Search results for: spectral radar analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28408

Search results for: spectral radar analysis

27088 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition

Procedia PDF Downloads 331
27087 A Corpus-Based Discourse Analysis of the Disappearance of MH370 in Malaysia and United Kingdom Newspapers: A Pilot Study

Authors: Theng Theng Ong

Abstract:

This pilot study adopts a corpus-based discourse analysis to explore the construction of Malaysia airline tragedy MH370 in the selected Malaysian and United Kingdom (UK) newspapers. Fairclough’s three-dimensional model is adopted in the study to support the corpus-based analysis. The analysis aims to determine the ways in which Malaysian Airline tragedy MH370 is linguistically defined and constructed in terms of keywords and collocation. The study also seeks to identify the types of discourse that are presented in the news articles. In addition, the differences or similarities in terms of keywords, topics or issues covered by the selected Malaysian and UK news media are examined.

Keywords: corpus, CDA, newspapers, airline tragedies

Procedia PDF Downloads 299
27086 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 168
27085 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis

Procedia PDF Downloads 382
27084 Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate

Authors: P. Zamani, A. Taleshi Anbouhi, M. R. Ashory, S. Mohajerzadeh, M. M. Khatibi

Abstract:

Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results.

Keywords: accelerometer mass, frequency response function, modal analysis, sensitivity analysis

Procedia PDF Downloads 445
27083 Exploring the Use of Digital Tools for the Analysis and Interpretation of the Poems of Seamus Heaney

Authors: Ashok Sachdeva

Abstract:

This research paper delves into the application of digital tools, especially Voyant Tools and AntConc version 4.0, for the analysis and interpretation of Seamus Heaney's poems. Scholars and literary aficionados can acquire deeper insights into Heaney's writings by utilising these tools, revealing hidden nuances and improving their knowledge. This paper outlines the methodology used, presents sample analyses and evaluates the merits and limitations of using digital tools in literary analysis. The combination of traditional close reading with digital analysis tools promises to offer new paths for understanding Heaney's vast tapestry of poetry. Seamus Heaney, a Nobel winner known for his vivid poetry, provides a treasure mine of literary discovery. The advent of digital tools gives an exciting opportunity to reveal previously unknown layers of meaning within his works. This paper investigates the use of Voyant Tools and AntConc version 4.0 to analyse and understand Heaney's writings, demonstrating the symbiotic relationship between traditional literary analysis and cutting-edge digital methodologies. Methodology: To demonstrate the efficiency of digital tools in the analysis of Heaney's poetry, a sample of his notable works will be entered into Voyant Tools and AntConc version 4.0. The former provides a graphic representation of word frequency, word clouds, and patterns over numerous poems. The latter, a concordance tool, enables detailed linguistic analysis, revealing patterns, and linguistic subtleties.

Keywords: digital tools, resonance, assonance, alliteration, creative quotient

Procedia PDF Downloads 71
27082 Reliability Prediction of Tires Using Linear Mixed-Effects Model

Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong

Abstract:

We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.

Keywords: reliability, tires, field data, linear mixed-effects model

Procedia PDF Downloads 562
27081 Failure Analysis of Windshield Glass of Automobiles

Authors: Bhupinder Kaur, O. P. Pandey

Abstract:

An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present.

Keywords: failure, windshield, thermal mismatch, carbon

Procedia PDF Downloads 246
27080 Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake

Authors: Minami Ito, Akihiro Iijima

Abstract:

On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority.

Keywords: eco-friendly reconstruction, harmony with environment, decontamination, nuclear disaster

Procedia PDF Downloads 219
27079 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 377
27078 An Analysis of the Effect of Sharia Financing and Work Relation Founding towards Non-Performing Financing in Islamic Banks in Indonesia

Authors: Muhammad Bahrul Ilmi

Abstract:

The purpose of this research is to analyze the influence of Islamic financing and work relation founding simultaneously and partially towards non-performing financing in Islamic banks. This research was regression quantitative field research, and had been done in Muammalat Indonesia Bank and Islamic Danamon Bank in 3 months. The populations of this research were 15 account officers of Muammalat Indonesia Bank and Islamic Danamon Bank in Surakarta, Indonesia. The techniques of collecting data used in this research were documentation, questionnaire, literary study and interview. Regression analysis result shows that Islamic financing and work relation founding simultaneously has positive and significant effect towards non performing financing of two Islamic Banks. It is obtained with probability value 0.003 which is less than 0.05 and F value 9.584. The analysis result of Islamic financing regression towards non performing financing shows the significant effect. It is supported by double linear regression analysis with probability value 0.001 which is less than 0.05. The regression analysis of work relation founding effect towards non-performing financing shows insignificant effect. This is shown in the double linear regression analysis with probability value 0.161 which is bigger than 0.05.

