Search results for: predictive density functions
5458 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets
Procedia PDF Downloads 3815457 Predictive Relationship between Motivation Strategies and Musical Creativity of Secondary School Music Students
Authors: Lucy Lugo Mawang
Abstract:
Educational Psychologists have highlighted the significance of creativity in education. Likewise, a fundamental objective of music education concern the development of students’ musical creativity potential. The purpose of this study was to determine the relationship between motivation strategies and musical creativity, and establish the prediction equation of musical creativity. The study used purposive sampling and census to select 201 fourth-form music students (139 females/ 62 males), mainly from public secondary schools in Kenya. The mean age of participants was 17.24 years (SD = .78). Framed upon self- determination theory and the dichotomous model of achievement motivation, the study adopted an ex post facto research design. A self-report measure, the Achievement Goal Questionnaire-Revised (AGQ-R) was used in data collection for the independent variable. Musical creativity was based on a creative music composition task and measured by the Consensual Musical Creativity Assessment Scale (CMCAS). Data collected in two separate sessions within an interval of one month. The questionnaire was administered in the first session, lasting approximately 20 minutes. The second session was for notation of participants’ creative composition. The results indicated a positive correlation r(199) = .39, p ˂ .01 between musical creativity and intrinsic music motivation. Conversely, negative correlation r(199) = -.19, p < .01 was observed between musical creativity and extrinsic music motivation. The equation for predicting musical creativity from music motivation strategies was significant F(2, 198) = 20.8, p < .01, with R2 = .17. Motivation strategies accounted for approximately (17%) of the variance in participants’ musical creativity. Intrinsic music motivation had the highest significant predictive value (β = .38, p ˂ .01) on musical creativity. In the exploratory analysis, a significant mean difference t(118) = 4.59, p ˂ .01 in musical creativity for intrinsic and extrinsic music motivation was observed in favour of intrinsically motivated participants. Further, a significant gender difference t(93.47) = 4.31, p ˂ .01 in musical creativity was observed, with male participants scoring higher than females. However, there was no significant difference in participants’ musical creativity based on age. The study recommended that music educators should strive to enhance intrinsic music motivation among students. Specifically, schools should create conducive environments and have interventions for the development of intrinsic music motivation since it is the most facilitative motivation strategy in predicting musical creativity.Keywords: extrinsic music motivation, intrinsic music motivation, musical creativity, music composition
Procedia PDF Downloads 1535456 Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound
Authors: A. Chouaih, N. Benhalima, N. Boukabcha, R. Rahmani, F. Hamzaoui
Abstract:
Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound.Keywords: organic compounds, polarizability, hyperpolarizability, dipole moment
Procedia PDF Downloads 4145455 Ab Initio Studies of Structural and Thermal Properties of Aluminum Alloys
Authors: M. Saadi, S. E. H. Abaidia, M. Y. Mokeddem.
Abstract:
We present the results of a systematic and comparative study of the bulk, the structural properties, and phonon calculations of aluminum alloys using several exchange–correlations functional theory (DFT) with different plane-wave basis pseudo potential techniques. Density functional theory implemented by the Vienna Ab Initio Simulation Package (VASP) technique is applied to calculate the bulk and the structural properties of several structures. The calculations were performed for within several exchange–correlation functional and pseudo pententials available in this code (local density approximation (LDA), generalized gradient approximation (GGA), projector augmented wave (PAW)). The lattice dynamic code “PHON” developed by Dario Alfè was used to calculate some thermodynamics properties and phonon dispersion relation frequency distribution of Aluminium alloys using the VASP LDA PAW and GGA PAW results. The bulk and structural properties of the calculated structures were compared to different experimental and calculated works.Keywords: DFT, exchange-correlation functional, LDA, GGA, pseudopotential, PAW, VASP, PHON, phonon dispersion
Procedia PDF Downloads 4845454 Iron Recovery from Red Mud as Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method
Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Widi Astuti
Abstract:
In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.Keywords: red mud, electrochemical reduction, Iron production, hematite
Procedia PDF Downloads 735453 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone
Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga
Abstract:
Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study
Procedia PDF Downloads 1615452 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method
Authors: Choukri Lekbir, Mira Mokhtari
Abstract:
Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster
Procedia PDF Downloads 4205451 A Study on Fatigue Performance of Asphalt Using AMPT
Authors: Yuan Jie Kelvin Lu, Amin Chegenizadeh
Abstract:
Asphalt pavement itself is a mixture made up of mainly aggregates, binders, and fillers that acts as a composition used for pavement construction. An experimental program was setup to determine the fatigue performance test of Asphalt with three different grades of conventional binders. Asphalt specimen has achieved the maximum optimum bulk density and air voids with a consistent bulk density of 2.3 t/m3, with an air void of 5% ± 0.5, before loading into the Asphalt Mixture Performance Tested (AMPT) for fatigue test. The number of cycles is defined as the point where phase angle drops, which is caused by the formation of cracks due to the increasing micro cracks when asphalt is undergoing repeated cycles of loading. Thus, the data collected are analyzed using the drop of phase angle as failure criteria. Based in the data analyzed, it is evident that the fatigue life of asphalt lies on the grade of binder. The result obtained shows that all specimens do experience a drop in phase angle due to macro cracks in the asphalt specimen.Keywords: asphalt binder, AMPT, CX test, simplified – viscoelastic continuum damage (S-VECD)
Procedia PDF Downloads 3525450 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 945449 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells
Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe
Abstract:
The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity
Procedia PDF Downloads 1625448 Characterization of Nickel Based Metallic Superconducting Materials
Authors: Y. Benmalem , A. Abbad, W. Benstaali, T. Lantri
Abstract:
Density functional theory is used to investigate the.the structural, electronic, and magnetic properties of the cubic anti-perovskites InNNi3 and ZnNNi3. The structure of antiperovskite also called (perovskite-inverse) identical to the perovskite structure of the general formula ABX3, where A is a main group (III–V) element or a metallic element, B is carbon or nitrogen, and X is a transition metal, displays a wide range of interesting physical properties, such as giant magnetoresistance. Elastic and electronic properties were determined using generalized gradient approximation (GGA), and local spin density approximation (LSDA) approaches, ), as implemented in the Wien2k computer package. The results show that the two compounds are strong ductile and satisfy the Born-Huang criteria, so they are mechanically stable at normal conditions. Electronic properties show that the two compounds studied are metallic and non-magnetic. The studies of these compounds have confirmed the effectiveness of the two approximations and the ground-state properties are in good agreement with experimental data and theoretical results available.Keywords: anti-perovskites, elastic anisotropy, electronic band structure, first-principles calculations
Procedia PDF Downloads 2835447 Interpreting Privacy Harms from a Non-Economic Perspective
Authors: Christopher Muhawe, Masooda Bashir
Abstract:
With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.Keywords: data breach and misuse, economic harms, privacy harms, psychological harms
Procedia PDF Downloads 1955446 A Future Urban Street Design in Baltimore, Maryland Based on a Hierarchy of Functional Needs and the Context of Autonomous Vehicles, Green Infrastructure, and Evolving Street Typologies
Authors: Samuel Quick
Abstract:
The purpose of this paper is to examine future urban street design in the context of developing technologies, evolving street typologies, and projected transportation trends. The goal was to envision a future urban street in the year 2060 that addresses the advent and implementation of autonomous vehicles, the promotion of new street typologies, and the projection of current transportation trends. Using a hierarchy of functional needs for urban streets, the future street was designed and evaluated based on the functions the street provides to the surrounding community. The site chosen for the future street design is an eight-block section of West North Avenue in the city of Baltimore, Maryland. Three different conceptual designs were initially completed and evaluated leading to a master plan for West North Avenue as well as street designs for connecting streets that represent different existing street types. Final designs were compared with the existing street design and evaluated with the adapted ‘Hierarchy of Needs’ theory. The review of the literature and the results from this paper indicate that urban streets will have to become increasingly multi-functional to meet the competing needs of the environment and community. Future streets will have to accommodate multimodal transit which will include mass transit, walking, and biking. Furthermore, a comprehensive implementation of green infrastructure within the urban street will provide access to nature for urban communities and essential stormwater management. With these developments, the future of an urban street will move closer to a greenway typology. Findings from this study indicate that urban street design will have to be policy-driven to promote and implement autonomous bus-rapid-transit in order to conserve street space for other functions. With this conservation of space, urban streets can then provide more functions to the surrounding community, taking a holistic approach to urban street design.Keywords: autonomous vehicle, greenway, green infrastructure, multi-modality, street typology
Procedia PDF Downloads 1825445 Link Between Intensity-trajectories Of Acute Postoperative Pain And Risk Of Chronicization After Breast And Thoracopulmonary Surgery
Authors: Beloulou Mohamed Lamine, Fedili Benamar, Meliani Walid, Chaid Dalila
Abstract:
