Search results for: oil palm tree census
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1384

Search results for: oil palm tree census

64 A Comparative Laboratory Evaluation of Efficacy of Two Fungi: Beauveria bassiana and Acremonium perscinum, on Dichomeris eridantis Meyrick (Lepidoptera: Gelechiidae) Larvae, an Important Pest of Dalbergia sissoo

Authors: Gunjan Srivastava, Shamila Kalia

Abstract:

Dalbergia sissoo Roxb., (Family- Leguminosae; Subfamily- Papilionoideae), is an economically and ecologically important tree species having medicinal value. Of the rich complex of insect fauna, ten have been recognized as potential pests of nurseries and plantations. Present study was conducted to explore an effective ecofriendly control of Dichomeris eridantis Meyrick, an important defoliator pest of D. sissoo. Health and environmental concerns demanded devising a bio-intensive pest management strategy and employing ecofriendly measures. In the present laboratory bioassay two entomopathogenic fungi Acremonium perscinum and Beauveria bassiana were tested and compared for evaluating the efficacy of their seven different concentrations (besides control) against the 3rd, 4th and 5th instar larvae of D. eridantis, on the basis of mean percent mortality data recorded and tabulated for seven days after treatment application. Analysis showed that both treatments vary significantly among themselves. Also, variations amongst instars and duration with respect to their mortality were highly significant (p < .001). All their interactions were found to vary significantly. B. bassiana at 0.25x107 spores / ml spore concentration caused maximum mean percent mortality (62.38%) followed by mean percent mortality at its 0.25x106 spores / ml concentration (56.67%). Mean percent mortality at maximum spore concentration (0.054x107 spores / ml) and next highest spore concentration (0.054 x106 spores / ml) due to A. perscinum treatment were far less effective (mean percent mortality of 45.40% and 31.29%, respectively). At 168 hours mean percent mortality of larval instars due to both fungal treatment applications reached its maximum (52.99%) whereas, at 24 hours mean percent mortality remained least (5.70%). In both cases, treatments were most effective against 3rd instar larvae and least effective against 5th instar larvae. A comparative acccount of efficacy of B. bassiana and A. perscinum on the 3rd, 4th and 5th instar larvae of D. eridantis on 5th, 6th and 7th post treatment observation days after their application, on the basis of their median lethal concentrations (LC50) proved B. bassiana to be more potential microbial pathogen of the two fungal microbes, for all the three instars (3rd, 4th and 5th) of D. eridantis, on all the three days (5th, 6th and 7th post observation days after application of both treatments). Percent mortality of D. eridantis increased in a dose dependent manner. Koch’s Postulates tested positive, thus confirming the pathogenicity of B. bassiana against the larval instars of D. eridantis. LC90 values of 0.280x1011 spores/ml, 0.301x108 spores/ml and 0.262x108 spores/ml concentrations of B. bassiana were standardized which can effectively cause mortality of all the larval instars of D. eridantis in the field after 5th, 6th and 7th day of their application, respectively. Therefore, these concentrations can be safely used in nurseries as well as plantations of D. sissoo for effective control of D. eridantis larvae.

Keywords: Acremonium perscinum, Beauveria bassiana, Dalbergia sissoo, Dichomeris eridantis

Procedia PDF Downloads 225
63 Fields of Power, Visual Culture, and the Artistic Practice of Two 'Unseen' Women of Central Brazil

Authors: Carolina Brandão Piva

Abstract:

In our visual culture, images play a newly significant role in the basis of a complex dialogue between imagination, creativity, and social practice. Insofar as imagination has broken out of the 'special expressive space of art' to become a part of the quotidian mental work of ordinary people, it is pertinent to recognize that visual representation can no longer be assumed as if in a domain detached from everyday life or exclusively 'centered' within the limited frame of 'art history.' The approach of Visual Culture as a field of study is, in this sense, indispensable to comprehend that not only 'the image,' but also 'the imagined' and 'the imaginary' are produced in the plurality of social interactions; crucial enough, this assertion directs us to something new in contemporary cultural processes, namely both imagination and image production constitute a social practice. This paper starts off with this approach and seeks to examine the artistic practice of two women from the State of Goiás, Brazil, who are ordinary citizens with their daily activities and narratives but also dedicated to visuality production. With no formal training from art schools, branded or otherwise, Maria Aparecida de Souza Pires deploys 'waste disposal' of daily life—from car tires to old work clothes—as a trampoline for art; also adept at sourcing raw materials collected from her surroundings, she manipulates raw hewn wood, tree trunks, plant life, and various other pieces she collects from nature giving them new meaning and possibility. Hilda Freire works with sculptures in clay using different scales and styles; her art focuses on representations of women and pays homage to unprivileged groups such as the practitioners of African-Brazilian religions, blue-collar workers, poor live-in housekeepers, and so forth. Although they have never been acknowledged by any mainstream art institution in Brazil, whose 'criterion of value' still favors formally trained artists, Maria Aparecida de Souza Pires, and Hilda Freire have produced visualities that instigate 'new ways of seeing,' meriting cultural significance in many ways. Their artworks neither descend from a 'traditional' medium nor depend on 'canonical viewing settings' of visual representation; rather, they consist in producing relationships with the world which do not result in 'seeing more,' but 'at least differently.' From this perspective, the paper finally demonstrates that grouping this kind of artistic production under the label of 'mere craft' has much more to do with who is privileged within the fields of power in art system, who we see and who we do not see, and whose imagination of what is fed by which visual images in Brazilian contemporary society.

