Search results for: tree matching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1395

Search results for: tree matching

75 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 117
74 Effect of Formulated Insect Enriched Sprouted Soybean /Millet Based Food on Gut Health Markers in Albino Wistar Rats

Authors: Gadanya, A.M., Ponfa, S., Jibril, M.M., Abubakar, S. M.

Abstract:

Background: Edible insects such as grasshopper are important sources of food for humans, and have been consumed as traditional foods by many indigenous communities especially in Africa, Asia, and Latin America. These communities have developed their skills and techniques in harvesting, preparing, consuming, and preserving edible insects, widely contributing to the role played by the use of insects in human nutrition. Aim/ objective: This study was aimed at determining the effect of insect enriched sprouted soyabean /millet based food on some gut health markers in albino rats. Methods. Four different formulations of Complementary foods (i.e Complementary Food B (CFB): sprouted millet (SM), Complementary Food C (CFC): sprouted soyabean (SSB), Complementary Food D (CFD): sprouted soybean and millet (SSBM) in a ratio of (50:50) and Complementary Food E (CFE): insect (grasshopper) enriched sprouted soybean and millet (SSBMI) in a ratio of (50:25:25)) were prepared. Proximate composition and short chain fatty acid contents were determined. Thirty albino rats were divided into5 groups of six rats each. Group 1(CDA) were fed with basal diet and served as a control group, while groups 2,3,4 and 5 were fed with the corresponding complimentary foods CFB, CFC, CFD and CFE respectively daily for four weeks. Concentrations of fecal protein, serum total carotenoids and nitric oxide were determined. DNA extraction for molecular isolation and characterization were carried out followed by PCR, the use of mega 11 software and NCBI blast for construction of the phylogenetic tree and organism identification respectively. Results: Significant increase (P<0.05) in percentage ash, fat, protein and moisture contents, as well as short chain fatty acid (acetate, butyrate and propionate) concentrations were recorded in the insect enriched sprouted composite food (CFE) when compared with the CFA, CFB, CFC and CFD composite food. Faecal protein, carotenoid and nitric oxide concentrations were significantly lower (P>0.05) in group 5 in comparison to groups 1to 4. Ruminococcus bromii and Bacteroidetes were molecularly isolated and characterized by 16s rRNA from the sprouted millet/sprouted soybean and the insect enriched sprouted soybean/sprouted millet based food respectively. The presence of these bacterial strains in the feaces of the treated rats is an indication that the gut of the treated rats is colonized by good gut bacteria, hence, an improved gut health. Conclusion: Insect enriched sprouted soya bean/sprouted millet based complementary diet showed a high composition of ash, fat, protein and fiber. Thus, could increase the availability of short chain fatty acids whose role to the host organism cannot be overemphasized. It was also found to have decrease the level of faecal protein, carotenoid and nitric oxide in the serum which is an indication of an improvement in the immune system function.

Keywords: gut-health, insect, millet, soybean, sprouted

Procedia PDF Downloads 68
73 Distribution and Diversity of Pyrenocarpous Lichens in India with Special Reference to Forest Health

Authors: Gaurav Kumar Mishra, Sanjeeva Nayaka, Dalip Kumar Upreti

Abstract:

Our nature exhibited presence of a number of unique plants which can be used as indicator of environmental condition of particular place. Lichens are unique plant which has an ability to absorb not only organic, inorganic and metaloties but also absorb radioactive nuclide substances present in the environment. In the present study pyrenocarpous lichens will used as indicator of good forest health in a particular place. The Pyrenocarpous lichens are simple crust forming with black dot like perithecia have few characters for their taxonomical segregation as compared to their foliose and fruticose brethrean. The thallus colour and nature, presence and absence of hypothallus are only few characters of thallus are used to segregate the pyrenocarpous taxa. The fruiting bodies of pyrenolichens i.e. ascocarps are perithecia. The perithecia and the contents found within them posses many important criteria for the segregation of pyrenocarpous lichen taxa. The ascocarp morphology, ascocarp arrangement, the perithecial wall, ascocarp shape and colour, ostiole shape and position, ostiole colour, ascocarp anatomy including type of paraphyses, asci shape and size, ascospores septation, ascospores wall and periphyses are the valuable charcters used for segregation of different pyrenocarpous lichen taxa. India is represented by the occurrence of the 350 species of 44 genera and eleven families. Among the different genera Pyrenula is dominant with 82 species followed by the Porina with 70 species. Recently, systematic of the pyrenocarpous lichens have been revised by American and European lichenologists using phylogenetic methods. Still the taxonomy of pyrenocarpous lichens is in flux and information generated after the completion of this study will play vital role in settlement of the taxonomy of this peculiar group of lichens worldwide. The Indian Himalayan region exhibit rich diversity of pyrenocarpous lichens in India. The western Himalayan region has luxuriance of pyrenocarpous lichens due to its unique topography and climate condition. However, the eastern Himalayan region has rich diversity of pyrenocarpous lichens due to its warmer and moist climate condition. The rich moist and warmer climate in eastern Himalayan region supports forest with dominance of evergreen tree vegetation. The pyrenocarpous lichens communities are good indicator of young and regenerated forest type. The rich diversity of lichens clearly indicates that moist of the forest within the eastern Himalayan region has good health of forest. Due to fast pace of urbanization and other developmental activities will defiantly have adverse effects on the diversity and distribution of pyrenocarpous lichens in different forest type and the present distribution pattern will act as baseline data for carried out future biomonitoring studies in the area.