Keywords: Syariah financing, work relation founding, non-performing financing (NPF), Islamic Bank

Procedia PDF Downloads 430
27077 Occupational Safety Need Analysis for Turkey and Europe

Authors: Ismail Muratoglu, Ahmet Meyveci, Abdurrahman Tuncer, Erkan Demirci

Abstract:

This study is dedicated to the analysis of the problems of occupational safety in Turkey, Italy and Poland. The need analysis was applied to three different countries which are Turkey; 4, Poland; 1, Italy; 1 state. The number of the subjects is 891 in Turkey. The number of the subjects is 26 in Italy and the number of the subjects is 19 in Poland. The total number of samples of study is 936. Four different forms (Job Security Experts Form, Student Form, Teacher Form and Company Form) were applied. Results of experts of job security forms are rate of 7.1%. Then, the students’ forms are rate of 34.3%, teacher or instructor forms are rate of 9.9%. The last corporation forms are rate of 48.7%.

Keywords: Europe, need analysis, occupational safety, Turkey, vocational education

Procedia PDF Downloads 429
27076 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity

Authors: M. Movahedi Rad

Abstract:

In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice, the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free head and fixed-head long pile when the plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has a significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.

Keywords: reliability, laterally loaded pile, residual strain energy, probability, limit analysis

Procedia PDF Downloads 348
27075 Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas

Abstract:

This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region.

Keywords: surface water quality, water quality index (WQI), Mann-Kendall Trend Analysis, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin

Procedia PDF Downloads 14
27074 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills

Authors: Kyle De Freitas, Margaret Bernard

Abstract:

Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.

Keywords: educational data mining, learning management system, learning analytics, EDM framework

Procedia PDF Downloads 324
27073 The Effect of Diet Intervention for Breast Cancer: A Meta-Analysis

Authors: Bok Yae Chung, Eun Hee Oh

Abstract:

Breast cancer patients require more nutritional interventions than others. However, a few studies have attempted to assess the overall nutritional status, to reduce body weight and BMI by improving diet, and to improve the prognosis of cancer for breast cancer patients. The purpose of this study was to evaluate the effect of diet intervention in the breast cancer patients through meta-analysis. For the study purpose, 16 studies were selected by using PubMed, ScienceDirect, ProQuest and CINAHL. Meta-analysis was performed using a random-effects model, and the effect size on outcome variables in breast cancer was calculated. The effect size for outcome variables of diet intervention was a large effect size. For heterogeneity, moderator analysis was performed using intervention type and intervention duration. All moderators did not significant difference. Diet intervention has significant positive effects on outcome variables in breast cancer. As a result, it is suggested that the timing of the intervention should be no more than six months, but a strategy for sustaining long-term intervention effects should be added if nutritional intervention is to be administered for breast cancer patients in the future.

Keywords: breast cancer, diet, mete-analysis, intervention

Procedia PDF Downloads 432
27072 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions

Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh

Abstract:

Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.

Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility

Procedia PDF Downloads 51
27071 Measurement and Analysis of Human Hand Kinematics

Authors: Tamara Grujic, Mirjana Bonkovic

Abstract:

Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.

Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement

Procedia PDF Downloads 460
27070 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing

Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed

Abstract:

It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.

Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC

Procedia PDF Downloads 185
27069 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification

Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli

Abstract:

Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.

Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics

Procedia PDF Downloads 69
27068 Structural Reliability of Existing Structures: A Case Study

Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol

Abstract:

A reliability-based methodology for the analysis assessment and evaluation of reinforced concrete structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for structural elements are verified by the results obtained from the deterministic methods. The analysis outcomes of reliability-based analysis are compared against the safety limits of the required reliability index β according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) related to the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the reinforced concrete elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.

Keywords: structural reliability, concrete structures, FORM, Monte Carlo simulation

Procedia PDF Downloads 517
27067 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
27066 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 440
27065 Detection of Image Blur and Its Restoration for Image Enhancement

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.