Introduction: The risk factors for the chronicization of postoperative pain are numerous and often intricately intertwined. Among these, the severity of acute postoperative pain is currently recognized as one of the most determining factors. Mastectomy and thoracotomy are described as among the most painful surgeries and the most likely to lead to chronic post-surgical pain (CPSP). Objective: To examine the aspects of acute postoperative pain potentially involved in the development of chronic pain following breast and thoracic surgery. Patients and Methods: A prospective study involving 164 patients was conducted over a six-month period. Postoperative pain (during mobilization) was assessed using a Visual Analog Scale (VAS) at various time points after surgery: Day 0, 1st, 2nd, 5th days, 1st and 6th months. Moderate to severe pain was defined as a VAS score ≥ 4. A comparative analysis (univariate analysis) of postoperative pain intensities at different evaluation phases was performed on patients with and without CPSP to identify potential associations with the risk of chronicization six months after surgery. Results: At the 6th month post-surgery, the incidence of CPSP was 43.0%. Moderate to severe acute postoperative pain (in the first five days) was observed in 64% of patients. The highest pain scores were reported among thoracic surgery patients. Comparative measures revealed a highly significant association between the presence of moderate to severe acute pain, especially lasting for ≥ 48 hours, and the occurrence of CPSP (p-value <0.0001). Likewise, the persistence of subacute pain (up to 4 to 6 weeks after surgery), especially of moderate to severe intensity, was significantly associated with the risk of chronicization at six months (p-value <0.0001). Conclusion: CPSP after breast and thoracic surgery remains a fairly common morbidity that profoundly affects the quality of life. Severe acute postoperative pain, especially if it is prolonged and/or with a slow decline in intensity, can be an important predictive factor for the risk of chronicization. Therefore, more effective and intensive management of acute postoperative pain, as well as longitudinal monitoring of its trajectory over time, should be an essential component of strategies for preventing chronic pain after surgery.Keywords: chronic post-surgical pain, acute postoperative pain, breast and thoracic surgery, subacute postoperative pain, pain trajectory, predictive factor
Procedia PDF Downloads 735444 Creep Behaviour of Asphalt Modified by Waste Polystyrene and Its Hybrids with Crumb Rubber and Low-Density Polyethylene
Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili
Abstract:
Polystyrene, being made from a monomer called styrene, is a rigid and easy-to mould polymer that is widely used for many applications, from foam packaging to disposable containers. Considering that the degradation of waste polystyrene takes up to 500 years, there is an urgent need for a sustainable application for waste polystyrene. This study evaluates the application of waste polystyrene as an asphalt modifier. The inclusion of waste plastics in asphalt is either practised by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture and in the wet process, they are mixed and digested into bitumen. In this article, polystyrene was used as an asphalt modifier in a dry process. However, the mixing process is precisely designed to make sure that the polymer is melted and modified in the binder. It was expected that, due to the rigidity of polystyrene, it will have positive effects on the permanent deformation of the asphalt mixture. Therefore, different mixtures were manufactured with different contents of polystyrene and Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the permanent deformation of the modification. This is a commonly repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded the cumulative, permanent strain is determined and reported as a function of the number of cycles. Also, to our best knowledge, hybrid mixes of polystyrene with crumb rubber and low-density polyethylene were made and compared with a polystyrene-modified mixture. The test results of this study showed that the hybrid mix of polystyrene and low-density polyethylene has the highest resistance against permanent deformation. However, the polystyrene-modified mixture outperformed the hybrid mix of polystyrene and crumb rubber, and both demonstrated way lower permanent deformation than the unmodified specimen.Keywords: permanent deformation, waste plastics, polystyrene, hybrid plastics, hybrid mix, hybrid modification, dry process
Procedia PDF Downloads 1045443 Implementation of a Lattice Boltzmann Method for Multiphase Flows with High Density Ratios
Authors: Norjan Jumaa, David Graham
Abstract:
We present a Lattice Boltzmann Method (LBM) for multiphase flows with high viscosity and density ratios. The motion of the interface between fluids is modelled by solving the Cahn-Hilliard (CH) equation with LBM. Incompressibility of the velocity fields in each phase is imposed by using a pressure correction scheme. We use a unified LBM approach with separate formulations for the phase field, the pressure less Naiver-Stokes (NS) equations and the pressure Poisson equation required for correction of the velocity field. The implementation has been verified for various test case. Here, we present results for some complex flow problems including two dimensional single and multiple mode Rayleigh-Taylor instability and we obtain good results when comparing with those in the literature. The main focus of our work is related to interactions between aerated or non-aerated waves and structures so we also present results for both high viscosity and low viscosity waves.Keywords: lattice Boltzmann method, multiphase flows, Rayleigh-Taylor instability, waves