Keywords: lichen diversity, indicator species, environmental factors, pyrenocarpous

Procedia PDF Downloads 147
72 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 82
71 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India

Authors: Prabhat Kashyap, Krishan Kumar

Abstract:

Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.

Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation

Procedia PDF Downloads 116
70 Management of the Experts in the Research Evaluation System of the University: Based on National Research University Higher School of Economics Example

Authors: Alena Nesterenko, Svetlana Petrikova

Abstract:

Research evaluation is one of the most important elements of self-regulation and development of researchers as it is impartial and independent process of assessment. The method of expert evaluations as a scientific instrument solving complicated non-formalized problems is firstly a scientifically sound way to conduct the assessment which maximum effectiveness of work at every step and secondly the usage of quantitative methods for evaluation, assessment of expert opinion and collective processing of the results. These two features distinguish the method of expert evaluations from long-known expertise widespread in many areas of knowledge. Different typical problems require different types of expert evaluations methods. Several issues which arise with these methods are experts’ selection, management of assessment procedure, proceeding of the results and remuneration for the experts. To address these issues an on-line system was created with the primary purpose of development of a versatile application for many workgroups with matching approaches to scientific work management. Online documentation assessment and statistics system allows: - To realize within one platform independent activities of different workgroups (e.g. expert officers, managers). - To establish different workspaces for corresponding workgroups where custom users database can be created according to particular needs. - To form for each workgroup required output documents. - To configure information gathering for each workgroup (forms of assessment, tests, inventories). - To create and operate personal databases of remote users. - To set up automatic notification through e-mail. The next stage is development of quantitative and qualitative criteria to form a database of experts. The inventory was made so that the experts may not only submit their personal data, place of work and scientific degree but also keywords according to their expertise, academic interests, ORCID, Researcher ID, SPIN-code RSCI, Scopus AuthorID, knowledge of languages, primary scientific publications. For each project, competition assessments are processed in accordance to ordering party demands in forms of apprised inventories, commentaries (50-250 characters) and overall review (1500 characters) in which expert states the absence of conflict of interest. Evaluation is conducted as follows: as applications are added to database expert officer selects experts, generally, two persons per application. Experts are selected according to the keywords; this method proved to be good unlike the OECD classifier. The last stage: the choice of the experts is approved by the supervisor, the e-mails are sent to the experts with invitation to assess the project. An expert supervisor is controlling experts writing reports for all formalities to be in place (time-frame, propriety, correspondence). If the difference in assessment exceeds four points, the third evaluation is appointed. As the expert finishes work on his expert opinion, system shows contract marked ‘new’, managers commence with the contract and the expert gets e-mail that the contract is formed and ready to be signed. All formalities are concluded and the expert gets remuneration for his work. The specificity of interaction of the examination officer with other experts will be presented in the report.

Keywords: expertise, management of research evaluation, method of expert evaluations, research evaluation

Procedia PDF Downloads 207
69 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation

Authors: Mingqian Zhang

Abstract:

Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.

Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement

Procedia PDF Downloads 373
68 Assessing the Structure of Non-Verbal Semantic Knowledge: The Evaluation and First Results of the Hungarian Semantic Association Test

Authors: Alinka Molnár-Tóth, Tímea Tánczos, Regina Barna, Katalin Jakab, Péter Klivényi

Abstract:

Supported by neuroscientific findings, the so-called Hub-and-Spoke model of the human semantic system is based on two subcomponents of semantic cognition, namely the semantic control process and semantic representation. Our semantic knowledge is multimodal in nature, as the knowledge system stored in relation to a conception is extensive and broad, while different aspects of the conception may be relevant depending on the purpose. The motivation of our research is to develop a new diagnostic measurement procedure based on the preservation of semantic representation, which is appropriate to the specificities of the Hungarian language and which can be used to compare the non-verbal semantic knowledge of healthy and aphasic persons. The development of the test will broaden the Hungarian clinical diagnostic toolkit, which will allow for more specific therapy planning. The sample of healthy persons (n=480) was determined by the last census data for the representativeness of the sample. Based on the concept of the Pyramids and Palm Tree Test, and according to the characteristics of the Hungarian language, we have elaborated a test based on different types of semantic information, in which the subjects are presented with three pictures: they have to choose the one that best fits the target word above from the two lower options, based on the semantic relation defined. We have measured 5 types of semantic knowledge representations: associative relations, taxonomy, motional representations, concrete as well as abstract verbs. As the first step in our data analysis, we examined the normal distribution of our results, and since it was not normally distributed (p < 0.05), we used nonparametric statistics further into the analysis. Using descriptive statistics, we could determine the frequency of the correct and incorrect responses, and with this knowledge, we could later adjust and remove the items of questionable reliability. The reliability was tested using Cronbach’s α, and it can be safely said that all the results were in an acceptable range of reliability (α = 0.6-0.8). We then tested for the potential gender differences using the Mann Whitney-U test, however, we found no difference between the two (p < 0.05). Likewise, we didn’t see that the age had any effect on the results using one-way ANOVA (p < 0.05), however, the level of education did influence the results (p > 0.05). The relationships between the subtests were observed by the nonparametric Spearman’s rho correlation matrix, showing statistically significant correlation between the subtests (p > 0.05), signifying a linear relationship between the measured semantic functions. A margin of error of 5% was used in all cases. The research will contribute to the expansion of the clinical diagnostic toolkit and will be relevant for the individualised therapeutic design of treatment procedures. The use of a non-verbal test procedure will allow an early assessment of the most severe language conditions, which is a priority in the differential diagnosis. The measurement of reaction time is expected to advance prodrome research, as the tests can be easily conducted in the subclinical phase.