Keywords: visual culture, artistic practice, women's art in the Brazilian State of Goiás, Maria Aparecida de Souza Pires, Hilda Freire

Procedia PDF Downloads 152
62 A Kunitz-Type Serine Protease Inhibitor from Rock Bream, Oplegnathus fasciatus Involved in Immune Responses

Authors: S. D. N. K. Bathige, G. I. Godahewa, Navaneethaiyer Umasuthan, Jehee Lee

Abstract:

Kunitz-type serine protease inhibitors (KTIs) are identified in various organisms including animals, plants and microbes. These proteins shared single or multiple Kunitz inhibitory domains link together or associated with other types of domains. Characteristic Kunitz type domain composed of around 60 amino acid residues with six conserved cysteine residues to stabilize by three disulfide bridges. KTIs are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis and inflammation. In this study, two Kunitz-type domain containing protein was identified from rock bream database and designated as RbKunitz. The coding sequence of RbKunitz encoded for 507 amino acids with 56.2 kDa theoretical molecular mass and 5.7 isoelectric point (pI). There are several functional domains including MANEC superfamily domain, PKD superfamily domain, and LDLa domain were predicted in addition to the two characteristic Kunitz domain. Moreover, trypsin interaction sites were also identified in Kunitz domain. Homology analysis revealed that RbKunitz shared highest identity (77.6%) with Takifugu rubripes. Completely conserved 28 cysteine residues were recognized, when comparison of RbKunitz with other orthologs from different taxonomical groups. These structural evidences indicate the rigidity of RbKunitz folding structure to achieve the proper function. The phylogenetic tree was constructed using neighbor-joining method and exhibited that the KTIs from fish and non-fish has been evolved in separately. Rock bream was clustered with Takifugu rubripes. The SYBR Green qPCR was performed to quantify the RbKunitz transcripts in different tissues and challenged tissues. The mRNA transcripts of RbKunitz were detected in all tissues (muscle, spleen, head kidney, blood, heart, skin, liver, intestine, kidney and gills) analyzed and highest transcripts level was detected in gill tissues. Temporal transcription profile of RbKunitz in rock bream blood tissues was analyzed upon LPS (lipopolysaccharide), Poly I:C (Polyinosinic:polycytidylic acid) and Edwardsiella tarda challenge to understand the immune responses of this gene. Compare to the unchallenged control RbKunitz exhibited strong up-regulation at 24 h post injection (p.i.) after LPS and E. tarda injection. Comparatively robust expression of RbKunits was observed at 3 h p.i. upon Poly I:C challenge. Taken together all these data indicate that RbKunitz may involve into to immune responses upon pathogenic stress, in order to protect the rock bream.

Keywords: Kunitz-type, rock bream, immune response, serine protease inhibitor

Procedia PDF Downloads 380
61 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring

Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis

Abstract:

Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.

Keywords: earth observation, monitoring, natural hazards, remote sensing

Procedia PDF Downloads 41
60 Construction and Analysis of Tamazight (Berber) Text Corpus

Authors: Zayd Khayi

Abstract:

This paper deals with the construction and analysis of the Tamazight text corpus. The grammatical structure of the Tamazight remains poorly understood, and a lack of comparative grammar leads to linguistic issues. In order to fill this gap, even though it is small, by constructed the diachronic corpus of the Tamazight language, and elaborated the program tool. In addition, this work is devoted to constructing that tool to analyze the different aspects of the Tamazight, with its different dialects used in the north of Africa, specifically in Morocco. It also focused on three Moroccan dialects: Tamazight, Tarifiyt, and Tachlhit. The Latin version was good choice because of the many sources it has. The corpus is based on the grammatical parameters and features of that language. The text collection contains more than 500 texts that cover a long historical period. It is free, and it will be useful for further investigations. The texts were transformed into an XML-format standardization goal. The corpus counts more than 200,000 words. Based on the linguistic rules and statistical methods, the original user interface and software prototype were developed by combining the technologies of web design and Python. The corpus presents more details and features about how this corpus provides users with the ability to distinguish easily between feminine/masculine nouns and verbs. The interface used has three languages: TMZ, FR, and EN. Selected texts were not initially categorized. This work was done in a manual way. Within corpus linguistics, there is currently no commonly accepted approach to the classification of texts. Texts are distinguished into ten categories. To describe and represent the texts in the corpus, we elaborated the XML structure according to the TEI recommendations. Using the search function may provide us with the types of words we would search for, like feminine/masculine nouns and verbs. Nouns are divided into two parts. The gender in the corpus has two forms. The neutral form of the word corresponds to masculine, while feminine is indicated by a double t-t affix (the prefix t- and the suffix -t), ex: Tarbat (girl), Tamtut (woman), Taxamt (tent), and Tislit (bride). However, there are some words whose feminine form contains only the prefix t- and the suffix –a, ex: Tasa (liver), tawja (family), and tarwa (progenitors). Generally, Tamazight masculine words have prefixes that distinguish them from other words. For instance, 'a', 'u', 'i', ex: Asklu (tree), udi (cheese), ighef (head). Verbs in the corpus are for the first person singular and plural that have suffixes 'agh','ex', 'egh', ex: 'ghrex' (I study), 'fegh' (I go out), 'nadagh' (I call). The program tool permits the following characteristics of this corpus: list of all tokens; list of unique words; lexical diversity; realize different grammatical requests. To conclude, this corpus has only focused on a small group of parts of speech in Tamazight language verbs, nouns. Work is still on the adjectives, prounouns, adverbs and others.

