Search results for: accuracy
2370 Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die
Authors: Mehdi Modabberifar, Behrouz Raad, Bahman Mirzakhani
Abstract:
Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built.Keywords: die casting, finite element, flange, helical gearbox
Procedia PDF Downloads 3672369 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 452368 Evaluation of Iranian Standard for Assessment of Liquefaction Potential of Cohesionless Soils Based on SPT
Authors: Reza Ziaie Moayad, Azam Kouhpeyma
Abstract:
In-situ testing is preferred to evaluate the liquefaction potential in cohesionless soils due to high disturbance during sampling. Although new in-situ methods with high accuracy have been developed, standard penetration test, the simplest and the oldest in-situ test, is still used due to the profusion of the recorded data. This paper reviews the Iranian standard of evaluating liquefaction potential in soils (codes 525) and compares the liquefaction assessment methods based on SPT results on cohesionless soil in this standard with the international standards. To this, methods for assessing liquefaction potential which are presented by Cetin et al. (2004), Boulanger and Idriss (2014) are compared with what is presented in standard 525. It is found that although the procedure used in Iranian standard of evaluating the potential of liquefaction has not been updated according to the new findings, it is a conservative procedure.Keywords: cohesionless soil, liquefaction, SPT, standard 525
Procedia PDF Downloads 1702367 The Application and Applicability of Computer System to Financial Management: A Case Study of College of Education, Oju, Benue State, Nigeria
Authors: Agih Ukuru Agih
Abstract:
This work is an appraisal of the application and applicability of computer system to financial management in improving the speed, performance, accuracy, and efficiency of the College of Education, Oju. The computerization of financial management, which is a recent development that has authentic and dedicated balancing of accounting records, would be of enormous benefits to the college. The core objective of this project is to recommend the software that typically matches a computerized institution, making for improved service, reduced fraud, mishandled funds, and financial records in the College of Education, Oju. Considering major globalization impacts in computerized financial management of the college, the study recommends among other things that the College of Education, Oju should endeavor to be positive towards computerized financial management in the institution.Keywords: computer system, balancing, accounting records, computerized financial management
Procedia PDF Downloads 3942366 Uncommon Causes of Acute Abdominal Pain: A Pictorial Essay
Authors: Mahesh Hariharan, Rajan Balasubramaniam, Sharath Kumar Shetty, Shanthala Yadavalli, Mohammed Ahetasham, Sravya Devarapalli
Abstract:
Acute abdomen is one of the most common clinical conditions requiring a radiological investigation. Ultrasound is the primary modality of choice which can diagnose some of the common causes of acute abdomen. However, sometimes the underlying cause for the pain is far more complicated than expected to mandate a high degree of suspicion to suggest further investigation with contrast-enhanced computed tomography or magnetic resonance imaging. Here, we have compiled a comprehensive series of selected cases to highlight the conditions which can be easily overlooked unless carefully sought for. This also emphasizes the importance of multimodality approach to arrive at the final diagnosis with an increased overall diagnostic accuracy which in turn improves patient management and prognosis.Keywords: acute abdomen, contrast-enhanced computed tomography scan, magnetic resonance imaging, plain radiographs, ultrasound
Procedia PDF Downloads 3642365 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 5052364 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing
Procedia PDF Downloads 4292363 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames
Authors: H. Katkhuda
Abstract:
A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.Keywords: dynamic force identification, dynamic responses, sub-structure, time domain
Procedia PDF Downloads 3612362 Force Feedback Enabled Syringe for Aspiration and Biopsy
Authors: Pelin Su Firat, Sohyung Cho
Abstract:
Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.Keywords: biopsy, syringe, force sensors, haptic feedback
Procedia PDF Downloads 672361 Mosaic Augmentation: Insights and Limitations
Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz
Abstract:
The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny
Procedia PDF Downloads 1272360 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 2102359 Electroencephalogram Signals Controlling a Parallax Boe-Bot Robot
Authors: Nema M. Salem, Hanan A. Altukhaifi, Amal Mukhtar, Reemaz K. Hetaimish
Abstract:
Recently, BCI field of research has gained a lot of interest. Apart from motor neuroprosthetics, many studies showed the possibility of controlling a virtual environment of a videogame using the acquired electroencephalogram signals (EEG) from the gamer. In addition, another study had successfully moved a farm tractor using the human’s EEG signals. This article utilizes the use of EEG signals, as a source of technology, in controlling a Parallax Boe-Bot robot. The commercial Emotive Epoc headset has been used in acquiring the EEG signals from rested subjects. Because the human's visual cortex can successfully differentiate between different colors, the red and green colors are used as visual stimuli for generating EEG signals using the Epoc. Arduino and Labview are used to translate the virtually pressed keys into instructions controlling the motion and rotation of the robot. Optimistic results have been achieved except for minor delay and accuracy in the robot’s response.Keywords: BCI, Emotiv Epoc headset, EEG, Labview, Arduino applications, robot
Procedia PDF Downloads 5222358 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.Keywords: radial basis functions, Hermite finite difference, Helmholtz equation, stability
Procedia PDF Downloads 992357 Modelling Railway Noise Over Large Areas, Assisted by GIS
Authors: Conrad Weber
Abstract:
The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.Keywords: noise, modeling, GIS, rail
Procedia PDF Downloads 1222356 Trainability of Executive Functions during Preschool Age Analysis of Inhibition of 5-Year-Old Children