Keywords: communication disorders, diagnostic toolkit, neurorehabilitation, semantic knowlegde

Procedia PDF Downloads 103
67 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 100
66 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 79
65 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 339
64 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
63 A Lexicographic Approach to Obstacles Identified in the Ontological Representation of the Tree of Life

Authors: Sandra Young

Abstract:

The biodiversity literature is vast and heterogeneous. In today’s data age, numbers of data integration and standardisation initiatives aim to facilitate simultaneous access to all the literature across biodiversity domains for research and forecasting purposes. Ontologies are being used increasingly to organise this information, but the rationalisation intrinsic to ontologies can hit obstacles when faced with the intrinsic fluidity and inconsistency found in the domains comprising biodiversity. Essentially the problem is a conceptual one: biological taxonomies are formed on the basis of specific, physical specimens yet nomenclatural rules are used to provide labels to describe these physical objects. These labels are ambiguous representations of the physical specimen. An example of this is with the genus Melpomene, the scientific nomenclatural representation of a genus of ferns, but also for a genus of spiders. The physical specimens for each of these are vastly different, but they have been assigned the same nomenclatural reference. While there is much research into the conceptual stability of the taxonomic concept versus the nomenclature used, to the best of our knowledge as yet no research has looked empirically at the literature to see the conceptual plurality or singularity of the use of these species’ names, the linguistic representation of a physical entity. Language itself uses words as symbols to represent real world concepts, whether physical entities or otherwise, and as such lexicography has a well-founded history in the conceptual mapping of words in context for dictionary making. This makes it an ideal candidate to explore this problem. The lexicographic approach uses corpus-based analysis to look at word use in context, with a specific focus on collocated word frequencies (the frequencies of words used in specific grammatical and collocational contexts). It allows for inconsistencies and contradictions in the source data and in fact includes these in the word characterisation so that 100% of the available evidence is counted. Corpus analysis is indeed suggested as one of the ways to identify concepts for ontology building, because of its ability to look empirically at data and show patterns in language usage, which can indicate conceptual ideas which go beyond words themselves. In this sense it could potentially be used to identify if the hierarchical structures present within the empirical body of literature match those which have been identified in ontologies created to represent them. The first stages of this research have revealed a hierarchical structure that becomes apparent in the biodiversity literature when annotating scientific species’ names, common names and more general names as classes, which will be the focus of this paper. The next step in the research is focusing on a larger corpus in which specific words can be analysed and then compared with existing ontological structures looking at the same material, to evaluate the methods by means of an alternative perspective. This research aims to provide evidence as to the validity of the current methods in knowledge representation for biological entities, and also shed light on the way that scientific nomenclature is used within the literature.

Keywords: ontology, biodiversity, lexicography, knowledge representation, corpus linguistics

Procedia PDF Downloads 137
62 Optimizing the Effectiveness of Docetaxel with Solid Lipid Nanoparticles: Formulation, Characterization, in Vitro and in Vivo Assessment

Authors: Navid Mosallaei, Mahmoud Reza Jaafari, Mohammad Yahya Hanafi-Bojd, Shiva Golmohammadzadeh, Bizhan Malaekeh-Nikouei

Abstract:

Background: Docetaxel (DTX), a potent anticancer drug derived from the European yew tree, is effective against various human cancers by inhibiting microtubule depolymerization. Solid lipid nanoparticles (SLNs) have gained attention as drug carriers for enhancing drug effectiveness and safety. SLNs, submicron-sized lipid-based particles, can passively target tumors through the "enhanced permeability and retention" (EPR) effect, providing stability, drug protection, and controlled release while being biocompatible. Methods: The SLN formulation included biodegradable lipids (Compritol and Precirol), hydrogenated soy phosphatidylcholine (H-SPC) as a lipophilic co-surfactant, and Poloxamer 188 as a non-ionic polymeric stabilizer. Two SLN preparation techniques, probe sonication and microemulsion, were assessed. Characterization encompassed SLNs' morphology, particle size, zeta potential, matrix, and encapsulation efficacy. In-vitro cytotoxicity and cellular uptake studies were conducted using mouse colorectal (C-26) and human malignant melanoma (A-375) cell lines, comparing SLN-DTX with Taxotere®. In-vivo studies evaluated tumor inhibitory efficacy and survival in mice with colorectal (C-26) tumors, comparing SLNDTX withTaxotere®. Results: SLN-DTX demonstrated stability, with an average size of 180 nm and a low polydispersity index (PDI) of 0.2 and encapsulation efficacy of 98.0 ± 0.1%. Differential scanning calorimetry (DSC) suggested amorphous encapsulation of DTX within SLNs. In vitro studies revealed that SLN-DTX exhibited nearly equivalent cytotoxicity to Taxotere®, depending on concentration and exposure time. Cellular uptake studies demonstrated superior intracellular DTX accumulation with SLN-DTX. In a C-26 mouse model, SLN-DTX at 10 mg/kg outperformed Taxotere® at 10 and 20 mg/kg, with no significant differences in body weight changes and a remarkably high survival rate of 60%. Conclusion: This study concludes that SLN-DTX, prepared using the probe sonication, offers stability and enhanced therapeutic effects. It displayed almost same in vitro cytotoxicity to Taxotere® but showed superior cellular uptake. In a mouse model, SLN-DTX effectively inhibited tumor growth, with 10 mg/kg outperforming even 20 mg/kg of Taxotere®, without adverse body weight changes and with higher survival rates. This suggests that SLN-DTX has the potential to reduce adverse effects while maintaining or enhancing docetaxel's therapeutic profile, making it a promising drug delivery strategy suitable for industrialization.

Keywords: docetaxel, Taxotere®, solid lipid nanoparticles, enhanced permeability and retention effect, drug delivery, cancer chemotherapy, cytotoxicity, cellular uptake, tumor inhibition

Procedia PDF Downloads 82
61 Association between Polygenic Risk of Alzheimer's Dementia, Brain MRI and Cognition in UK Biobank

Authors: Rachana Tank, Donald. M. Lyall, Kristin Flegal, Joey Ward, Jonathan Cavanagh

Abstract:

Alzheimer’s research UK estimates by 2050, 2 million individuals will be living with Late Onset Alzheimer’s disease (LOAD). However, individuals experience considerable cognitive deficits and brain pathology over decades before reaching clinically diagnosable LOAD and studies have utilised gene candidate studies such as genome wide association studies (GWAS) and polygenic risk (PGR) scores to identify high risk individuals and potential pathways. This investigation aims to determine whether high genetic risk of LOAD is associated with worse brain MRI and cognitive performance in healthy older adults within the UK Biobank cohort. Previous studies investigating associations of PGR for LOAD and measures of MRI or cognitive functioning have focused on specific aspects of hippocampal structure, in relatively small sample sizes and with poor ‘controlling’ for confounders such as smoking. Both the sample size of this study and the discovery GWAS sample are bigger than previous studies to our knowledge. Genetic interaction between loci showing largest effects in GWAS have not been extensively studied and it is known that APOE e4 poses the largest genetic risk of LOAD with potential gene-gene and gene-environment interactions of e4, for this reason we  also analyse genetic interactions of PGR with the APOE e4 genotype. High genetic loading based on a polygenic risk score of 21 SNPs for LOAD is associated with worse brain MRI and cognitive outcomes in healthy individuals within the UK Biobank cohort. Summary statistics from Kunkle et al., GWAS meta-analyses (case: n=30,344, control: n=52,427) will be used to create polygenic risk scores based on 21 SNPs and analyses will be carried out in N=37,000 participants in the UK Biobank. This will be the largest study to date investigating PGR of LOAD in relation to MRI. MRI outcome measures include WM tracts, structural volumes. Cognitive function measures include reaction time, pairs matching, trail making, digit symbol substitution and prospective memory. Interaction of the APOE e4 alleles and PGR will be analysed by including APOE status as an interaction term coded as either 0, 1 or 2 e4 alleles. Models will be adjusted partially for adjusted for age, BMI, sex, genotyping chip, smoking, depression and social deprivation. Preliminary results suggest PGR score for LOAD is associated with decreased hippocampal volumes including hippocampal body (standardised beta = -0.04, P = 0.022) and tail (standardised beta = -0.037, P = 0.030), but not with hippocampal head. There were also associations of genetic risk with decreased cognitive performance including fluid intelligence (standardised beta = -0.08, P<0.01) and reaction time (standardised beta = 2.04, P<0.01). No genetic interactions were found between APOE e4 dose and PGR score for MRI or cognitive measures. The generalisability of these results is limited by selection bias within the UK Biobank as participants are less likely to be obese, smoke, be socioeconomically deprived and have fewer self-reported health conditions when compared to the general population. Lack of a unified approach or standardised method for calculating genetic risk scores may also be a limitation of these analyses. Further discussion and results are pending.