Keywords: Tamazight (Berber) language, corpus linguistic, grammar rules, statistical methods

Procedia PDF Downloads 68
59 A Comparative Study of Motion Events Encoding in English and Italian

Authors: Alfonsina Buoniconto

Abstract:

The aim of this study is to investigate the degree of cross-linguistic and intra-linguistic variation in the encoding of motion events (MEs) in English and Italian, these being typologically different languages both showing signs of disobedience to their respective types. As a matter of fact, the traditional typological classification of MEs encoding distributes languages into two macro-types, based on the preferred locus for the expression of Path, the main ME component (other components being Figure, Ground and Manner) characterized by conceptual and structural prominence. According to this model, Satellite-framed (SF) languages typically express Path information in verb-dependent items called satellites (e.g. preverbs and verb particles) with main verbs encoding Manner of motion; whereas Verb-framed languages (VF) tend to include Path information within the verbal locus, leaving Manner to adjuncts. Although this dichotomy is valid altogether, languages do not always behave according to their typical classification patterns. English, for example, is usually ascribed to the SF type due to the rich inventory of postverbal particles and phrasal verbs used to express spatial relations (i.e. the cat climbed down the tree); nevertheless, it is not uncommon to find constructions such as the fog descended slowly, which is typical of the VF type. Conversely, Italian is usually described as being VF (cf. Paolo uscì di corsa ‘Paolo went out running’), yet SF constructions like corse via in lacrime ‘She ran away in tears’ are also frequent. This paper will try to demonstrate that such a typological overlapping is due to the fact that the semantic units making up MEs are distributed within several loci of the sentence –not only verbs and satellites– thus determining a number of different constructions stemming from convergent factors. Indeed, the linguistic expression of motion events depends not only on the typological nature of languages in a traditional sense, but also on a series morphological, lexical, and syntactic resources, as well as on inferential, discursive, usage-related, and cultural factors that make semantic information more or less accessible, frequent, and easy to process. Hence, rather than describe English and Italian in dichotomic terms, this study focuses on the investigation of cross-linguistic and intra-linguistic variation in the use of all the strategies made available by each linguistic system to express motion. Evidence for these assumptions is provided by parallel corpora analysis. The sample texts are taken from two contemporary Italian novels and their respective English translations. The 400 motion occurrences selected (200 in English and 200 in Italian) were scanned according to the MODEG (an acronym for Motion Decoding Grid) methodology, which grants data comparability through the indexation and retrieval of combined morphosyntactic and semantic information at different levels of detail.

Keywords: construction typology, motion event encoding, parallel corpora, satellite-framed vs. verb-framed type

Procedia PDF Downloads 261
58 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 120
57 Effect of Formulated Insect Enriched Sprouted Soybean /Millet Based Food on Gut Health Markers in Albino Wistar Rats

Authors: Gadanya, A.M., Ponfa, S., Jibril, M.M., Abubakar, S. M.

Abstract:

Background: Edible insects such as grasshopper are important sources of food for humans, and have been consumed as traditional foods by many indigenous communities especially in Africa, Asia, and Latin America. These communities have developed their skills and techniques in harvesting, preparing, consuming, and preserving edible insects, widely contributing to the role played by the use of insects in human nutrition. Aim/ objective: This study was aimed at determining the effect of insect enriched sprouted soyabean /millet based food on some gut health markers in albino rats. Methods. Four different formulations of Complementary foods (i.e Complementary Food B (CFB): sprouted millet (SM), Complementary Food C (CFC): sprouted soyabean (SSB), Complementary Food D (CFD): sprouted soybean and millet (SSBM) in a ratio of (50:50) and Complementary Food E (CFE): insect (grasshopper) enriched sprouted soybean and millet (SSBMI) in a ratio of (50:25:25)) were prepared. Proximate composition and short chain fatty acid contents were determined. Thirty albino rats were divided into5 groups of six rats each. Group 1(CDA) were fed with basal diet and served as a control group, while groups 2,3,4 and 5 were fed with the corresponding complimentary foods CFB, CFC, CFD and CFE respectively daily for four weeks. Concentrations of fecal protein, serum total carotenoids and nitric oxide were determined. DNA extraction for molecular isolation and characterization were carried out followed by PCR, the use of mega 11 software and NCBI blast for construction of the phylogenetic tree and organism identification respectively. Results: Significant increase (P<0.05) in percentage ash, fat, protein and moisture contents, as well as short chain fatty acid (acetate, butyrate and propionate) concentrations were recorded in the insect enriched sprouted composite food (CFE) when compared with the CFA, CFB, CFC and CFD composite food. Faecal protein, carotenoid and nitric oxide concentrations were significantly lower (P>0.05) in group 5 in comparison to groups 1to 4. Ruminococcus bromii and Bacteroidetes were molecularly isolated and characterized by 16s rRNA from the sprouted millet/sprouted soybean and the insect enriched sprouted soybean/sprouted millet based food respectively. The presence of these bacterial strains in the feaces of the treated rats is an indication that the gut of the treated rats is colonized by good gut bacteria, hence, an improved gut health. Conclusion: Insect enriched sprouted soya bean/sprouted millet based complementary diet showed a high composition of ash, fat, protein and fiber. Thus, could increase the availability of short chain fatty acids whose role to the host organism cannot be overemphasized. It was also found to have decrease the level of faecal protein, carotenoid and nitric oxide in the serum which is an indication of an improvement in the immune system function.

