Search results for: molecular topology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2387

Search results for: molecular topology

1067 Biological Activity of Hibiscus sabdariffa Extract

Authors: Chanasit Chaocharoenphat

Abstract:

Hibiscus sabdariffa is a herbal plant that is commonly used for home remedies in Thailand. This study aims to determine the antioxidant activity of polyphenols, as oxidative stress plays a vital role in the development of cancer, and H. sabdariffa was used in this study. The total flavonoids content was determined using the aluminium chloride colourimetric method and expressed as quercetin equivalents (QE)/g and the antioxidant capacity of the flavonoids using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The IC50 values of H. sabdariffa extract were 167.14 μg/mL ± 0.843 and 77.59 μg/mL ± 0.798, respectively. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. To summarise, H. sabdariffa extract contains a high concentration of total flavonoids and exhibits potent antioxidant activity. However, additional antioxidant activity assays such as superoxide dismutase (SOD), reactive oxygen species (ROS), and reactive nitrogen species (RNS) scavenging assays and in vitro antioxidant experiments should be carried out to investigate the molecular mechanism of the compound.

Keywords: ABTS assay, antioxidant activity, Gracilaria fisheri, DPPH assays, total flavonoid content

Procedia PDF Downloads 233
1066 Retrospective Casenote Audit of Venous Thromboembolism Prophylaxis in Maxillofacial Patients

Authors: Joshua Abraham, Craig Wales

Abstract:

Abstract—SIGN Guideline 122 recommends that all patients who are admitted to hospital are assessed for venous thromboembolism risk within 24 hours of admission. NHS Greater Glasgow and Clyde provide guidance on this in the form of a proforma. Patients are then subsequently prescribed either thrombo-embolic-deterrent stockings (TEDS)/low molecular weight heparin (LMWH) for the prevention of VTE based on their score. A retrospective casenote audit of a random sample of fifty oncology and trauma inpatients at the QEUH in December 2019 was performed. 90% of patients had a risk assessment conducted as evidenced by a completed proforma. In 78% of these patients, the proforma fully completed. Overall 94% of patients had some for of thromboprophylaxis prescribed in the form of TEDS or LMWH. A lack of 100% compliance against the given standards highlighted potential implications for patient safety, but also medico-legal ramifications for staff. Clinical judgement can only be relied upon if there is written documentation as evidence. Further staff education and the suggestion of a written prompt to the clerk-in documentation will hopefully improve compliance, whilst a repeat audit should demonstrate any improvement.

Keywords: Maxillofacial , Thromboembolism, Thromboprophylaxis , Prescription

Procedia PDF Downloads 154
1065 Hypoxia Tolerance, Longevity and Cancer-Resistance in the Mole Rat Spalax – a Liver Transcriptomics Approach

Authors: Hanno Schmidt, Assaf Malik, Anne Bicker, Gesa Poetzsch, Aaron Avivi, Imad Shams, Thomas Hankeln

Abstract:

The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxiasensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat’s phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.

Keywords: cancer, hypoxia, longevity, transcriptomics

Procedia PDF Downloads 153
1064 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 604
1063 Colony Size and Behaviors Characteristics of Monkeys in Peninsular Malaysia

Authors: Karimullah Karim, Shahrul Anuar, T. Dauda

Abstract:

Swarm of research on monkey behavior exists, but were concerned with an aspect of molecular study in support of human primate and non-human primates. Many researchers take an interest in the study of Primates and their environment for the reason that they are intimately connected to humans in terms of human social behaviors. In this context, a study of the activity budget of monkeys was conducted in three states of Peninsular Malaysia. The chi-square test was served to analysis the behaviors and their variances in different study areas, effects of seasonal variation on behaviors, time differences in behaviors and habituated and non-habituated behaviors of monkeys. In consequent the behavior of moving (17%) was found higher followed by climbing (15%), eating (13%), and other social behaviors. All the behavior categories were found significant at p<0.05. The most common behavior of the monkeys in conclusion has been found associated with the restiveness of the animal and that their colony size is not rigid as it depends also on some other factors. This study can therefore serve as a starting point for the understanding of comparative behaviors of monkey in general and the study of the monkey behavior is thus recommended to be expanded to cover more study areas as well as species than in the present work.

Keywords: activity budget, Peninsular Malaysia, monkeys colony, behaviour

Procedia PDF Downloads 314
1062 “Double Layer” Theory of Hydrogenation

Authors: Vaclav Heral

Abstract:

Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to, based on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism, because, for example: (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. We believe that the Horiuti-Polanyi mechanism is flawed and we naturally think that our two-layer theory better describes the experimental findings.