Procedia PDF Downloads 2315442 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 3505441 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications
Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania
Abstract:
The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System
Procedia PDF Downloads 1235440 Mechanical and Microstructural Study of Photo-Aged Low Density Polyethylene (LDPE) Films
Authors: Meryem Imane Babaghayou, Abdelhafidi Asma
Abstract:
This study deals with the ageing of Blown extruded films of low-density polyethylene (LDPE), used for greenhouse covering. The LDPE have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. The microstructural changes in the films were analyzed by IRFT for different states of ageing. The mechanical characterization was performed on a uniaxial tensile apparatus. The mechanical properties such as Young's modulus, strain at break, and stress at break have been followed for different states of exposure time (0 to 6 months). The Climatic ageing of LDPE films shows the effect of ageing on the microstructural Plan which leads to: i) To an oxidation of the molecular chains. ii) To the formation of cross-linkings and breaking chains, which both of them are responsible for the mechanical behavior’s modifications of the material. Cross-links are in favor of strengthening of the mechanical properties at break (the increase of σr and εr). In other side, the chains breaking leads to a decrease of these properties. The increase in the Young's modulus also seems to be related to those structural changes since the cross-links increase the average molecular weight. Branchings and tangles are favorable pairs for the ductile nature of the material. And in other side, the chains breaking reduces the average molecular weight and therefore promotes the stiffening (following to morphological changes) so the material becomes fragile. The post-mortem analysis of the samples shows that the mechanical stress has an effect on the molecular structure of the material. Although if quantitatively the concentrations of different chemical species exchanges, from a quantitative point of view only the unsaturations raises the polemics of a possible microstructural modification induced by mechanical stress applied during the tensile test. Also, we recommend a more rigorous analysis with other means of investigation.Keywords: low-density polyethylene, ageing, mechanical properties, IRTF
Procedia PDF Downloads 3565439 Digital Transformation: Actionable Insights to Optimize the Building Performance
Authors: Jovian Cheung, Thomas Kwok, Victor Wong
Abstract:
Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance
Procedia PDF Downloads 1535438 Bone Mineral Density of the Lumbar Spine, Femur in Elite Egyptian Male Swimmers
Authors: Magdy Abouzeid
Abstract:
Introduction: Physical activity has been shown to have a positive effect on bone mineral density (BMD) and bone mineral content (BMC) among children, adolescents, and adults. Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. Purpose: To examine this issue we measured (BMD) and(BMC) of the lumbar spine, proximal femur via dual energy x-ray absorptiometry in the group of elite male swimmers, and determine the effect of swimming training on bone health and compared the results with matched controls group in age, body weight and height. Materials and Methods: Twenty-five male swimmers (age 20.7+/-0.8 years) training for 12-15 hours/week; and the controls group consisted of 25 non-active male (age 21.3 +/-1.3 years) were studied BMD and BMC of lumbar spine, femur were assessed via (DXA) absorptiometry. Results: There was significant difference between swimmers and control group in BMD and BMC, BMD of Swimmers was significantly greater than controls at all sites. The lumbar spine (1, 08 +/-0.202 vs., 0717+0.57 gxcm (-2), right proximal femur (1, 02 +/-, 044 vs., 771+/-, 027 gxcm (-2), and left proximal femur (1.374+/-0.212 vs. 1.01 +/-0.141 gxcm (-2). Swimmers were significantly taller, and had greater BMC and BMD compared to the controls group (P<0.001). Conclusions: These results suggest that swimming training may be beneficial in the prevention or therapy of OSTEOPENIA, and may lead to increased (BMD) and (BMC) for male swimmers. Swimming may be an effective non-pharmacological intervention for the adults and adolescent. Further research with younger athletes of another type of aquatics sport is warranted to better identify the periods of BMD development during which Aquatics sport has the greatest impact on bone health.Keywords: bone mineral density, lumbar spine, femur, swimming, DXA absorptiometry
Procedia PDF Downloads 3215437 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures
Authors: Mostafa Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy
Procedia PDF Downloads 4525436 Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses
Authors: Arsalan Ghaderi
Abstract:
Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index.Keywords: HS-CRP, integrative model of behavior prediction, physical activity, nurses, web-based education
Procedia PDF Downloads 1145435 Executive Functions Directly Associated with Severity of Perceived Pain above and beyond Depression in the Context of Medical Rehabilitation
Authors: O. Elkana, O Heyman, S. Hamdan, M. Franko, J. Vatine
Abstract:
Objective: To investigate whether a direct link exists between perceived pain (PP) and executive functions (EF), above and beyond the influence of depression symptoms, in the context of medical rehabilitation. Design: Cross-sectional study. Setting: Rehabilitation Hospital. Participants: 125 medical records of hospitalized patients were screened for matching to our inclusion criteria. Only 60 patients were found fit and were asked to participate. 19 decline to participate on personal basis. The 41 neurologically intact patients (mean age 46, SD 14.96) that participated in this study were in their sub-acute stage of recovery, with fluent Hebrew, with intact upper limb (to neutralize influence on psychomotor performances) and without an organic brain damage. Main Outcome Measures: EF were assessed using the Wisconsin Card Sorting Test (WCST) and the Stop-Signal Test (SST). PP was measured using 3 well-known pain questionnaires: Pain Disability Index (PDI), The Short-Form McGill Questionnaire (SF-MPQ) and the Pain Catastrophizing Scale (PCS). Perceived pain index (PPI) was calculated by the mean score composite from the 3 pain questionnaires. Depression symptoms were assessed using the Patient Health Questionnaire (PHQ-9). Results: The results indicate that irrespective of the presence of depression symptoms, PP is directly correlated with response inhibition (SST partial correlation: r=0.5; p=0.001) and mental flexibility (WSCT partial correlation: r=-0.37; p=0.021), suggesting decreased performance in EF as PP severity increases. High correlations were found between the 3 pain measurements: SF-MPQ with PDI (r=0.62, p<0.001), SF-MPQ with PCS (r=0.58, p<0.001) and PDI with PCS (r=0.38, p=0.016) and each questionnaire alone was also significantly associated with EF; thus, no specific questionnaires ‘pulled’ the results obtained by the general index (PPI). Conclusion: Examining the direct association between PP and EF, beyond the contribution of depression symptoms, provides further clinical evidence suggesting that EF and PP share underlying mediating neuronal mechanisms. Clinically, the importance of assessing patients' EF abilities as well as PP severity during rehabilitation is underscored.Keywords: depression, executive functions, mental-flexibility, neuropsychology, pain perception, perceived pain, response inhibition
Procedia PDF Downloads 2475434 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1735433 Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium
Authors: Ana Paula Mousinho, Ronaldo D. Mansano, Nelson Ordonez
Abstract:
Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system.Keywords: CNTs forest, high density plasma deposition, high-aligned CNTs, nanomaterials
Procedia PDF Downloads 1165432 Evaluation of Hypolipidemic Effect of Leaf Essential Oil of Citrus sinensis in Alloxan- Induced Diabetic Rats
Authors: Omolola Soji-Omoniwa, Babasoji Omoniwa
Abstract:
The hypolipidemic effect of leaf essential oil of Citrus sinensis in alloxan–induced diabetic rats was evaluated. Forty albino rats (150–200 g) were randomly selected into 4 groups of 10 rats each, representing Normal Control, Diabetic Control, Diabetic treated with 14.2 mg/kg body weight Metformin and Diabetic treated with 110 mg/kg body weight leaf essential oil of Citrus sinensis. Diabetes was induced in the animals by intraperitoneal administration of single dose alloxan monohydrate (150 mg/kg body weight). The leaf essential oil of Citrus sinensis was administered every other day to the Diabetic rats for a period of 15 days. The effects of leaf essential oil on High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Trigylcerides and Cholesterol were evaluated. A significant reduction (p <0.05) in LDL, Triglycerides and cholesterol levels and a significant increase (p<0 .05) in HDL was observed. Leaf essential oil of Citrus sinensis possesses hypolipidemic properties.Keywords: Citrus sinensis, Diabetes mellitus, hypolipidemic, leaf essential oil
Procedia PDF Downloads 4445431 Iron Recovery from Red Mud As Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method
Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti
Abstract:
In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.Keywords: alumina, red mud, electrochemical reduction, iron production
Procedia PDF Downloads 765430 Ways to Spend Time at an Airport before Boarding a Flight
Authors: Amol Parikh
Abstract:
The goal of this study is to understand the most preferred ways to spend time at an airport while waiting for a flight to board. Survey was done on 1639 people of the United States of America. In the overall data, it was found that majority people always preferred spending time doing something in their mobile phone. Second most preferred option was reading something, followed by wanting a companion to talk to or to eat/drink. Least preferred option was to eat/drink alone. Overall data was then filtered based on age, gender, income and urban density groups. Percentage of people wanting to use a mobile phone was highest in the age group of 18-24. People aged 45 and above chose reading as the most preferred option. In any of the ranges of income, gender or urban density using mobile phone was the most preferred option. Conclusion of this study is that introducing a mobile app to search for a companion at an airport to do like minded activity would get noticed by majority travelers and would be a business idea worth trying as wanting a companion to talk or eat/drink with is not the least preferred option.Keywords: waiting for a flight, airport, mobile phone, companion
Procedia PDF Downloads 2805429 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 100