Keywords: gut-health, insect, millet, soybean, sprouted

Procedia PDF Downloads 68
56 Distribution and Diversity of Pyrenocarpous Lichens in India with Special Reference to Forest Health

Authors: Gaurav Kumar Mishra, Sanjeeva Nayaka, Dalip Kumar Upreti

Abstract:

Our nature exhibited presence of a number of unique plants which can be used as indicator of environmental condition of particular place. Lichens are unique plant which has an ability to absorb not only organic, inorganic and metaloties but also absorb radioactive nuclide substances present in the environment. In the present study pyrenocarpous lichens will used as indicator of good forest health in a particular place. The Pyrenocarpous lichens are simple crust forming with black dot like perithecia have few characters for their taxonomical segregation as compared to their foliose and fruticose brethrean. The thallus colour and nature, presence and absence of hypothallus are only few characters of thallus are used to segregate the pyrenocarpous taxa. The fruiting bodies of pyrenolichens i.e. ascocarps are perithecia. The perithecia and the contents found within them posses many important criteria for the segregation of pyrenocarpous lichen taxa. The ascocarp morphology, ascocarp arrangement, the perithecial wall, ascocarp shape and colour, ostiole shape and position, ostiole colour, ascocarp anatomy including type of paraphyses, asci shape and size, ascospores septation, ascospores wall and periphyses are the valuable charcters used for segregation of different pyrenocarpous lichen taxa. India is represented by the occurrence of the 350 species of 44 genera and eleven families. Among the different genera Pyrenula is dominant with 82 species followed by the Porina with 70 species. Recently, systematic of the pyrenocarpous lichens have been revised by American and European lichenologists using phylogenetic methods. Still the taxonomy of pyrenocarpous lichens is in flux and information generated after the completion of this study will play vital role in settlement of the taxonomy of this peculiar group of lichens worldwide. The Indian Himalayan region exhibit rich diversity of pyrenocarpous lichens in India. The western Himalayan region has luxuriance of pyrenocarpous lichens due to its unique topography and climate condition. However, the eastern Himalayan region has rich diversity of pyrenocarpous lichens due to its warmer and moist climate condition. The rich moist and warmer climate in eastern Himalayan region supports forest with dominance of evergreen tree vegetation. The pyrenocarpous lichens communities are good indicator of young and regenerated forest type. The rich diversity of lichens clearly indicates that moist of the forest within the eastern Himalayan region has good health of forest. Due to fast pace of urbanization and other developmental activities will defiantly have adverse effects on the diversity and distribution of pyrenocarpous lichens in different forest type and the present distribution pattern will act as baseline data for carried out future biomonitoring studies in the area.

Keywords: lichen diversity, indicator species, environmental factors, pyrenocarpous

Procedia PDF Downloads 149
55 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 83
54 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India

Authors: Prabhat Kashyap, Krishan Kumar

Abstract:

Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.

Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation

Procedia PDF Downloads 116
53 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 100
52 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 82
51 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 339
50 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 148
49 A Lexicographic Approach to Obstacles Identified in the Ontological Representation of the Tree of Life

Authors: Sandra Young

Abstract:

The biodiversity literature is vast and heterogeneous. In today’s data age, numbers of data integration and standardisation initiatives aim to facilitate simultaneous access to all the literature across biodiversity domains for research and forecasting purposes. Ontologies are being used increasingly to organise this information, but the rationalisation intrinsic to ontologies can hit obstacles when faced with the intrinsic fluidity and inconsistency found in the domains comprising biodiversity. Essentially the problem is a conceptual one: biological taxonomies are formed on the basis of specific, physical specimens yet nomenclatural rules are used to provide labels to describe these physical objects. These labels are ambiguous representations of the physical specimen. An example of this is with the genus Melpomene, the scientific nomenclatural representation of a genus of ferns, but also for a genus of spiders. The physical specimens for each of these are vastly different, but they have been assigned the same nomenclatural reference. While there is much research into the conceptual stability of the taxonomic concept versus the nomenclature used, to the best of our knowledge as yet no research has looked empirically at the literature to see the conceptual plurality or singularity of the use of these species’ names, the linguistic representation of a physical entity. Language itself uses words as symbols to represent real world concepts, whether physical entities or otherwise, and as such lexicography has a well-founded history in the conceptual mapping of words in context for dictionary making. This makes it an ideal candidate to explore this problem. The lexicographic approach uses corpus-based analysis to look at word use in context, with a specific focus on collocated word frequencies (the frequencies of words used in specific grammatical and collocational contexts). It allows for inconsistencies and contradictions in the source data and in fact includes these in the word characterisation so that 100% of the available evidence is counted. Corpus analysis is indeed suggested as one of the ways to identify concepts for ontology building, because of its ability to look empirically at data and show patterns in language usage, which can indicate conceptual ideas which go beyond words themselves. In this sense it could potentially be used to identify if the hierarchical structures present within the empirical body of literature match those which have been identified in ontologies created to represent them. The first stages of this research have revealed a hierarchical structure that becomes apparent in the biodiversity literature when annotating scientific species’ names, common names and more general names as classes, which will be the focus of this paper. The next step in the research is focusing on a larger corpus in which specific words can be analysed and then compared with existing ontological structures looking at the same material, to evaluate the methods by means of an alternative perspective. This research aims to provide evidence as to the validity of the current methods in knowledge representation for biological entities, and also shed light on the way that scientific nomenclature is used within the literature.

