Search results for: Adult dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2458

Search results for: Adult dataset

1108 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct

Procedia PDF Downloads 225
1107 Out of Pocket Costs for Patients with Tuberculosis in Colombia: Evidence from Three Metropolitan Areas

Authors: Jose Hernandez, Lina Martínez, Gustavo Gonzalez, Carlos Lázaro, Diana Castrillon, Jonathan Cardona, Laura Mejía, Yina Sanchez, Luisa Ochoa, Evert Jimenez

Abstract:

Objectives: Economic analyses of tuberculosis control interventions are usually focused on the payer’s perspective. To assess the overall economic impact of the disease, out-of-pocket and indirect costs are also required. This research is aimed to estimate overall economic impact under DOTS-strategy (Directly Observed Therapy Short Course). Methods: A cross-sectional survey of 91 adult tuberculosis patients in treatment for at least two months was conducted from the society perspective. A standardized questionnaire was used in three different cities of Colombia: Medellin (poverty is 17.7%), Monteria (poverty is 36.9%) and Quibdó (poverty is 51.2%). Costs were converted to 2013 USD and categorized into two periods: diagnostics phase and treatment. Results: The median cost during diagnostics was 13$ (±SD 9.5). The median monthly patient out-of-pocket costs during treatment were 32$ (±SD 6.8), equivalent to 17% of patient’s median monthly income, estimated in 186$ (±SD 23). Costs recorded in Medellin were 47$ in Monteria was 18$ and in Quibdó was 13$. Conclusion: Patient costs under DOTS strategy are high even when services are provided free of charge. The creation or strengthening of community-based treatment supervisors could greatly impact costs of tuberculosis and lower drop-outs.

Keywords: tuberculosis, costs and cost analysis, health promotion, Colombia

Procedia PDF Downloads 367
1106 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 546
1105 A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton

Authors: Yusuf Ali Abdulle, Azhar Uddin Keerio

Abstract:

Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci.

Keywords: resistance, Lecanicillium lecanii, secondary metabolites, whitefly

Procedia PDF Downloads 184
1104 Intergenerational Technology Learning in the Family

Authors: Chih-Chun Wu

Abstract:

Learning information and communication technologies (ICT) helps people survive in current society. For the internet generation also referred as digital natives, learning new technology is like breathing; however, for the elder generations also called digital immigrants, including parents and grandparents, learning new technology could be challenged and frustrated. While majority research focused on the effects of elders’ ICT learning, less attention was paid to the help that the elders got from their other family members while learning ICT. This study utilized the anonymous questionnaire to survey 3,749 undergraduates and demonstrated that families are great places for intergenerational technology learning to be carried out. Results from this study confirmed that in the family, the younger generation both helped set up technology products and educated the elder ones needed technology knowledge and skills. The family elder members in this study applied to those who lived under the same roof with relative relations. Results from this study revealed that 2,331 (62.2%) and 2,656 (70.8%) undergraduates revealed that they helped their family elder members set up and taught them how to use LINE respectively. In addition, 1,481 (49.1%) undergraduates helped their family elder members set up, and 2,222 (59.3%) taught them. When it came to Apps, 2,527 (67.4%) helped their family elder members download them, and 2,876 (76.7%) taught how to use them. As for search engine, 2,317 (61.8%) undergraduates taught their family elders. Furthermore, 3,118 (83.2%), 2,639 (70.4%) and 2,004 (53.7%) undergraduates illustrated that they taught their family elder members smartphones, computers and tablets respectively. Meanwhile, only 904 (24.2%) undergraduates taught their family elders how to make a doctor appointment online. This study suggests to making good use of intergenerational technology learning in the family, since it increases family elders’ technology capital, and thus strengthens our country’s human capital and competitiveness.

