRM) items developed from the USA Federal Aviation Administration’s (FAA) guidelines for CRM composition and training. Of particular interest were the results on the IM subscale. The comparisons between those scoring high (lying or faking) versus those low on the IM suggest that there were significant differences regarding their views of the various dimensions of CRM. One of the more disconcerting conclusions is that the high IM scores suggest that the pilots were trying to impress rather than honestly answer the questions regarding their CRM training and practice.Keywords: USA commercial pilots, crew resource management, faking, social desirability
Procedia PDF Downloads 2564064 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models
Authors: Akinnubi Rufus Temidayo
Abstract:
Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.Keywords: west africa, radiative, climate, resilence, anthropogenic
Procedia PDF Downloads 104063 Comprehensive Expert and Social Assessment of the Urban Environment of Almaty in the Process of Training Master's and Doctoral Students on Architecture and Urban Planning
Authors: Alexey Abilov
Abstract:
The article highlights the experience of training master's and doctoral students at Satbayev University by preparing their course works for disciplines "Principles of Sustainable Architecture", "Energy Efficiency in Urban planning", "Urban planning analysis, "Social foundations of Architecture". The purpose of these works is the acquisition by students of practical skills necessary in their future professional activities, which are achieved through comprehensive assessment of individual sections of the Almaty urban environment. The methodology of student’s researches carried out under the guidance of the author of this publication is based on an expert assessment of the territory through its full-scale survey, analysis of project documents and statistical data, as well as on a social assessment of the territory based on the results of a questionnaire survey of residents. A comprehensive qualitative and quantitative assessment of the selected sites according to the criteria of the quality of the living environment also allows to formulate specific recommendations for designers who carry out a pre-project analysis of the city territory in the process of preparing draft master plans and detailed planning projects.Keywords: urban environment, expert/social assessment of the territory, questionnaire survey, comprehensive approach
Procedia PDF Downloads 734062 Loading Methodology for a Capacity Constrained Job-Shop
Authors: Viraj Tyagi, Ajai Jain, P. K. Jain, Aarushi Jain
Abstract:
This paper presents a genetic algorithm based loading methodology for a capacity constrained job-shop with the consideration of alternative process plans for each part to be produced. Performance analysis of the proposed methodology is carried out for two case studies by considering two different manufacturing scenarios. Results obtained indicate that the methodology is quite effective in improving the shop load balance, and hence, it can be included in the frameworks of manufacturing planning systems of job-shop oriented industries.Keywords: manufacturing planning, loading, genetic algorithm, job shop
Procedia PDF Downloads 3014061 Effectiveness of High-Intensity Interval Training in Overweight Individuals between 25-45 Years of Age Registered in Sports Medicine Clinic, General Hospital Kalutara
Authors: Dimuthu Manage
Abstract:
Introduction: The prevalence of obesity and obesity-related non-communicable diseases are becoming a massive health concern in the whole world. Physical activity is recognized as an effective solution for this matter. The published data on the effectiveness of High-Intensity Interval Training (HIIT) in improving health parameters in overweight and obese individuals in Sri Lanka is sparse. Hence this study is conducted. Methodology: This is a quasi-experimental study that was conducted at the Sports medicine clinic, General Hospital, Kalutara. Participants have engaged in a programme of HIIT three times per week for six weeks. Data collection was based on precise measurements by using structured and validated methods. Ethical clearance was obtained. Results: Registered number for the study was 48, and only 52% have completed the study. The mean age was 32 (SD=6.397) years, with 64% males. All the anthropometric measurements which were assessed (i.e. waist circumference(P<0.001), weight(P<0.001) and BMI(P<0.001)), body fat percentage(P<0.001), VO2 max(P<0.001), and lipid profile (ie. HDL(P=0.016), LDL(P<0.001), cholesterol(P<0.001), triglycerides(P<0.010) and LDL: HDL(P<0.001)) had shown statistically significant improvement after the intervention with the HIIT programme. Conclusions: This study confirms HIIT as a time-saving and effective exercise method, which helps in preventing obesity as well as non-communicable diseases. HIIT ameliorates body anthropometry, fat percentage, cardiopulmonary status, and lipid profile in overweight and obese individuals markedly. As with the majority of studies, the design of the current study is subject to some limitations. The first is the study focused on a correlational study. If it is a comparative study, comparing it with other methods of training programs would have given more validity. Although the validated tools used to measure variables and the same tools used in pre and post-exercise occasions with the available facilities, it would have been better to measure some of them using gold-standard methods. However, this evidence should be further assessed in larger-scale trials using comparative groups to generalize the efficacy of the HIIT exercise program.Keywords: HIIT, lipid profile, BMI, VO2 max
Procedia PDF Downloads 644060 Monitoring the Fiscal Health of Taiwan’s Local Government: Application of the 10-Point Scale of Fiscal Distress
Authors: Yuan-Hong Ho, Chiung-Ju Huang
Abstract:
This article presents a monitoring indicators system that predicts whether a local government in Taiwan is heading for fiscal distress and identifies a suitable fiscal policy that would allow the local government to achieve fiscal balance in the long run. This system is relevant to stockholders’ interest, simple for national audit bodies to use, and provides an early warning of fiscal distress that allows preventative action to be taken.Keywords: fiscal health, fiscal distress, monitoring signals, 10-point scale