Keywords: ontology, biodiversity, lexicography, knowledge representation, corpus linguistics

Procedia PDF Downloads 138
48 Optimizing the Effectiveness of Docetaxel with Solid Lipid Nanoparticles: Formulation, Characterization, in Vitro and in Vivo Assessment

Authors: Navid Mosallaei, Mahmoud Reza Jaafari, Mohammad Yahya Hanafi-Bojd, Shiva Golmohammadzadeh, Bizhan Malaekeh-Nikouei

Abstract:

Background: Docetaxel (DTX), a potent anticancer drug derived from the European yew tree, is effective against various human cancers by inhibiting microtubule depolymerization. Solid lipid nanoparticles (SLNs) have gained attention as drug carriers for enhancing drug effectiveness and safety. SLNs, submicron-sized lipid-based particles, can passively target tumors through the "enhanced permeability and retention" (EPR) effect, providing stability, drug protection, and controlled release while being biocompatible. Methods: The SLN formulation included biodegradable lipids (Compritol and Precirol), hydrogenated soy phosphatidylcholine (H-SPC) as a lipophilic co-surfactant, and Poloxamer 188 as a non-ionic polymeric stabilizer. Two SLN preparation techniques, probe sonication and microemulsion, were assessed. Characterization encompassed SLNs' morphology, particle size, zeta potential, matrix, and encapsulation efficacy. In-vitro cytotoxicity and cellular uptake studies were conducted using mouse colorectal (C-26) and human malignant melanoma (A-375) cell lines, comparing SLN-DTX with Taxotere®. In-vivo studies evaluated tumor inhibitory efficacy and survival in mice with colorectal (C-26) tumors, comparing SLNDTX withTaxotere®. Results: SLN-DTX demonstrated stability, with an average size of 180 nm and a low polydispersity index (PDI) of 0.2 and encapsulation efficacy of 98.0 ± 0.1%. Differential scanning calorimetry (DSC) suggested amorphous encapsulation of DTX within SLNs. In vitro studies revealed that SLN-DTX exhibited nearly equivalent cytotoxicity to Taxotere®, depending on concentration and exposure time. Cellular uptake studies demonstrated superior intracellular DTX accumulation with SLN-DTX. In a C-26 mouse model, SLN-DTX at 10 mg/kg outperformed Taxotere® at 10 and 20 mg/kg, with no significant differences in body weight changes and a remarkably high survival rate of 60%. Conclusion: This study concludes that SLN-DTX, prepared using the probe sonication, offers stability and enhanced therapeutic effects. It displayed almost same in vitro cytotoxicity to Taxotere® but showed superior cellular uptake. In a mouse model, SLN-DTX effectively inhibited tumor growth, with 10 mg/kg outperforming even 20 mg/kg of Taxotere®, without adverse body weight changes and with higher survival rates. This suggests that SLN-DTX has the potential to reduce adverse effects while maintaining or enhancing docetaxel's therapeutic profile, making it a promising drug delivery strategy suitable for industrialization.

Keywords: docetaxel, Taxotere®, solid lipid nanoparticles, enhanced permeability and retention effect, drug delivery, cancer chemotherapy, cytotoxicity, cellular uptake, tumor inhibition

Procedia PDF Downloads 83
47 Inverted Diameter-Limit Thinning: A Promising Alternative for Mixed Populus tremuloides Stands Management

Authors: Ablo Paul Igor Hounzandji, Benoit Lafleur, Annie DesRochers

Abstract:

Introduction: Populus tremuloides [Michx] regenerates rapidly and abundantly by root suckering after harvest, creating stands with interconnected stems. Pre-commercial thinning can be used to concentrate growth on fewer stems to reach merchantability faster than un-thinned stands. However, conventional thinning methods are typically designed to reach even spacing between residual stems (1,100 stem ha⁻¹, evenly distributed), which can lead to treated stands consisting of weaker/smaller stems compared to the original stands. Considering the nature of P. tremuloides's regeneration, with large underground biomass of interconnected roots, aiming to keep the most vigorous and largest stems, regardless of their spatial distribution, inverted diameter-limit thinning could be more beneficial to post-thinning stand productivity because it would reduce the imbalance between roots and leaf area caused by thinning. Aims: This study aimed to compare stand and stem productivity of P. tremuloides stands thinned with a conventional thinning treatment (CT; 1,100 stem ha⁻¹, evenly distributed), two levels of inverted diameter-limit thinning (DL1 and DL2, keeping the largest 1100 or 2200 stems ha⁻¹, respectively, regardless of their spatial distribution) and a control unthinned treatment. Because DL treatments can create substantial or frequent gaps in the thinned stands, we also aimed to evaluate the potential of this treatment to recreate mixed conifer-broadleaf stands by fill-planting Picea glauca seedlings. Methods: Three replicate 21 year-old sucker-regenerated aspen stands were thinned in 2010 according to four treatments: CT, DL1, DL2, and un-thinned control. Picea glauca seedlings were underplanted in gaps created by the DL1 and DL2 treatments. Stand productivity per hectare, stem quality (diameter and height, volume stem⁻¹) and survival and height growth of fill-planted P. glauca seedlings were measured 8 year post-treatments. Results: Productivity, volume, diameter, and height were better in the treated stands (CT, DL1, and DL2) than in the un-thinned control. Productivity of CT and DL1 stands was similar 4.8 m³ ha⁻¹ year⁻¹. At the tree level, diameter and height of the trees in the DL1 treatment were 5% greater than those in the CT treatment. The average volume of trees in the DL1 treatment was 11% higher than the CT treatment. Survival after 8 years of fill planted P. glauca seedlings was 2% greater in the DL1 than in the DL2 treatment. DL1 treatment also produced taller seedlings (+20 cm). Discussion: Results showed that DL treatments were effective in producing post-thinned stands with larger stems without affecting stand productivity. In addition, we showed that these treatments were suitable to introduce slower growing conifer seedlings such as Picea glauca in order to re-create or maintain mixed stands despite the aggressive nature of P. tremuloides sucker regeneration.

Keywords: Aspen, inverted diameter-limit, mixed forest, populus tremuloides, silviculture, thinning

Procedia PDF Downloads 148
46 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
45 Cytochrome B Diversity and Phylogeny of Egyptian Sheep Breeds

Authors: Othman E. Othman, Agnés Germot, Daniel Petit, Abderrahman Maftah

Abstract:

Threats to the biodiversity are increasing due to the loss of genetic diversity within the species utilized in agriculture. Due to the progressive substitution of the less productive, locally adapted and native breeds by highly productive breeds, the number of threatened breeds is increased. In these conditions, it is more strategically important than ever to preserve as much the farm animal diversity as possible, to ensure a prompt and proper response to the needs of future generations. Mitochondrial (mtDNA) sequencing has been used to explain the origins of many modern domestic livestock species. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. Because of the eastern location of Egypt in the Mediterranean basin and the presence of fat-tailed sheep breeds- character quite common in Turkey and Syria- where genotypes that seem quite primitive, the phylogenetic studies of Egyptian sheep breeds become particularly attractive. We aimed in this work to clarify the genetic affinities, biodiversity and phylogeny of five Egyptian sheep breeds using cytochrome B sequencing. Blood samples were collected from 63 animals belonging to the five tested breeds; Barki, Rahmani, Ossimi, Saidi and Sohagi. The total DNA was extracted and the specific primer allowed the conventional PCR amplification of the cytochrome B region of mtDNA (approximately 1272 bp). PCR amplified products were purified and sequenced. The alignment of Sixty-three samples was done using BioEdit software. DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 34 polymorphic sites leading to the formation of 18 haplotypes. The haplotype diversity in five tested breeds ranged from 0.676 in Rahmani breed to 0.894 in Sohagi breed. The genetic distances (D) and the average number of pairwise differences (Dxy) between breeds were estimated. The lowest distance was observed between Rahmani and Saidi (D: 1.674 and Dxy: 0.00150) while the highest distance was observed between Ossimi and Sohagi (D: 5.233 and Dxy: 0.00475). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of the 63 analyzed samples were aligned with references sequences of different haplogroups. The phylogeny result showed the presence of three haplogroups (HapA, HapB and HapC) in the 63 examined samples. The other two haplogroups described in literature (HapD and HapE) were not found. The result showed that 50 out of 63 tested animals cluster with haplogroup B (79.37%) whereas 7 tested animals cluster with haplogroup A (11.11%) and 6 animals cluster with haplogroup C (9.52%). In conclusion, the phylogenetic reconstructions showed that the majority of Egyptian sheep breeds belonging to haplogroup B which is the dominant haplogroup in Eastern Mediterranean countries like Syria and Turkey. Some individuals are belonging to haplogroups A and C, suggesting that the crosses were done with other breeds for characteristic selection for growth and wool quality.