Keywords: image enhancement, motion analysis, motion detection, motion estimation

Procedia PDF Downloads 285
27064 Endothelial Dysfunction in Non-Alcoholic Fatty Liver Disease: An Updated Meta-Analysis

Authors: Anit S. Malhotra, Ajay Duseja, Neelam Chadha

Abstract:

Endothelial dysfunction is a precursor to atherosclerosis, and flow-mediated dilatation (FMD) in the brachial artery is the commonest method to evaluate endothelial function in humans. Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disorders encountered in clinical practice. An earlier meta-analysis had quantitatively assessed the degree of endothelial dysfunction using FMD. However, the largest study investigating the relation of FMD with NAFLD was published after that meta-analysis. In addition, that meta-analysis did not include some studies, including one from our centre. Therefore, an updating the previous meta-analysis was considered important. We searched PubMed, Cochrane Library, Embase, Scopus, SCI, Google Scholar, conference proceedings, and references of included studies till June 2017 to identify observational studies evaluating endothelial function using FMD in patients with non-alcoholic fatty liver disease. Data was analyzed using MedCalc. Fourteen studies were found eligible for inclusion in the meta-analysis. Patients with NAFLD had lower brachial artery FMD as compared to controls, standardized mean difference (random effects model) being –1.279%; 95% confidence interval (CI), –1.478 to –0.914. The effect size became smaller after addition of the recent study with the largest sample size was included compared with the earlier meta-analysis. In conclusion, patients with NAFLD had low FMD values indicating that they are at a higher risk of cardiovascular disease although our results suggest the effect size is not as large as reported previously.

Keywords: endothelial dysfunction, flow-mediated dilatation, meta-analysis, non-alcoholic fatty liver disease

Procedia PDF Downloads 190
27063 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 69
27062 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 324
27061 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling

Procedia PDF Downloads 321
27060 Identifying Strategies for Improving Railway Services in Bangladesh

Authors: Armana Sabiha Huq, Tahmina Rahman Chowdhury

Abstract:

In this paper, based on the stated preference experiment, the service quality of Bangladesh Railway has been assessed, and particular importance has been given to investigate if there exists a relationship between service quality and safety. For investigation purposes, environmental and organizational factors were assumed to determine the safety performance of the railway. Data collected from the survey has been analyzed by importance-performance analysis (IPA). In this paper, a modification of the well-known importance-performance analysis (IPA) has been done by adopting the importance of the weights determined through a structural equation modeling (SEM) approach and by plotting the gap between importance and performance on a visual graph. It has been found that there exists a relationship between safety and serviceability to some extent. Limited resources are an important factor to improve the safety and serviceability condition of the BD railway. Moreover, it is observed that the limited resources available to monitor and improve the safety performance of railway.

Keywords: importance-performance analysis, GAP-IPA, SEM, serviceability, safety, factor analysis

Procedia PDF Downloads 138
27059 GIS Based Public Transport Accessibility of Lahore using PTALs Model

Authors: Naveed Chughtai, Salman Atif, Azhar Ali Taj, Murtaza Asghar Bukhari

Abstract:

Accessible transport systems play a crucial role in infrastructure management and ease of access to destinations. Thus, the necessity of knowledge of service coverage and service deprived areas is a prerequisite for devising policies. Integration of PTALs model with GIS network analysis models (Service Area Analysis, Closest Facility Analysis) facilitates the analysis of deprived areas. In this research, models presented determine the accessibility. The empirical evidence suggests that current bus network system caters only 18.5% of whole population. Using network analysis results as inputs for PTALs, it is seen that excellent accessibility indexed bands cover a limited areas, while 78.8% of area is totally deprived of any service. To cater the unserved catchment, new route alignments are proposed while keeping in focus the Socio-economic characteristics, land-use type and net population density of the deprived area. Change in accessibility with proposed routes show a 10% increment in service delivery and enhancement in terms of served population is up to 20.4%. PTALs result shows a decrement of 60 Km2 in unserved band. The result of this study can be used for planning, transport infrastructure management, allocation of new route alignments in combination with future land-use development and for adequate spatial distribution of service access points.

Keywords: GIS, public transport accessibility, PTALs, accessibility index, service area analysis, closest facility analysis

Procedia PDF Downloads 437