Keywords: acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation

Procedia PDF Downloads 69
1061 Synthesis, Characterization, Antioxidant and Anti-inflammatory Studies of Modern Synthetic Tetra Phenyl Porphyrin Derivatives

Authors: Mian Gul Sayed, Rahim Shah, Fazal Mabood, Najeeb Ur Rahman, Maher Noor

Abstract:

Embarking on the frontier of molecular advancement, this study focuses on the synthesis and characterization of a distinct class of porphyrin derivatives—specifically, the 5, 10, 15, 20-tetrakis (3-bromopropoxyphenyl) porphyrins. Through meticulous synthetic methodologies, these derivatives are crafted, strategically incorporating bromopropoxyphenyl moieties at distinct positions within the porphyrin framework. This research aims to unravel the structural intricacies and explore the potential applications of these compounds through a detailed characterization utilizing advanced analytical techniques. 5, 10, 15, 20, tetrakis (4-hydroxyphenyl) porphyrin was synthesized by treating pyrrole and p- hydroxylbenzaldehyde. 5, 10, 15, 20, tetrakis-(4-hydroxyphenyl) was converted into 5, 10, 15, 20, tetrakis (4-bromoalkoxyphenyl) porphyrin. 5,10,15, 20-Tetrakis -(4-bromoalkoxyphenyl) porphyrin was treated with Isopropyl phenol, para-Aminophenol, hydroquinone, 2-Naphthol, 1-Naphthol and Hydroquinone and different derivatives of ether-linked were obtained. The synthesized compounds were analyzed using contemporary spectroscopic techniques like UV-Vis, NMR and Mass spectrometry. The synthesized compounds were also tested for their biological activities like antioxidants and anti-inflammatory.

Keywords: tetraphenyl porphyrin, NMR, antioxidant, anti-inflammatory

Procedia PDF Downloads 2
1060 An Analysis of LoRa Networks for Rainforest Monitoring

Authors: Rafael Castilho Carvalho, Edjair de Souza Mota

Abstract:

As the largest contributor to the biogeochemical functioning of the Earth system, the Amazon Rainforest has the greatest biodiversity on the planet, harboring about 15% of all the world's flora. Recognition and preservation are the focus of research that seeks to mitigate drastic changes, especially anthropic ones, which irreversibly affect this biome. Functional and low-cost monitoring alternatives to reduce these impacts are a priority, such as those using technologies such as Low Power Wide Area Networks (LPWAN). Promising, reliable, secure and with low energy consumption, LPWAN can connect thousands of IoT devices, and in particular, LoRa is considered one of the most successful solutions to facilitate forest monitoring applications. Despite this, the forest environment, in particular the Amazon Rainforest, is a challenge for these technologies, requiring work to identify and validate the use of technology in a real environment. To investigate the feasibility of deploying LPWAN in remote water quality monitoring of rivers in the Amazon Region, a LoRa-based test bed consisting of a Lora transmitter and a LoRa receiver was set up, both parts were implemented with Arduino and the LoRa chip SX1276. The experiment was carried out at the Federal University of Amazonas, which contains one of the largest urban forests in Brazil. There are several springs inside the forest, and the main goal is to collect water quality parameters and transmit the data through the forest in real time to the gateway at the uni. In all, there are nine water quality parameters of interest. Even with a high collection frequency, the amount of information that must be sent to the gateway is small. However, for this application, the battery of the transmitter device is a concern since, in the real application, the device must run without maintenance for long periods of time. With these constraints in mind, parameters such as Spreading Factor (SF) and Coding Rate (CR), different antenna heights, and distances were tuned to better the connectivity quality, measured with RSSI and loss rate. A handheld spectrum analyzer RF Explorer was used to get the RSSI values. Distances exceeding 200 m have soon proven difficult to establish communication due to the dense foliage and high humidity. The optimal combinations of SF-CR values were 8-5 and 9-5, showing the lowest packet loss rates, 5% and 17%, respectively, with a signal strength of approximately -120 dBm, these being the best settings for this study so far. The rains and climate changes imposed limitations on the equipment, and more tests are already being conducted. Subsequently, the range of the LoRa configuration must be extended using a mesh topology, especially because at least three different collection points in the same water body are required.

Keywords: IoT, LPWAN, LoRa, coverage, loss rate, forest

Procedia PDF Downloads 81
1059 Bounds on the Laplacian Vertex PI Energy

Authors: Ezgi Kaya, A. Dilek Maden

Abstract:

A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.

Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index

Procedia PDF Downloads 239
1058 Improvement in Quality-Factor Superconducting Co-Planer Waveguide Resonators by Passivation Air-Interfaces Using Self-Assembled Monolayers

Authors: Saleem Rao, Mohammed Al-Ghadeer, Archan Banerjee, Hossein Fariborzi

Abstract:

Materials imperfection, particularly two-level-system (TLS) defects in planer superconducting quantum circuits, contributes significantly to decoherence, ultimately limiting the performance of quantum computation and sensing. Oxides at air interfaces are among the host of TLS, and different material has been used to reduce TLS losses. Passivation with an inorganic layer is not an option to reduce these interface oxides; however, they can be etched away, but their regrowth remains a problem. Here, we report the chemisorption of molecular self-assembled monolayers (SAMs) at air interfaces of superconducting co-planer waveguide (CPW) resonators that suppress the regrowth of oxides and also modify the dielectric constant of the interface. With SAMs, we observed sustained order of magnitude improvement in quality factor -better than oxide etched interfaces. Quality factor measurements at millikelvin temperature and at single photon, XPS data, and TEM images of SAM passivated air interface sustenance our claim. Compatibility of SAM with micro-/nano-fabrication processes opens new ways to improve the coherence time in cQED.

Keywords: superconducting circuits, quality-factor, self-assembled monolayer, coherence

Procedia PDF Downloads 77
1057 Clonal Evaluation of Malignant Mesothelioma

Authors: Sabahattin Comertpay, Sandra Pastorino, Rosanna Mezzapelle, Mika Tanji, Oriana Strianese, Andrea Napolitano, Tracey Weigel, Joseph Friedberg, Paul Sugarbaker, Thomas Krausz, Ena Wang, Amy Powers, Giovanni Gaudino, Harvey I. Pass, Fatmagul Ozcelik, Barbara L. Parsons, Haining Yang, Michele Carbone

Abstract:

Tumors are thought to be monoclonal in origin. This paradigm arose decades ago, primarily from the study of hematopoietic malignancies and sarcomas. The clonal origin of malignant mesothelioma (MM), a deadly cancer resistant to the current therapies, has not been investigated. Examination of the pleura from patients with MM shows often the presence of multiple pleural nodules, raising the question of whether they represent independent or metastatic growth processes. To investigate the clonality patterns of MM, we used the HUMARA (Human Androgen Receptor) assay to examine 14 sporadic and 2 familial Malignant Mesotheliomas (MM). Of 16 specimens studied, 15 were informative and 14/15 revealed two electrophoretically distinct methylated HUMARA alleles, indicating a polyclonal origin for these tumors. This discovery has important clinical implications, because an accurate assessment of tumor clonality is key to the design of novel molecular strategies for the treatment of MM.

Keywords: malignant mesothelioma, clonal origin, HUMARA, sarcomas

Procedia PDF Downloads 456
1056 Development of a Robust Procedure for Generating Structural Models of Calcium Aluminosilicate Glass Surfaces

Authors: S. Perera, T. R. Walsh, M. Solvang

Abstract:

The structure-property relationships of calcium aluminosilicate (CAS) glass surfaces are of scientific and technological interest regarding dissolution phenomena. Molecular dynamics (MD) simulations can provide atomic-scale insights into the structure and properties of the CAS interfaces in vacuo as the first step to conducting computational dissolution studies on CAS surfaces. However, one limitation to date is that although the bulk properties of CAS glasses have been well studied by MD simulation, corresponding efforts on CAS surface properties are relatively few in number (both theoretical and experimental). Here, a systematic computational protocol to create CAS surfaces in vacuo is developed by evaluating the sensitivity of the resultant surface structure with respect to different factors. Factors such as the relative thickness of the surface layer, the relative thickness of the bulk region, the cooling rate, and the annealing schedule (time and temperature) are explored. Structural features such as ring size distribution, defect concentrations (five-coordinated aluminium (AlV), non-bridging oxygen (NBO), and tri-cluster oxygen (TBO)), and linkage distribution are identified as significant features in dissolution studies.