Procedia PDF Downloads 4594059 Literacy in First and Second Language: Implication for Language Education
Authors: Inuwa Danladi Bawa
Abstract:
One of the challenges of African states in the development of education in the past and the present is the problem of literacy. Literacy in the first language is seen as a strong base for the development of second language; they are mostly the language of education. Language development is an offshoot of language planning; so the need to develop literacy in both first and second language affects language education and predicts the extent of achievement of the entire education sector. The need to balance literacy acquisition in first language for good conditioning the acquisition of second language is paramount. Likely constraints that includes; non-standardization, underdeveloped and undeveloped first languages are among many. Solutions to some of these include the development of materials and use of the stages and levels of literacy acquisition. This is with believed that a child writes well in second language if he has literacy in the first language.Keywords: first language, second language, literacy, english language, linguistics
Procedia PDF Downloads 4534058 Lightning Protection Design Applied to Sustainable Development
Authors: Sylvain Fauveaux, T. Nowicki
Abstract:
Lightning protection is nowadays applied worldwide since the advent of international standards. Lightning protection is widely justified by the casualties and damages involved. As a matter of fact, the lightning business is constantly growing as more and more sensible areas need to be protected. However, the worldwide demand of copper materiel is increasing as well, its price too. Furthermore, the most frequently used method of protection is consuming a lot of copper. The copper production is also consuming a large amount of natural and power resources, not to mention the ecologic balance.Keywords: ESEAT, Lightning protection , natural resources management, NF C 17-102, sustainable development
Procedia PDF Downloads 1614057 Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis
Authors: T. Tulwin, M. Gęca, R. Sochaczewski
Abstract:
Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented.Keywords: aircraft, propulsion , efficiency, storage
Procedia PDF Downloads 1704056 Moodle-Based E-Learning Course Development for Medical Interpreters
Authors: Naoko Ono, Junko Kato
Abstract:
According to the Ministry of Justice, 9,044,000 foreigners visited Japan in 2010. The number of foreign residents in Japan was over 2,134,000 at the end of 2010. Further, medical tourism has emerged as a new area of business. Against this background, language barriers put the health of foreigners in Japan at risk, because they have difficulty in accessing health care and communicating with medical professionals. Medical interpreting training is urgently needed in response to language problems resulting from the rapid increase in the number of foreign workers in Japan over recent decades. Especially, there is a growing need in medical settings in Japan to speak international languages for communication, with Tokyo selected as the host city of the 2020 Summer Olympics. Due to the limited number of practical activities on medical interpreting, it is difficult for learners to acquire the interpreting skills. In order to eliminate the shortcoming, a web-based English-Japanese medical interpreting training system was developed. We conducted a literature review to identify learning contents, core competencies for medical interpreters by using Pubmed, PsycINFO, Cochrane Library, and Google Scholar. Selected papers were investigated to find core competencies in medical interpreting. Eleven papers were selected through literature review indicating core competencies for medical interpreters. Core competencies in medical interpreting abstracted from the literature review, showed consistency in previous research whilst the content of the programs varied in domestic and international training programs for medical interpreters. Results of the systematic review indicated five core competencies: (a) maintaining accuracy and completeness; (b) medical terminology and understanding the human body; (c) behaving ethically and making ethical decisions; (d) nonverbal communication skills; and (e) cross-cultural communication skills. We developed an e-leaning program for training medical interpreters. A Web-based Medical Interpreter Training Program which cover these competencies was developed. The program included the following : online word list (Quizlet), allowing student to study online and on their smartphones; self-study tool (Quizlet) for help with dictation and spelling; word quiz (Quizlet); test-generating system (Quizlet); Interactive body game (BBC);Online resource for understanding code of ethics in medical interpreting; Webinar about non-verbal communication; and Webinar about incompetent vs. competent cultural care. The design of a virtual environment allows the execution of complementary experimental exercises for learners of medical interpreting and introduction to theoretical background of medical interpreting. Since this system adopts a self-learning style, it might improve the time and lack of teaching material restrictions of the classroom method. In addition, as a teaching aid, virtual medical interpreting is a powerful resource for the understanding how actual medical interpreting can be carried out. The developed e-learning system allows remote access, enabling students to perform experiments at their own place, without being physically in the actual laboratory. The web-based virtual environment empowers students by granting them access to laboratories during their free time. A practical example will be presented in order to show capabilities of the system. The developed web-based training program for medical interpreters could bridge the gap between medical professionals and patients with limited English proficiency.Keywords: e-learning, language education, moodle, medical interpreting
Procedia PDF Downloads 3664055 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis
Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara
Abstract:
Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy
Procedia PDF Downloads 352