Search results for: research network
27158 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 8727157 A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees
Authors: Shunsuke Saito, Kazuho Yoshimoto, Shunichi Ohmori, Sirawadee Arunyanart
Abstract:
In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.Keywords: personnel evaluation, pairwise comparison, analytic network process (ANP), two-ways
Procedia PDF Downloads 38527156 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 37727155 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry
Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn
Abstract:
The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.Keywords: growth, partnership, selection criteria, value chain
Procedia PDF Downloads 13527154 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using one-dimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment
Procedia PDF Downloads 34327153 Design of Low Latency Multiport Network Router on Chip
Authors: P. G. Kaviya, B. Muthupandian, R. Ganesan
Abstract:
On-chip routers typically have buffers are used input or output ports for temporarily storing packets. The buffers are consuming some router area and power. The multiple queues in parallel as in VC router. While running a traffic trace, not all input ports have incoming packets needed to be transferred. Therefore large numbers of queues are empty and others are busy in the network. So the time consumption should be high for the high traffic. Therefore using a RoShaQ, minimize the buffer area and time The RoShaQ architecture was send the input packets are travel through the shared queues at low traffic. At high load traffic the input packets are bypasses the shared queues. So the power and area consumption was reduced. A parallel cross bar architecture is proposed in this project in order to reduce the power consumption. Also a new adaptive weighted routing algorithm for 8-port router architecture is proposed in order to decrease the delay of the network on chip router. The proposed system is simulated using Modelsim and synthesized using Xilinx Project Navigator.Keywords: buffer, RoShaQ architecture, shared queue, VC router, weighted routing algorithm
Procedia PDF Downloads 54527152 Social Network Based Decision Support System for Smart U-Parking Planning
Authors: Jun-Ho Park, Kwang-Woo Nam, Seung-Mo Hong, Tae-Heon Moon, Sang-Ho Lee, Youn-Taik Leem
Abstract:
The aim of this study was to build ‘Ubi-Net’, a decision-making support system for systematic establishment in U-City planning. We have experienced various urban problems caused by high-density development and population concentrations in established urban areas. To address these problems, a U-Service contributes to the alleviation of urban problems by providing real-time information to citizens through network connections and related information. However, technology, devices, and information for consumers are required for systematic U-Service planning in towns and cities where there are many difficulties in this regard, and a lack of reference systems. Thus, this study suggests methods to support the establishment of sustainable planning by providing comprehensive information including IT technology, devices, news, and social networking services(SNS) to U-City planners through intelligent searches. In this study, we targeted Smart U-Parking Planning to solve parking problems in an ‘old’ city. Through this study, we sought to contribute to supporting advances in U-Space and the alleviation of urban problems.Keywords: desigin and decision support system, smart u-parking planning, social network analysis, urban engineering
Procedia PDF Downloads 42827151 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving
Authors: Yasin Tadayonrad
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming
Procedia PDF Downloads 9627150 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System
Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi
Abstract:
In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control
Procedia PDF Downloads 67327149 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 8827148 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico
Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón
Abstract:
The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.Keywords: interaction, political communication, social network analysis, Twitter
Procedia PDF Downloads 22427147 Improvements in Double Q-Learning for Anomalous Radiation Source Searching
Authors: Bo-Bin Xiaoa, Chia-Yi Liua
Abstract:
In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.Keywords: double Q learning, dueling network, NoisyNet, source searching
Procedia PDF Downloads 11627146 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 17027145 Building a Parametric Link between Mapping and Planning: A Sunlight-Adaptive Urban Green System Plan Formation Process
Authors: Chenhao Zhu
Abstract:
Quantitative mapping is playing a growing role in guiding urban planning, such as using a heat map created by CFX, CFD2000, or Envi-met, to adjust the master plan. However, there is no effective quantitative link between the mappings and planning formation. So, in many cases, the decision-making is still based on the planner's subjective interpretation and understanding of these mappings, which limits the improvement of scientific and accuracy brought by the quantitative mapping. Therefore, in this paper, an effort has been made to give a methodology of building a parametric link between the mapping and planning formation. A parametric planning process based on radiant mapping has been proposed for creating an urban green system. In the first step, a script is written in Grasshopper to build a road network and form the block, while the Ladybug Plug-in is used to conduct a radiant analysis in the form of mapping. Then, the research creatively transforms the radiant mapping from a polygon into a data point matrix, because polygon is hard to engage in the design formation. Next, another script is created to select the main green spaces from the road network based on the criteria of radiant intensity and connect the green spaces' central points to generate a green corridor. After that, a control parameter is introduced to adjust the corridor's form based on the radiant intensity. Finally, a green system containing greenspace and green corridor is generated under the quantitative control of the data matrix. The designer only needs to modify the control parameter according to the relevant research results and actual conditions to realize the optimization of the green system. This method can also be applied to much other mapping-based analysis, such as wind environment analysis, thermal environment analysis, and even environmental sensitivity analysis. The parameterized link between the mapping and planning will bring about a more accurate, objective, and scientific planning.Keywords: parametric link, mapping, urban green system, radiant intensity, planning strategy, grasshopper
Procedia PDF Downloads 14527144 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant
Procedia PDF Downloads 35827143 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 28127142 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network
Authors: Ashima Anurag Sharma
Abstract:
Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 53027141 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 25627140 Energy Efficient Clustering with Adaptive Particle Swarm Optimization
Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha
Abstract:
Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering
Procedia PDF Downloads 25227139 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing
Procedia PDF Downloads 38727138 Crossing Borders: In Research and Business Communication
Authors: Edith Podhovnik
Abstract:
Cultures play a role in business communication and in research. At the example of language in international business, this paper addresses the issue of how the research cultures of management research and linguistics as well as cultures as such can be linked. After looking at existing research on language in international business, this paper approaches communication in international business from a linguistic angle and attempts to explain communication issues in businesses based on linguistic research. Thus, the paper makes a step into cross-disciplinary research combining management research with linguistics.Keywords: language in international business, sociolinguistics, ethnopragmatics, cultural scripts
Procedia PDF Downloads 63527137 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks
Authors: Chothmal
Abstract:
In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces
Procedia PDF Downloads 25327136 Efficiency of Background Chlorine Residuals against Accidental Microbial Episode in Proto-Type Distribution Network (Rig) Using Central Composite Design (CCD)
Authors: Sajida Rasheed, Imran Hashmi, Luiza Campos, Qizhi Zhou, Kim Keu
Abstract:
A quadratic model (p ˂ 0.0001) was developed by using central composite design of 50 experimental runs (42 non-center + 8 center points) to assess efficiency of background chlorine residuals in combating accidental microbial episode in a prototype distribution network (DN) (rig). A known amount of background chlorine residuals were maintained in DN and a required number of bacteria, Escherichia coli K-12 strain were introduced by an injection port in the pipe loop system. Samples were taken at various time intervals at different pipe lengths. Spread plate count was performed to count bacterial number. The model developed was significant. With microbial concentration and time (p ˂ 0.0001), pipe length (p ˂ 0.022), background chlorine residuals (p ˂ 0.07) and time^2 (p ˂ 0.09) as significant factors. The ramp function of variables shows that at the microbial count of 10^6, at 0.76 L/min, and pipe length of 133 meters, a background residual chlorine 0.16 mg/L was enough for complete inactivation of microbial episode in approximately 18 minutes.Keywords: central composite design (CCD), distribution network, Escherichia coli, residual chlorine
Procedia PDF Downloads 46727135 Differences in Production of Knowledge between Internationally Mobile versus Nationally Mobile and Non-Mobile Scientists
Authors: Valeria Aman
Abstract:
The presented study examines the impact of international mobility on knowledge production among mobile scientists and within the sending and receiving research groups. Scientists are relevant to the dynamics of knowledge production because scientific knowledge is mainly characterized by embeddedness and tacitness. International mobility enables the dissemination of scientific knowledge to other places and encourages new combinations of knowledge. It can also increase the interdisciplinarity of research by forming synergetic combinations of knowledge. Particularly innovative ideas can have their roots in related research domains and are sometimes transferred only through the physical mobility of scientists. Diversity among scientists with respect to their knowledge base can act as an engine for the creation of knowledge. It is therefore relevant to study how knowledge acquired through international mobility affects the knowledge production process. In certain research domains, international mobility may be essential to contextualize knowledge and to gain access to knowledge located at distant places. The knowledge production process contingent on the type of international mobility and the epistemic culture of a research field is examined. The production of scientific knowledge is a multi-faceted process, the output of which is mainly published in scholarly journals. Therefore, the study builds upon publication and citation data covered in Elsevier’s Scopus database for the period of 1996 to 2015. To analyse these data, bibliometric and social network analysis techniques are used. A basic analysis of scientific output using publication data, citation data and data on co-authored publications is combined with a content map analysis. Abstracts of publications indicate whether a research stay abroad makes an original contribution methodologically, theoretically or empirically. Moreover, co-citations are analysed to map linkages among scientists and emerging research domains. Finally, acknowledgements are studied that can function as channels of formal and informal communication between the actors involved in the process of knowledge production. The results provide better understanding of how the international mobility of scientists contributes to the production of knowledge, by contrasting the knowledge production dynamics of internationally mobile scientists with those being nationally mobile or immobile. Findings also allow indicating whether international mobility accelerates the production of knowledge and the emergence of new research fields.Keywords: bibliometrics, diversity, interdisciplinarity, international mobility, knowledge production
Procedia PDF Downloads 29827134 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 27927133 The Development of Community Leadership Strategies for Career Development of the Benjarong Pottery Products in Eight Upper Central Provinces
Authors: Thanaporn Chaimongkol
Abstract:
The objective of this research was aimed to examine the factors that influence the development of community leadership strategies to further develop the career regarding the Benjarong pottery products in eight upper central provinces, Thailand. The sample included (1) 1200 Benjarong pottery operators, (2) 30 involved representatives at both the policy level and support, and (3) OTOP network of 24 people. In this quantitative study, investigating data was conducted on individual session basis. The research instruments used included questionnaires and interview. The results showed that the components of the development of the community leadership strategies for career development of the Benjarong pottery products in eight upper central provinces were high overall; the Five Competitive Forces were of the highest average, followed by bargaining power of suppliers, and McKinsey 7's framework, respectively; where the highest average was strategy.Keywords: community leadership, strategy development, Benjarong Pottery, 8 upper central provinces
Procedia PDF Downloads 32927132 Product Modularity, Collaboration and the Impact on Innovation Performance in Intra-Organizational R&D Networks
Authors: Daniel Martinez, Tim de Leeuw, Stefan Haefliger
Abstract:
The challenges of managing a large and geographically dispersed R&D organization have been further increasing during the past years, concentrating on the leverage of a geo-graphically dispersed body of knowledge in an efficient and effective manner. In order to reduce complexity and improve performance, firms introduce product modularity as one key element for global R&D network teams to develop their products and projects in collaboration. However, empirical studies on the effects of product modularity on innovation performance are really scant. Furthermore, some researchers have suggested that product modularity promotes innovation performance, while others argue that it inhibits innovation performance. This research fills this gap by investigating the impact of product modularity on various dimensions of innovation performance, i.e. effectiveness and efficiency. By constructing the theoretical framework, this study suggests that that there is an inverted U-shaped relationship between product modularity and innovation performance. Moreover, this research work suggests that the optimum of innovation performance efficiency will be at a higher level than innovation performance effectiveness at a given product modularity level.Keywords: modularity, innovation performance, networks, R&D, collaboration
Procedia PDF Downloads 52527131 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 27027130 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks
Authors: Kais Manai
Abstract:
The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.Keywords: nuclear emulsion, particle identification, tracking, neural network
Procedia PDF Downloads 51227129 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 274