Keywords: intergenerational technology learning, adult technology learning, family technology learning, ICT learning

Procedia PDF Downloads 235
1103 An Evaluation of Self-Esteem in Physically Disabled Adults Who Particapated in Sports

Authors: Ummuhan Bas Aslan, Sehmus Aslan

Abstract:

Objective: Physical disability includes impairments, activity limitations, and participation restrictions. Individuals with physical disabilities have lower self-esteem compared non-disabled people. Self-esteem is widely accepted as a key indicator of emotional stability and adjustment to life demands. There is very limited study to investigate the effect of sports on self-esteem in physically disabled people. The aim of the present study was to evaluate of self-esteem in physically disabled adults who participated in sports. Methods: Fifty physically disabled adults who participated in sports aged between 18 to 35 years participated in the study. Self-esteem of the participants was assessed by Rosenberg Self-Esteem Scale. The scale is a 10-item measure of global self-esteem. The higher score on the scale indicates greater self-esteem. Scores between 15 and 25 are the normal range of and scores below 15 suggest low self-esteem. Results: Average age of participants was 25.18±6.20 years. 58% of the participants were 23 (46.0%) of the participants were wheelchair users, 8 (16.0%) were mobile with a walking aid and 19 (38.0%) were mobile without a walking aid. The length of physically disabled adults had been participating in their sports (basketball: 54%, athleticism: 32%, volleyball: 6%, cycling: 6%) was 4.94±3.86 years. The average Rosenberg Self-Esteem Scale score of the participants was 21.88 ±4.34. Conclusions: Our results suggest that physically disabled adults who participated in sports have the healthy level of self-esteem. Participating in sports could have positive effects on self-esteem in that physically, disabled people. There is needed future comparative studies on this topic.

Keywords: adult, physical disability, self-esteem, sport

Procedia PDF Downloads 265
1102 Pharmacokinetic Study of Clarithromycin in Human Female of Pakistani Population

Authors: Atifa Mushtaq, Tanweer Khaliq, Hafiz Alam Sher, Asia Farid, Anila Kanwal, Maliha Sarfraz

Abstract:

The study was designed to assess the various pharmacokinetic parameters of a commercially available clarithromycin Tablet (Klaricid® 250 mg Abbot, Pakistan) in plasma sample of healthy adult female volunteers by applying a rapid, sensitive and accurate HPLC-UV analytical method. The human plasma samples were evaluated by using an isocratic High Performance Liquid Chromatography (HPLC) system of Sykam consisted of a pump with a column C18 column (250×4.6mn, 5µm) UV-detector. The mobile phase comprises of potassium dihydrogen phosphate (50 mM, pH 6.8, contained 0.7% triethylamine), methanol and acetonitrile (30:25:45, v/v/v) was delivered with injection volume of 20µL at flow rate of 1 mL/min. The detection was performed at λmax 275 nm. By applying this method, important pharmacokinetic parameters Cmax, Tmax, Area under curve (AUC), half-life (t1/2), , Volume of distribution (Vd) and Clearance (Cl) were measured. The parameters of pharmacokinetics of clarithromycin were calculated by software (APO) pharmacological analysis. Maximum plasma concentrations Cmax 2.78 ±0.33 µg/ml, time to reach maximum concentration tmax 2.82 ± 0.11 h and Area under curve AUC was 20.14 h.µg/ml. The mean ± SD values obtained for the pharmacokinetic parameters showed a significant difference in pharmacokinetic parameters observed in previous literature which emphasizes the need for dose adjustment of clarithromycin in Pakistani population.

Keywords: Pharmacokinetc, Clarothromycin, HPLC, Pakistan

Procedia PDF Downloads 108
1101 Toward the Understanding of Shadow Port's Growth: The Level of Shadow Port

Authors: Chayakarn Bamrungbutr, James Sillitoe

Abstract:

The term ‘shadow port’ is used to describe a port whose markets are dominated by an adjacent port that has a more competitive capability. Recently, researchers have put effort into studying the mechanisms of how a regional port, in the shadow of a nearby predominant port which is a capital city port, can compete and grow. However, such mechanism is still unclear. This study thus focuses on understanding the growth of shadow port and the type of shadow port by using the two capital city ports of Thailand; Bangkok port (the former main port) and Laem Chabang port (the current main port), as the case study. By developing an understanding of the mechanisms of shadow, port could ultimately lead to an increase in the competitiveness. In this study, a framework of opportunity capture (introduced by Magala, 2004) will be used to create a framework for the study of the growth of the selected shadow port. In the process of building this framework, five groups of port development experts, consisting of government, council, academia, logistics provider and industry, will be interviewed. To facilitate this work, the Noticing, Collecting and Thinking model which was developed by Seidel (1998) will be used in an analysis of the dataset. The resulting analysis will be used to classify the type of shadow port. The type of these ports will be a significant factor for developing a feasible strategic guideline for the future management planning of ports, particularly, shadow ports, and then to increase the competitiveness of a nation’s maritime transport industry, and eventually lead to a boost in the national economy.

Keywords: shadow port, Bangkok Port, Laem Chabang Port, port growth

Procedia PDF Downloads 177
1100 Crop Classification using Unmanned Aerial Vehicle Images

Authors: Iqra Yaseen

Abstract:

One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.

Keywords: image processing, UAV, YOLO, CNN, deep learning, classification

Procedia PDF Downloads 107
1099 The Effectiveness of the Counselling Module in Counseling Interventions for Low Performance Employees

Authors: Hazaila Hassan

Abstract:

This research aims and discusses about the effectiveness of the Psynnova i-Behaviour Modification Technique (iBMT) module towards the change in behaviour of low-performing employees. The purpose of the study is to examine the effectiveness of the Psynnova Module on changing behaviour through five factors among low-performing employees in the public sector. The five main factors/constructs were cognitive enhancement and rationality, emotional stability, attitude alignment and adjustment, social skills development and psycho-spirituality enhancement. In this research, 5 main constructs will be using to indicate behaviour changing performance of the employees after attending The Psynnova Program that using this Psynnova IBMT Module. The respondents are among those who have low scores in terms of annual performance through annual performance value reports and have gone through various stages before being required to attend Psynnova Program. Besides that, the research plan was also to critically examine and understand the change in behaviour among the low-performing employees through the five dimensions in the Psynnova Module. A total of 50 respondent will purposively sampled to be the respondents of this research. This study will use the Experimental Method to One Group Purposively Pre and Post Test using the Time Series Design. Experimental SPSS software version 22.0 will be used to analyse this data. Hopefully this research can see the changing of their behaviour in five factors as an indicator to the respondent after attending the Psynnova Programme. Findings from this study are also used to propose to assisting psychologist to see the changes that occurred to the respondents with the best framework of behaviour changing for them.

Keywords: five dimension of behaviour changing, among adult, low performance, modul effectiveness

Procedia PDF Downloads 171
1098 On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing

Authors: Ricardo Daziano

Abstract:

In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity.

Keywords: discrete choice, electric taxis, ridehailing, semiparametrics

Procedia PDF Downloads 162
1097 A Posteriori Trading-Inspired Model-Free Time Series Segmentation

Authors: Plessen Mogens Graf

Abstract:

Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.

Keywords: time series segmentation, model-free, trading-inspired, multivariate data

Procedia PDF Downloads 136
1096 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 663
1095 Metabolic Syndrome and Its Effects on Cartilage Degeneration vs Regeneration: A Pilot Study Using Osteoarthritis Biomarkers

Authors: Neena Kanojia, R. K. Kanojia

Abstract:

Background: Osteoarthritis OA of the knee is one of the leading causes of disability characterized by degeneration of hyaline cartilage combined with reparative processes. Its strong association with metabolic syndrome is postulated to be due to both mechanical and biochemical factors. Our study aims to study differential effect of metabolic risk factors on cartilage degeneration and regeneration at biomarker level. Design: After screening 281 patients presenting with knee pain, 41 patients who met the selection criteria were included and were divided into metabolic MetS OA and non-metabolic Non-MetS OA phenotypes using National Cholesterol Education Programme-Adult Treatment Panel-III NCEP ATP III criteria for metabolic syndrome. Serum Cartilage Oligomeric Matrix Protein COMP and Procollagen type IIA N terminal Propeptide PIIANP levels were used as tools to assess cartilage degeneration and regeneration, respectively. Results: 22 among 41 patients 53.66% had metabolic syndrome. Covariates like age, gender, Kellgren Lawrence KL grades were comparable in both groups. MetS OA group showed significant increase in serum COMP levels (p 0.03 with no significant effect on serum PIIANP levels (p 0.46. Hypertriglyceridemia showed independent association with both cartilage anabolism (p 0.03 and catabolism (p 0.03. Conclusion: Metabolic syndrome, though has no effect on cartilage regeneration tends to shift cartilage homeostasis towards degeneration with hypertriglyceridemia showing significant independent effect on cartilage metabolism.

Keywords: metabolic, syndrome, cartilage, degernation

Procedia PDF Downloads 65
1094 Behavioral Assessment of the Role of Brain 5-HT4 Receptors on the Memory and Cognitive Performance in a Rat Model of Alzheimer Disease

Authors: Siamak Shahidi, Nasrin Hashemi-Firouzi, Sara Soleimani-Asl, Alireza Komaki

Abstract:

Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory and cognitive performance. Recently, an involvement of the serotonergic system and their receptors are suspected in the AD progression. In the present behavioral study, the effects of BIMU (selective 5-HT4 receptor agonist) on cognition and memory in the rat model of AD was investigated. Material and Methods: The animal model of the AD was induced by intracerebroventricular (Icv) injection of amyloid beta (Aβ) in adult male Wistar rats. Animals were divided into experimental groups included control, sham, Aβ, Aβ +BIMU groups. The treatment substances were icv injected (1 μg/μL) for thirty consecutive days. Then, novel object recognition (NOR) and passive avoidance learning (PAL) tests were applied to investigate memory and cognitive performance. Results: Aβ decrease the discrimination index of NOR test. Also, it increases the time spent in the dark compartment during PAL test, as compared with sham and control groups. In addition, compared to Aβ groups, BIMU significantly increased the discrimination index of NOR test and decreased the time spent in the dark compartment of PAL test. Conclusion: These findings suggest that 5-HT4 receptor activation prevents progression of memory and cognitive impairment in a rat model of AD.

Keywords: Alzheimer disease, cognition, memory, serotonin receptors

Procedia PDF Downloads 132
1093 Community Perception and Knowledge on Oral Cancer Screening Methods in Kuwait

Authors: Lavanya Dharmendran, Shenuka Singh, Sona Baburathanam

Abstract:

The aim of the study is to understand the level of awareness in a community of a specific region of Kuwait regarding oral cancer and its screening methods so as to enhance the uptake of oral cancer screening methods. This is a cross-sectional study comprising 100 adult participants residing in the governate of Farwaniya, Kuwait. Participants of above 18 years of both genders will be selected using convenience sampling. Data collection includes the administration of a self-administered questionnaire. The questionnaire comprises three sections, each section assessing the knowledge, attitudes and practices of the participants’ opinions about oral cancer and screening methods. Data will be analyzed using Humphris Oral Cancer Knowledge Scale. Inferential statistics will be done using Chi-Square or Fisher’s exact test for categorical data. A level of p<.05 will be established as being significant. All ethical considerations, such as respect for personal confidentiality and informed consent, will be applied in this study. This study revealed that although respondents were aware of the term oral cancer, more than half of the study participants were unaware of the symptoms associated with this condition. Smoking and alcohol were identified as risk factors for oral cancer, but the majority of participants did not identify the Human Papilloma Virus (HPV) as an added risk factor. This suggests a greater need for dental practitioners to include educational strategies in routine dental visits to ensure greater awareness of oral cancer.

Keywords: oral cancer, oral screening, oral public health, oral health

Procedia PDF Downloads 71
1092 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals

Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady

Abstract:

Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.