Keywords: Alzheimer's dementia, cognition, polygenic risk, MRI

Procedia PDF Downloads 113
60 Inverted Diameter-Limit Thinning: A Promising Alternative for Mixed Populus tremuloides Stands Management

Authors: Ablo Paul Igor Hounzandji, Benoit Lafleur, Annie DesRochers

Abstract:

Introduction: Populus tremuloides [Michx] regenerates rapidly and abundantly by root suckering after harvest, creating stands with interconnected stems. Pre-commercial thinning can be used to concentrate growth on fewer stems to reach merchantability faster than un-thinned stands. However, conventional thinning methods are typically designed to reach even spacing between residual stems (1,100 stem ha⁻¹, evenly distributed), which can lead to treated stands consisting of weaker/smaller stems compared to the original stands. Considering the nature of P. tremuloides's regeneration, with large underground biomass of interconnected roots, aiming to keep the most vigorous and largest stems, regardless of their spatial distribution, inverted diameter-limit thinning could be more beneficial to post-thinning stand productivity because it would reduce the imbalance between roots and leaf area caused by thinning. Aims: This study aimed to compare stand and stem productivity of P. tremuloides stands thinned with a conventional thinning treatment (CT; 1,100 stem ha⁻¹, evenly distributed), two levels of inverted diameter-limit thinning (DL1 and DL2, keeping the largest 1100 or 2200 stems ha⁻¹, respectively, regardless of their spatial distribution) and a control unthinned treatment. Because DL treatments can create substantial or frequent gaps in the thinned stands, we also aimed to evaluate the potential of this treatment to recreate mixed conifer-broadleaf stands by fill-planting Picea glauca seedlings. Methods: Three replicate 21 year-old sucker-regenerated aspen stands were thinned in 2010 according to four treatments: CT, DL1, DL2, and un-thinned control. Picea glauca seedlings were underplanted in gaps created by the DL1 and DL2 treatments. Stand productivity per hectare, stem quality (diameter and height, volume stem⁻¹) and survival and height growth of fill-planted P. glauca seedlings were measured 8 year post-treatments. Results: Productivity, volume, diameter, and height were better in the treated stands (CT, DL1, and DL2) than in the un-thinned control. Productivity of CT and DL1 stands was similar 4.8 m³ ha⁻¹ year⁻¹. At the tree level, diameter and height of the trees in the DL1 treatment were 5% greater than those in the CT treatment. The average volume of trees in the DL1 treatment was 11% higher than the CT treatment. Survival after 8 years of fill planted P. glauca seedlings was 2% greater in the DL1 than in the DL2 treatment. DL1 treatment also produced taller seedlings (+20 cm). Discussion: Results showed that DL treatments were effective in producing post-thinned stands with larger stems without affecting stand productivity. In addition, we showed that these treatments were suitable to introduce slower growing conifer seedlings such as Picea glauca in order to re-create or maintain mixed stands despite the aggressive nature of P. tremuloides sucker regeneration.

Keywords: Aspen, inverted diameter-limit, mixed forest, populus tremuloides, silviculture, thinning

Procedia PDF Downloads 141
59 Describing Cognitive Decline in Alzheimer's Disease via a Picture Description Writing Task

Authors: Marielle Leijten, Catherine Meulemans, Sven De Maeyer, Luuk Van Waes

Abstract:

For the diagnosis of Alzheimer's disease (AD), a large variety of neuropsychological tests are available. In some of these tests, linguistic processing - both oral and written - is an important factor. Language disturbances might serve as a strong indicator for an underlying neurodegenerative disorder like AD. However, the current diagnostic instruments for language assessment mainly focus on product measures, such as text length or number of errors, ignoring the importance of the process that leads to written or spoken language production. In this study, it is our aim to describe and test differences between cognitive and impaired elderly on the basis of a selection of writing process variables (inter- and intrapersonal characteristics). These process variables are mainly related to pause times, because the number, length, and location of pauses have proven to be an important indicator of the cognitive complexity of a process. Method: Participants that were enrolled in our research were chosen on the basis of a number of basic criteria necessary to collect reliable writing process data. Furthermore, we opted to match the thirteen cognitively impaired patients (8 MCI and 5 AD) with thirteen cognitively healthy elderly. At the start of the experiment, participants were each given a number of tests, such as the Mini-Mental State Examination test (MMSE), the Geriatric Depression Scale (GDS), the forward and backward digit span and the Edinburgh Handedness Inventory (EHI). Also, a questionnaire was used to collect socio-demographic information (age, gender, eduction) of the subjects as well as more details on their level of computer literacy. The tests and questionnaire were followed by two typing tasks and two picture description tasks. For the typing tasks participants had to copy (type) characters, words and sentences from a screen, whereas the picture description tasks each consisted of an image they had to describe in a few sentences. Both the typing and the picture description tasks were logged with Inputlog, a keystroke logging tool that allows us to log and time stamp keystroke activity to reconstruct and describe text production processes. The main rationale behind keystroke logging is that writing fluency and flow reveal traces of the underlying cognitive processes. This explains the analytical focus on pause (length, number, distribution, location, etc.) and revision (number, type, operation, embeddedness, location, etc.) characteristics. As in speech, pause times are seen as indexical of cognitive effort. Results. Preliminary analysis already showed some promising results concerning pause times before, within and after words. For all variables, mixed effects models were used that included participants as a random effect and MMSE scores, GDS scores and word categories (such as determiners and nouns) as a fixed effect. For pause times before and after words cognitively impaired patients paused longer than healthy elderly. These variables did not show an interaction effect between the group participants (cognitively impaired or healthy elderly) belonged to and word categories. However, pause times within words did show an interaction effect, which indicates pause times within certain word categories differ significantly between patients and healthy elderly.