Authors: Christian Andrä, Pauline Hähner, Sebastian Ludyga
Abstract:
Introduction: In the recent past, discussions on the importance of physical activity for child development have contributed to a growing interest in executive functions, which refer to cognitive processes. By controlling, modulating and coordinating sub-processes, they make it possible to achieve superior goals. Major components include working memory, inhibition and cognitive flexibility. While executive functions can be trained easily in school children, there are still research deficits regarding the trainability during preschool age. Methodology: This quasi-experimental study with pre- and post-design analyzes 23 children [age: 5.0 (mean value) ± 0.7 (standard deviation)] from four different sports groups. The intervention group was made up of 13 children (IG: 4.9 ± 0.6), while the control group consisted of ten children (CG: 5.1 ± 0.9). Between pre-test and post-test, children from the intervention group participated special games that train executive functions (i.e., changing rules of the game, introduction of new stimuli in familiar games) for ten units of their weekly sports program. The sports program of the control group was not modified. A computer-based version of the Eriksen Flanker Task was employed in order to analyze the participants’ inhibition ability. In two rounds, the participants had to respond 50 times and as fast as possible to a certain target (direction of sight of a fish; the target was always placed in a central position between five fish). Congruent (all fish have the same direction of sight) and incongruent (central fish faces opposite direction) stimuli were used. Relevant parameters were response time and accuracy. The main objective was to investigate whether children from the intervention group show more improvement in the two parameters than the children from the control group. Major findings: The intervention group revealed significant improvements in congruent response time (pre: 1.34 s, post: 1.12 s, p<.01), while the control group did not show any statistically relevant difference (pre: 1.31 s, post: 1.24 s). Likewise, the comparison of incongruent response times indicates a comparable result (IG: pre: 1.44 s, post: 1.25 s, p<.05 vs. CG: pre: 1.38 s, post: 1.38 s). In terms of accuracy for congruent stimuli, the intervention group showed significant improvements (pre: 90.1 %, post: 95.9 %, p<.01). In contrast, no significant improvement was found for the control group (pre: 88.8 %, post: 92.9 %). Vice versa, the intervention group did not display any significant results for incongruent stimuli (pre: 74.9 %, post: 83.5 %), while the control group revealed a significant difference (pre: 68.9 %, post: 80.3 %, p<.01). The analysis of three out of four criteria demonstrates that children who took part in a special sports program improved more than children who did not. The contrary results for the last criterion could be caused by the control group’s low results from the pre-test. Conclusion: The findings illustrate that inhibition can be trained as early as in preschool age. The combination of familiar games with increased requirements for attention and control processes appears to be particularly suitable.Keywords: executive functions, flanker task, inhibition, preschool children
Procedia PDF Downloads 2532355 Healthcare Data Mining Innovations
Authors: Eugenia Jilinguirian
Abstract:
In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database
Procedia PDF Downloads 662354 MPC of Single Phase Inverter for PV System
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink
Procedia PDF Downloads 5322353 Breakdown Voltage Measurement of High Voltage Transformers Oils Using an Active Microwave Resonator Sensor
Authors: Ahmed A. Al-Mudhafar, Ali A. Abduljabar, Hayder Jawad Albattat
Abstract:
This work suggests a new microwave resonator sensor (MRS) device for measuring the oil’s breakdown voltage of high voltage transformers. A precise high-sensitivity sensor is designed and manufactured based on a microstrip split ring resonator (SRR). To improve the sensor sensitivity, a RF amplifier of 30 dB gain is linked through a transmission line of 50Ω.The sensor operates at a microwave band (L) with a quality factor of 1.35x105 when it is loaded with an empty tube. In this work, the sensor has been tested with three samples of high voltage transformer oil of different ages (new, middle, and damaged) where the quality factor differs with each sample. A mathematical model was built to calculate the breakdown voltage of the transformer oils and the accuracy of the results was higher than 90%.Keywords: active resonator sensor, oil breakdown voltage, transformers oils, quality factor
Procedia PDF Downloads 2692352 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems
Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov
Abstract:
This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller
Procedia PDF Downloads 4952351 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1192350 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 242349 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers
Authors: Helen Zhang
Abstract:
Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning
Procedia PDF Downloads 1172348 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation
Authors: Sachin Kumar
Abstract:
Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method
Procedia PDF Downloads 2012347 Rule Insertion Technique for Dynamic Cell Structure Neural Network
Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin
Abstract:
This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.Keywords: neural network, self-organizing map, rule extraction, rule insertion
Procedia PDF Downloads 1722346 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study
Authors: Emmanuel Omokhuale
Abstract:
A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium
Procedia PDF Downloads 1412345 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 662344 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1612343 Dynamic Soil Structure Interaction in Buildings
Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar
Abstract:
Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings
Procedia PDF Downloads 4802342 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy
Procedia PDF Downloads 5282341 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure
Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.Keywords: inverse method, FLUENT, k-ε model, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 460