Keywords: core stability, isokinetic, trunk proprioception, biomechanics

Procedia PDF Downloads 475
1091 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 154
1090 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
1089 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 23
1088 VHL, PBRM1, and SETD2 Genes in Kidney Cancer: A Molecular Investigation

Authors: Rozhgar A. Khailany, Mehri Igci, Emine Bayraktar, Sakip Erturhan, Metin Karakok, Ahmet Arslan

Abstract:

Kidney cancer is the most lethal urological cancer accounting for 3% of adult malignancies. VHL, a tumor-suppressor gene, is best known to be associated with renal cell carcinoma (RCC). The VHL functions as negative regulator of hypoxia inducible factors. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC (clear cell RCC) including PBRM1 and SETD2. The PBRM1 gene encodes the BAF180 protein, which involved in transcriptional activation and repression of selected genes. SETD2 encodes a histone methyltransferase, which may play a role in suppressing tumor development. In this study, RNAs of 30 paired tumor and normal samples that were grouped according to the types of kidney cancer and clinical characteristics of patients, including gender and average age were examined by RT-PCR, SSCP and sequencing techniques. VHL, PBRM1 and SETD2 expressions were relatively down-regulated. However, statistically no significance was found (Wilcoxon signed rank test, p > 0.05). Interestingly, no mutation was observed on the contrary of previous studies. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for kidney cancer. Further analysis is required to identify the responsible genes rather than VHL, PBRM1 and SETD2 in kidney cancer.

Keywords: kidney cancer, molecular biomarker, expression analysis, mutation screening

Procedia PDF Downloads 459
1087 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 269
1086 Reading the Memoirs of American Caregiving Daughters: A Care-Focused Feminist Approach

Authors: Su-Lin Yu

Abstract:

This paper will explore how gender and care discourse are intersected, reformulated and contested in American daughters’ caregiving memoirs. In particular, it will attempt to show how gender structure has worked to regulate a daughter’s response to her mother’s illness. In other words, how do certain cultural notions and class difference affect the ways in which the daughter enacts her caregiving response to her mother’s illness? What is the interrelation of female subjectivity and care practice? To understand care and gender politics in the memoirs, this paper will engage in close readings of five texts: Sandra Bullock Simith’s Trading Places: Becoming My Mother’s Mother: A Daughter’s Memoir (2015),Martha Stettinius’s Inside the Dementia Epidemic: A Daughter’s Memoir (2012), Patricia Thompson Collamer’s Grace on the Ledge: a Caregiver's Memoir, Judith Henry’s The Dutiful Daughter's Guide to Caregiving: A Practical Memoir (2015), and The Daughter's Dilemma: A Survival Guide to Caring for an Aging, Abusive Parent by Emily Wanderer Cohen (2018). By analyzing these texts, this paper will show why adult daughters become the primary caregivers, how gender norms and care practices influence a daughter’s thoughts and actions, and how it affects her self-understanding. Taken as a whole, then, the paper will provide an important examination not only of care and gender politics, but also a contribution to the intersecting discourses of illness, death, and mother-daughter relationship.

Keywords: care ethics, daughter-mother relationship, gender politics, memoirs

Procedia PDF Downloads 265
1085 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 129
1084 Effects of Injection of eCG and Oxytocin on Semen Characteristics of Zel Rams in Nonbreeding Season

Authors: Khosro Ghazvinian, Reza Narenji Sani, Touba Khodaiean, Melika Moezifar

Abstract:

Many previous studies have reported that eCG was effective for completing spermatogenesis. In mice, eCG increased testes weight. In addition, Oxytocin (OT) was important in sperm transition and sperm motility in domestic animals. Peripheral circulation of OT also, was increased during sex incitement and ejaculation The objective of this study was to investigate the effect of IM injection of eCG and OT on semen characteristics in Zel rams in out of breeding season. Eighteen 3-year-old Zel adult rams were randomly divided into five equal groups (control and four treatment groups). 0.9% NaCl (1 ml) was injected IM into each ram in the control group, whereas eCG was administered IM at a single dose of 400 IU and 600 IU to each ram in the two eCG treatment groups and OT was administered IM at a single dose of 5 IU and 10 IU to each ram in the other two OT treatment groups. Semen samples were taken by an electroejaculator from all rams 10 min after the IM injection of 0.9% NaCl, eCG, or OT. eCG did not alter semen volume, and OT did not alter sperm motility or abnormal sperm, in comparison to the control values. Mass activity, sperm motility and total sperm number increased significantly in eCG group compared to the control group; and semen volume, mass activity, total sperm number of the OT treatment groups increased significantly compared to the control group. Exogenous 600 IU eCG and 10 IU OT increase mass activity, total sperm number, lived sperm and sperm concentration in Zel rams.

Keywords: eCG, oxytocine, semen characteristics, Zel Ram, nonbreeding season

Procedia PDF Downloads 404
1083 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 132
1082 Leveraging on Youth Agricultural Extension Outreach: Revisiting Young Farmer’s Club in Schools in Edo State, Nigeria

Authors: Christopher A. Igene, Jonathan O. Ighodalo

Abstract:

Youths play a critical role in the agricultural transformation of any developing nation such as Nigeria. Hence, the preparation of any nation for productive life depends on the policies and programmes designed for its youths. Studies have shown that children and youths contribute significantly in agricultural activities. Youths have vigour and prone to physical work, they constitute a great percentage of labour force in the country. It is of necessity that every policy on national development must of necessity take cognizance of the youths. Hence, the focus on youths in agricultural extension outreaches most especially, the young farmers club. It is an out-of-school education in agriculture and home economics for rural youth through learning by doing. Young farmers club in schools enables the young to learn and acquire those attributes that will enable them grown into useful and mature adult. There appears to be numerous constrains in the use of youths in extension, they are inadequate personnel, poor funding of agricultural sector, poor marketing channels, lack of good roads, others are poor input and lack of information. However, there is a need for Agricultural Development Programme (ADP) to organize workshop for secondary students and agricultural science teachers, schools to organize seminars and workshops for secondary schools who are members of Young Farmers Club (YFC). ADP should also organize agricultural show to encourage students to be members of Young Farmers Club (YFC).

Keywords: agricultural extension, agricultural role, students, youths, young farmers club (YFC)

Procedia PDF Downloads 164
1081 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 118
1080 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 128
1079 Evaluation of Biochemical Changes in Some Liver Functions and Anti-Oxidant Parameters in Wistar Rats Exposed to Benzene

Authors: Ezomoh O. Olubunmi, Chukwuma S. Anakwe, Bekewei Progress, Prohp The Prophet

Abstract:

Benzene is a volatile organic compound that is recognised as carcinogenic to humans. The objective of the current investigation was to ascertain the impact of the administration of benzene at varying concentrations on the livers of Wistar rats. The 40 adult female Wistar rats were divided into 10 groups, each consisting of four rats. For 28 days, Group 1 received distilled water, while Groups 2 to 10 were administered 0.04,0.06,0.08,0.2,0.4,0.6,0.8,1.0, and 1.2 ml/kg body weight of analytical grade benzene. Blood samples were obtained through cardiac puncture for liver function assessment, while the animals in groups 1 to 5 were euthanised after the 28th day under chloroform anaesthesia. The animals in groups 6 to 10 died midway through the study period. Antioxidant analysis was conducted on liver tissues that were collected and homogenised. The results indicated a substantial (p<0.05), dose-dependent increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities as a result of benzene exposure. Additionally, benzene resulted in a substantial reduction in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver tissue, as well as an increase in malondialdehyde (MDA) concentrations, and this effect was dose-dependent. These findings emphasise the hepatotoxic effects of benzene, even at concentrations that are relatively low.

Keywords: benzene, alanine aminotransferase, aspartate aminotransferase, alkaline phosphate, antioxidants, superoxide dismutase, catalase, glutathione peroxidase

Procedia PDF Downloads 23