Keywords: cytochrome B, diversity, phylogheny, Egyptian sheep breeds

Procedia PDF Downloads 375
44 Molecular Characterization, Host Plant Resistance and Epidemiology of Bean Common Mosaic Virus Infecting Cowpea (Vigna unguiculata L. Walp)

Authors: N. Manjunatha, K. T. Rangswamy, N. Nagaraju, H. A. Prameela, P. Rudraswamy, M. Krishnareddy

Abstract:

The identification of virus in cowpea especially potyviruses is confusing. Even though there are several studies on viruses causing diseases in cowpea, difficult to distinguish based on symptoms and serological detection. The differentiation of potyviruses considering as a constraint, the present study is initiated for molecular characterization, host plant resistance and epidemiology of the BCMV infecting cowpea. The etiological agent causing cowpea mosaic was identified as Bean Common Mosaic Virus (BCMV) on the basis of RT-PCR and electron microscopy. An approximately 750bp PCR product corresponding to coat protein (CP) region of the virus and the presence of long flexuous filamentous particles measuring about 952 nm in size typical to genus potyvirus were observed under electron microscope. The characterized virus isolate genome had 10054 nucleotides, excluding the 3’ terminal poly (A) tail. Comparison of polyprotein of the virus with other potyviruses showed similar genome organization with 9 cleavage sites resulted in 10 functional proteins. The pairwise sequence comparison of individual genes, P1 showed most divergent, but CP gene was less divergent at nucleotide and amino acid level. A phylogenetic tree constructed based on multiple sequence alignments of the polyprotein nucleotide and amino acid sequences of cowpea BCMV and potyviruses showed virus is closely related to BCMV-HB. Whereas, Soybean variant of china (KJ807806) and NL1 isolate (AY112735) showed 93.8 % (5’UTR) and 94.9 % (3’UTR) homology respectively with other BCMV isolates. This virus transmitted to different leguminous plant species and produced systemic symptoms under greenhouse conditions. Out of 100 cowpea genotypes screened, three genotypes viz., IC 8966, V 5 and IC 202806 showed immune reaction in both field and greenhouse conditions. Single marker analysis (SMA) was revealed out of 4 SSR markers linked to BCMV resistance, M135 marker explains 28.2 % of phenotypic variation (R2) and Polymorphic information content (PIC) value of these markers was ranged from 0.23 to 0.37. The correlation and regression analysis showed rainfall, and minimum temperature had significant negative impact and strong relationship with aphid population, whereas weak correlation was observed with disease incidence. Path coefficient analysis revealed most of the weather parameters exerted their indirect contributions to the aphid population and disease incidence except minimum temperature. This study helps to identify specific gaps in knowledge for researchers who may wish to further analyse the science behind complex interactions between vector-virus and host in relation to the environment. The resistant genotypes identified are could be effectively used in resistance breeding programme.

Keywords: cowpea, epidemiology, genotypes, virus

Procedia PDF Downloads 237
43 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 106
42 Coping Strategies and Characterization of Vulnerability in the Perspective of Climate Change

Authors: Muhammad Umer Mehmood, Muhammad Luqman, Muhammad Yaseen, Imtiaz Hussain

Abstract:

Climate change is an arduous fact, which could not be unheeded easily. It is a phenomenon which has brought a collection of challenges for the mankind. Scientists have found many of its negative impacts on the life of human being and the resources on which the life of humanity is dependent. There are many issues which are associated with the factor of prime importance in this study, 'climate change'. Whenever changes happen in nature, they strike the whole globe. Effects of these changes vary from region to region. Climate of every region of this globe is different from the other. Even within a state, country or the province has different climatic conditions. So it is mandatory that the response in that specific region and the coping strategy of this specific region should be according to the prevailing risk. In the present study, the objective was to assess the coping strategies and vulnerability of small landholders. So that a professional suggestion could be made to cope with the vulnerability factor of small farmers. The cross-sectional research design was used with the intervention of quantitative approach. The study was conducted in the Khanewal district, of Punjab, Pakistan. 120 small farmers were interviewed after randomized sampling from the population of respective area. All respondents were above the age of 15 years. A questionnaire was developed after keen observation of facts in the respective area. Content and face validity of the instrument was assessed with SPSS and experts in the field. Data were analyzed through SPSS using descriptive statistics. From the sample of 120, 81.67% of the respondents claimed that the environment is getting warmer and not fit for their present agricultural practices. 84.17% of the sample expressed serious concern that they are disturbed due to change in rainfall pattern and vulnerability towards the climatic effects. On the other hand, they expressed that they are not good at tackling the effects of climate change. Adaptation of coping strategies like change in cropping pattern, use of resistant varieties, varieties with minimum water requirement, intercropping and tree planting was low by more than half of the sample. From the sample 63.33% small farmers said that the coping strategies they adopt are not effective enough. The present study showed that subsistence farming, lack of marketing and overall infrastructure, lack of access to social security networks, limited access to agriculture extension services, inappropriate access to agrometeorological system, unawareness and access to scientific development and low crop yield are the prominent factors which are responsible for the vulnerability of small farmers. A comprehensive study should be conducted at national level so that a national policy could be formulated to cope with the dilemma in future with relevance to climate change. Mainstreaming and collaboration among the researchers and academicians could prove beneficiary in this regard the interest of national leaders’ does matter. Proper policies to avoid the vulnerability factors should be the top priority. The world is taking up this issue with full responsibility as should we, keeping in view the local situation.

Keywords: adaptation, coping strategies, climate change, Pakistan, small farmers, vulnerability

Procedia PDF Downloads 144
41 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs

Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.

Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox

Procedia PDF Downloads 378
40 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 81
39 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 85
38 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer

Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang

Abstract:

Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.

Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network

Procedia PDF Downloads 323
37 Post Harvest Fungi Diversity and Level of Aflatoxin Contamination in Stored Maize: Cases of Kitui, Nakuru and Trans-Nzoia Counties in Kenya

Authors: Gachara Grace, Kebira Anthony, Harvey Jagger, Wainaina James

Abstract:

Aflatoxin contamination of maize in Africa poses a major threat to food security and the health of many African people. In Kenya, aflatoxin contamination of maize is high due to the environmental, agricultural and socio-economic factors. Many studies have been conducted to understand the scope of the problem, especially at pre-harvest level. This research was carried out to gather scientific information on the fungi population, diversity and aflatoxin level during the post-harvest period. The study was conducted in three geographical locations of; Kitui, Kitale and Nakuru. Samples were collected from storage structures of farmers and transported to the Biosciences eastern and central Africa (BecA), International Livestock and Research Institute (ILRI) hub laboratories. Mycoflora was recovered using the direct plating method. A total of five fungal genera (Aspergillus, Penicillium, Fusarium, Rhizopus and Bssyochlamys spp.) were isolated from the stored maize samples. The most common fungal species that were isolated from the three study sites included A. flavus at 82.03% followed by A.niger and F.solani at 49% and 26% respectively. The aflatoxin producing fungi A. flavus was recovered in 82.03% of the samples. Aflatoxin levels were analysed on both the maize samples and in vitro. Most of the A. flavus isolates recorded a high level of aflatoxin when they were analysed for presence of aflatoxin B1 using ELISA. In Kitui, all the samples (100%) had aflatoxin levels above 10ppb with a total aflatoxin mean of 219.2ppb. In Kitale, only 3 samples (n=39) had their aflatoxin levels less than 10ppb while in Nakuru, the total aflatoxin mean level of this region was 239.7ppb. When individual samples were analysed using Vicam fluorometer method, aflatoxin analysis revealed that most of the samples (58.4%) had been contaminated. The means were significantly different (p=0.00<0.05) in all the three locations. Genetic relationships of A. flavus isolates were determined using 13 Simple Sequence Repeats (SSRs) markers. The results were used to generate a phylogenetic tree using DARwin5 software program. A total of 5 distinct clusters were revealed among the genotypes. The isolates appeared to cluster separately according to the geographical locations. Principal Coordinates Analysis (PCoA) of the genetic distances among the 91 A. flavus isolates explained over 50.3% of the total variation when two coordinates were used to cluster the isolates. Analysis of Molecular Variance (AMOVA) showed a high variation of 87% within populations and 13% among populations. This research has shown that A. flavus is the main fungal species infecting maize grains in Kenya. The influence of aflatoxins on human populations in Kenya demonstrates a clear need for tools to manage contamination of locally produced maize. Food basket surveys for aflatoxin contamination should be conducted on a regular basis. This would assist in obtaining reliable data on aflatoxin incidence in different food crops. This would go a long way in defining control strategies for this menace.

Keywords: aflatoxin, Aspergillus flavus, genotyping, Kenya

Procedia PDF Downloads 278
36 Effective Health Promotion Interventions Help Young Children to Maximize Their Future Well-Being by Early Childhood Development

Authors: Nadeesha Sewwandi, Dilini Shashikala, R. Kanapathy, S. Viyasan, R. M. S. Kumara, Duminda Guruge

Abstract:

Early childhood development is important to the emotional, social, and physical development of young children and it has a direct effect on their overall development and on the adult they become. Play is so important to optimal child developments including skill development, social development, imagination, creativity and it fulfills a baby’s inborn need to learn. So, health promotion approach empowers people about the development of early childhood. Play area is a new concept and this study focus how this play areas helps to the development of early childhood of children in rural villages in Sri Lanka. This study was conducted with a children society in a rural village called Welankulama in Sri Lanka. Survey was conducted with children society about emotional, social and physical development of young children (Under age eight) in this village using questionnaires. It described most children under eight years age have poor level of emotional, social and physical development in this village. Then children society wanted to find determinants for this problem and among them they prioritized determinants like parental interactions, learning environment and social interaction and address them using an innovative concept called play area. In this village there is a common place as play area under a big tamarind tree. It consists of a playhouse, innovative playing toys, mobile library, etc. Twice a week children, parents, grandparents gather to this nice place. Collective feeding takes place in this area once a week and it was conducted by several mothers groups in this village. Mostly grandparents taught about handicrafts and this is a very nice place to share their experiences with all. Healthy competitions were conducted in this place through playing to motivate the children. Happy calendar (mood of the children) was marked by children before and after coming to the play area. In terms of results qualitative changes got significant place in this study. By learning about colors and counting through playing the thinking and reasoning skills got developed among children. Children were widening their imagination by means of storytelling. We observed there were good developments of fine and gross motor skills of two differently abled children in this village. Children learn to empathize with other people, sharing, collaboration, team work and following of rules. And also children gain knowledge about fairness, through role playing, obtained insight on the right ways of displaying emotions such as stress, fear, anger, frustration, and develops knowledge of how they can manage their feelings. The reading and writing ability of the children got improved by 83% because of the mobile library. The weight of children got increased by 81% in the village. Happiness was increased by 76% among children in the society. Playing is very important for learning during early childhood period of a person. Health promotion interventions play a major role to the development of early childhood and it help children to adjust to the school setting and even to enhance children’s learning readiness, learning behaviors and problem solving skills.

Keywords: early childhood development, health promotion approach, play and learning, working with children

Procedia PDF Downloads 140
35 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 74