Keywords: Alzheimer's disease, keystroke logging, matching, writing process

Procedia PDF Downloads 366
58 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
57 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 292
56 Cytochrome B Diversity and Phylogeny of Egyptian Sheep Breeds

Authors: Othman E. Othman, Agnés Germot, Daniel Petit, Abderrahman Maftah

Abstract:

Threats to the biodiversity are increasing due to the loss of genetic diversity within the species utilized in agriculture. Due to the progressive substitution of the less productive, locally adapted and native breeds by highly productive breeds, the number of threatened breeds is increased. In these conditions, it is more strategically important than ever to preserve as much the farm animal diversity as possible, to ensure a prompt and proper response to the needs of future generations. Mitochondrial (mtDNA) sequencing has been used to explain the origins of many modern domestic livestock species. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. Because of the eastern location of Egypt in the Mediterranean basin and the presence of fat-tailed sheep breeds- character quite common in Turkey and Syria- where genotypes that seem quite primitive, the phylogenetic studies of Egyptian sheep breeds become particularly attractive. We aimed in this work to clarify the genetic affinities, biodiversity and phylogeny of five Egyptian sheep breeds using cytochrome B sequencing. Blood samples were collected from 63 animals belonging to the five tested breeds; Barki, Rahmani, Ossimi, Saidi and Sohagi. The total DNA was extracted and the specific primer allowed the conventional PCR amplification of the cytochrome B region of mtDNA (approximately 1272 bp). PCR amplified products were purified and sequenced. The alignment of Sixty-three samples was done using BioEdit software. DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 34 polymorphic sites leading to the formation of 18 haplotypes. The haplotype diversity in five tested breeds ranged from 0.676 in Rahmani breed to 0.894 in Sohagi breed. The genetic distances (D) and the average number of pairwise differences (Dxy) between breeds were estimated. The lowest distance was observed between Rahmani and Saidi (D: 1.674 and Dxy: 0.00150) while the highest distance was observed between Ossimi and Sohagi (D: 5.233 and Dxy: 0.00475). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of the 63 analyzed samples were aligned with references sequences of different haplogroups. The phylogeny result showed the presence of three haplogroups (HapA, HapB and HapC) in the 63 examined samples. The other two haplogroups described in literature (HapD and HapE) were not found. The result showed that 50 out of 63 tested animals cluster with haplogroup B (79.37%) whereas 7 tested animals cluster with haplogroup A (11.11%) and 6 animals cluster with haplogroup C (9.52%). In conclusion, the phylogenetic reconstructions showed that the majority of Egyptian sheep breeds belonging to haplogroup B which is the dominant haplogroup in Eastern Mediterranean countries like Syria and Turkey. Some individuals are belonging to haplogroups A and C, suggesting that the crosses were done with other breeds for characteristic selection for growth and wool quality.

Keywords: cytochrome B, diversity, phylogheny, Egyptian sheep breeds

Procedia PDF Downloads 374
55 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications

Authors: Deon Bezuidenhout

Abstract:

Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.

Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft

Procedia PDF Downloads 296
54 Explanation of the Main Components of the Unsustainability of Cooperative Institutions in Cooperative Management Projects to Combat Desertification in South Khorasan Province

Authors: Yaser Ghasemi Aryan, Firoozeh Moghiminejad, Mohammadreza Shahraki

Abstract:

Background: The cooperative institution is considered the first and most essential pillar of strengthening social capital, whose sustainability is the main guarantee of survival and continued participation of local communities in natural resource management projects. The Village Development Group and the Microcredit Fund are two important social and economic institutions in the implementation of the International Project for the Restoration of Degraded Forest Lands (RFLDL) in Sarayan City, South Khorasan Province, which has learned positive lessons from the participation of the beneficiaries in the implementation. They have brought more effective projects to deal with desertification. However, the low activity or liquidation of some of these institutions has become one of the important challenges and concerns of project executive experts. The current research was carried out with the aim of explaining the main components of the instability of these institutions. Materials and Methods: This research is descriptive-analytical in terms of method, practical in terms of purpose, and the method of collecting information is two documentary and survey methods. The statistical population of the research included all the members of the village development groups and microcredit funds in the target villages of the RFLDL project of Sarayan city, based on the Kochran formula and matching with the Karjesi and Morgan table. Net people were selected as a statistical sample. After confirming the validity of the expert's opinions, the reliability of the questionnaire was 0.83, which shows the appropriate reliability of the researcher-made questionnaire. Data analysis was done using SPSS software. Results: The results related to the extraction of obstacles to the stability of social and economic networks were classified and prioritized in the form of 5 groups of social-cultural, economic, administrative, educational-promotional and policy-management factors. Based on this, in the socio-cultural factors, the items ‘not paying attention to the structural characteristics and composition of groups’, ‘lack of commitment and moral responsibility in some members of the group,’ and ‘lack of a clear pattern for the preservation and survival of groups’, in the disciplinary factors, The items ‘Irregularity in holding group meetings’ and ‘Irregularity of members to participate in meetings’, in the economic factors of the items "small financial capital of the fund’, ‘the low amount of loans of the fund’ and ‘the fund's inability to conclude contracts and attract capital from other sources’, in the educational-promotional factors of the items ‘non-simultaneity of job training with the granting of loans to create jobs’ and ‘insufficient training for the effective use of loans and job creation’ and in the policy-management factors of the item ‘failure to provide government facilities for support From the funds, they had the highest priority. Conclusion: In general, the results of this research show that policy-management factors and social factors, especially the structure and composition of social and economic institutions, are the most important obstacles to their sustainability. Therefore, it is suggested to form cooperative institutions based on network analysis studies in order to achieve the appropriate composition of members.

Keywords: cooperative institution, social capital, network analysis, participation, Sarayan.

Procedia PDF Downloads 55
53 Molecular Characterization, Host Plant Resistance and Epidemiology of Bean Common Mosaic Virus Infecting Cowpea (Vigna unguiculata L. Walp)

Authors: N. Manjunatha, K. T. Rangswamy, N. Nagaraju, H. A. Prameela, P. Rudraswamy, M. Krishnareddy

Abstract:

The identification of virus in cowpea especially potyviruses is confusing. Even though there are several studies on viruses causing diseases in cowpea, difficult to distinguish based on symptoms and serological detection. The differentiation of potyviruses considering as a constraint, the present study is initiated for molecular characterization, host plant resistance and epidemiology of the BCMV infecting cowpea. The etiological agent causing cowpea mosaic was identified as Bean Common Mosaic Virus (BCMV) on the basis of RT-PCR and electron microscopy. An approximately 750bp PCR product corresponding to coat protein (CP) region of the virus and the presence of long flexuous filamentous particles measuring about 952 nm in size typical to genus potyvirus were observed under electron microscope. The characterized virus isolate genome had 10054 nucleotides, excluding the 3’ terminal poly (A) tail. Comparison of polyprotein of the virus with other potyviruses showed similar genome organization with 9 cleavage sites resulted in 10 functional proteins. The pairwise sequence comparison of individual genes, P1 showed most divergent, but CP gene was less divergent at nucleotide and amino acid level. A phylogenetic tree constructed based on multiple sequence alignments of the polyprotein nucleotide and amino acid sequences of cowpea BCMV and potyviruses showed virus is closely related to BCMV-HB. Whereas, Soybean variant of china (KJ807806) and NL1 isolate (AY112735) showed 93.8 % (5’UTR) and 94.9 % (3’UTR) homology respectively with other BCMV isolates. This virus transmitted to different leguminous plant species and produced systemic symptoms under greenhouse conditions. Out of 100 cowpea genotypes screened, three genotypes viz., IC 8966, V 5 and IC 202806 showed immune reaction in both field and greenhouse conditions. Single marker analysis (SMA) was revealed out of 4 SSR markers linked to BCMV resistance, M135 marker explains 28.2 % of phenotypic variation (R2) and Polymorphic information content (PIC) value of these markers was ranged from 0.23 to 0.37. The correlation and regression analysis showed rainfall, and minimum temperature had significant negative impact and strong relationship with aphid population, whereas weak correlation was observed with disease incidence. Path coefficient analysis revealed most of the weather parameters exerted their indirect contributions to the aphid population and disease incidence except minimum temperature. This study helps to identify specific gaps in knowledge for researchers who may wish to further analyse the science behind complex interactions between vector-virus and host in relation to the environment. The resistant genotypes identified are could be effectively used in resistance breeding programme.

Keywords: cowpea, epidemiology, genotypes, virus

Procedia PDF Downloads 236
52 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 105
51 Coping Strategies and Characterization of Vulnerability in the Perspective of Climate Change

Authors: Muhammad Umer Mehmood, Muhammad Luqman, Muhammad Yaseen, Imtiaz Hussain

Abstract:

Climate change is an arduous fact, which could not be unheeded easily. It is a phenomenon which has brought a collection of challenges for the mankind. Scientists have found many of its negative impacts on the life of human being and the resources on which the life of humanity is dependent. There are many issues which are associated with the factor of prime importance in this study, 'climate change'. Whenever changes happen in nature, they strike the whole globe. Effects of these changes vary from region to region. Climate of every region of this globe is different from the other. Even within a state, country or the province has different climatic conditions. So it is mandatory that the response in that specific region and the coping strategy of this specific region should be according to the prevailing risk. In the present study, the objective was to assess the coping strategies and vulnerability of small landholders. So that a professional suggestion could be made to cope with the vulnerability factor of small farmers. The cross-sectional research design was used with the intervention of quantitative approach. The study was conducted in the Khanewal district, of Punjab, Pakistan. 120 small farmers were interviewed after randomized sampling from the population of respective area. All respondents were above the age of 15 years. A questionnaire was developed after keen observation of facts in the respective area. Content and face validity of the instrument was assessed with SPSS and experts in the field. Data were analyzed through SPSS using descriptive statistics. From the sample of 120, 81.67% of the respondents claimed that the environment is getting warmer and not fit for their present agricultural practices. 84.17% of the sample expressed serious concern that they are disturbed due to change in rainfall pattern and vulnerability towards the climatic effects. On the other hand, they expressed that they are not good at tackling the effects of climate change. Adaptation of coping strategies like change in cropping pattern, use of resistant varieties, varieties with minimum water requirement, intercropping and tree planting was low by more than half of the sample. From the sample 63.33% small farmers said that the coping strategies they adopt are not effective enough. The present study showed that subsistence farming, lack of marketing and overall infrastructure, lack of access to social security networks, limited access to agriculture extension services, inappropriate access to agrometeorological system, unawareness and access to scientific development and low crop yield are the prominent factors which are responsible for the vulnerability of small farmers. A comprehensive study should be conducted at national level so that a national policy could be formulated to cope with the dilemma in future with relevance to climate change. Mainstreaming and collaboration among the researchers and academicians could prove beneficiary in this regard the interest of national leaders’ does matter. Proper policies to avoid the vulnerability factors should be the top priority. The world is taking up this issue with full responsibility as should we, keeping in view the local situation.

Keywords: adaptation, coping strategies, climate change, Pakistan, small farmers, vulnerability

Procedia PDF Downloads 142
50 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs

Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.

Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox

Procedia PDF Downloads 377
49 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
48 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 83
47 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer

Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang

Abstract:

Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.

Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network

Procedia PDF Downloads 323
46 Post Harvest Fungi Diversity and Level of Aflatoxin Contamination in Stored Maize: Cases of Kitui, Nakuru and Trans-Nzoia Counties in Kenya

Authors: Gachara Grace, Kebira Anthony, Harvey Jagger, Wainaina James

Abstract:

Aflatoxin contamination of maize in Africa poses a major threat to food security and the health of many African people. In Kenya, aflatoxin contamination of maize is high due to the environmental, agricultural and socio-economic factors. Many studies have been conducted to understand the scope of the problem, especially at pre-harvest level. This research was carried out to gather scientific information on the fungi population, diversity and aflatoxin level during the post-harvest period. The study was conducted in three geographical locations of; Kitui, Kitale and Nakuru. Samples were collected from storage structures of farmers and transported to the Biosciences eastern and central Africa (BecA), International Livestock and Research Institute (ILRI) hub laboratories. Mycoflora was recovered using the direct plating method. A total of five fungal genera (Aspergillus, Penicillium, Fusarium, Rhizopus and Bssyochlamys spp.) were isolated from the stored maize samples. The most common fungal species that were isolated from the three study sites included A. flavus at 82.03% followed by A.niger and F.solani at 49% and 26% respectively. The aflatoxin producing fungi A. flavus was recovered in 82.03% of the samples. Aflatoxin levels were analysed on both the maize samples and in vitro. Most of the A. flavus isolates recorded a high level of aflatoxin when they were analysed for presence of aflatoxin B1 using ELISA. In Kitui, all the samples (100%) had aflatoxin levels above 10ppb with a total aflatoxin mean of 219.2ppb. In Kitale, only 3 samples (n=39) had their aflatoxin levels less than 10ppb while in Nakuru, the total aflatoxin mean level of this region was 239.7ppb. When individual samples were analysed using Vicam fluorometer method, aflatoxin analysis revealed that most of the samples (58.4%) had been contaminated. The means were significantly different (p=0.00<0.05) in all the three locations. Genetic relationships of A. flavus isolates were determined using 13 Simple Sequence Repeats (SSRs) markers. The results were used to generate a phylogenetic tree using DARwin5 software program. A total of 5 distinct clusters were revealed among the genotypes. The isolates appeared to cluster separately according to the geographical locations. Principal Coordinates Analysis (PCoA) of the genetic distances among the 91 A. flavus isolates explained over 50.3% of the total variation when two coordinates were used to cluster the isolates. Analysis of Molecular Variance (AMOVA) showed a high variation of 87% within populations and 13% among populations. This research has shown that A. flavus is the main fungal species infecting maize grains in Kenya. The influence of aflatoxins on human populations in Kenya demonstrates a clear need for tools to manage contamination of locally produced maize. Food basket surveys for aflatoxin contamination should be conducted on a regular basis. This would assist in obtaining reliable data on aflatoxin incidence in different food crops. This would go a long way in defining control strategies for this menace.

Keywords: aflatoxin, Aspergillus flavus, genotyping, Kenya

Procedia PDF Downloads 277