Keywords: MD simulation, CAS glasses, surface structure, structure-property, CAS interface

Procedia PDF Downloads 94
1055 Synthesis, Characterization of Benzodiazepine Derivatives through Condensation Reaction, Crystal Structure, and DFT Calculations

Authors: Samir Hmaimou, Marouane Ait Lahcen, Mohamed Adardour, Mohamed Maatallah, Abdesselam Baouid

Abstract:

The stereoisomers (E)-2,2-dimethyl-4-(4-subsitutedstyryl)-2,3-dihydro-1H-[1,5]-benzodiazepine 3(a-d) were synthesized via the condensation reaction of 2,2,3 4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine (BZD) 1 with the benzaldehyde derivatives 2(a-d) in polar protic solvent as ethanol. The chemical structure of the prepared products was confirmed by NMR (¹H and ¹³C), HRMS, and X-ray analysis of the crystal structure 3d. The condensation reaction was examined using DFT calculations at the theoretical level of B3LYP/6-311G(d,p). Frontier molecular orbital analysis shows that the most favorable interaction is between the HOMO of BZD 1 and the LUMO of 2(a-d). On the other hand, the calculation of the global reactivity indices (softness, hardness, and chemical potential) confirmed that benzodiazepine BDZ 1 act as a nucleophile, whereas the aldehyde derivatives 2(a-d) play the role of electrophile. Furthermore, we identified each reagent's reactive sites by the measurement of the reactivity indices to explain the experimentally observed regioselectivity, using Fukui local reactivity descriptors. A one-step mechanism reaction and order 2 water elimination were investigated. We also looked at how the electron-withdrawing groups (EWG) of various aldehydes affected the reaction's mechanism and the stability of products 3(a-d).

Keywords: benzodiazepine, DFT calculations, crystal structure, regioselective, condensation Reaction

Procedia PDF Downloads 5
1054 Molecular Identification of Pneumocystis SPP Isolated from Wild Rats in Tehran, Iran

Authors: Babak Rezavand

Abstract:

Pneumocystis carinii pneumonia (PCP) is one of the main causes of morbidity and mortality among immunocompromised and HIV-positive patients and remained one of the most important common opportunistic infections in these individuals in the world. Pneumocystis infection has been reported in many mammals. The aim of this study was to determine the Pneumocystis infection in wild rats as natural reservoirs of this organism in Tehran city, Iran. Fifty three rats (Rattus rattus) were live trapped in different areas of Tehran city, Iran. After isolation of their lung tissues and homogenization in sterile conditions, DNA was extracted. DNAs from all of the Pneumocystis species were amplified by pAZ102-H and pAZ102-E primers, and Nested PCR was performed using pAZ102-X and pAZ102-W primers from the initial PCR product for all the species of Pneumocystis. Amplification of the genome revealed the presence of Pneumocystis in the lungs of 17 rats (32%) through a PCR product with a bandwidth of 346 bp. In the Nested PCR amplification, from the PCR product of 53 rats, 64.2% of the samples were positive with a bandwidth of 261bp. Pneumocystis SPP infestation is highly prevalent among wild rats in Tehran city, indicating the existence of infection in the natural ecosystem of these rodents. As a host, rat plays an important role in the transmission of the microorganism in the world.

Keywords: pneumocystis SPP, rattus rattus, nested PCR, Tehran

Procedia PDF Downloads 207
1053 Molecular Docking of Marrubiin in Candida Rugosa Lipase

Authors: Benarous Khedidja, Yousfi Mohamed

Abstract:

Infections caused by Candida species manifest in a number of diseases, including candidemia, vulvovaginal candidiasis, endocarditis, and peritonitis. These Candida species have been reported to have lipolytic activity by secretion of lipolytic enzymes such as esterases, lipases and phospholipases. These Extracellular hydrolytic enzymes seem to play an important role in Candida overgrowth. Candidiasis is commonly treated with antimycotics such as clotrimazole and nystatin, which bind to a major component of the fungal cell membrane (ergosterol). This binding forms pores in the membrane that lead to death of the fungus. Due to their secondary effects, scientists have thought of another treatment basing on lipase inhibition but we haven’t found any lipase inhibitors used as candidiasis treatment. In this work, we are interested to lipases inhibitors such as alkaloids as another candidiasis treatment. In the first part, we have proceeded to optimize the alkaloid structures and protein 3D structure using Hyperchem software. Secondly, we have docked inhibitors using Genetic algorithm with GOLD software. The results have shown ten possibilities of binding inhibitor to Candida rugosa lipase (CRL) but only one possibility has been accepted depending on the weakest binding energy.

Keywords: marrubiin, candida rugosa lipase, docking, gold

Procedia PDF Downloads 243
1052 Moving Target Defense against Various Attack Models in Time Sensitive Networks

Authors: Johannes Günther

Abstract:

Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.

Keywords: network security, time sensitive networking, moving target defense, cyber security

Procedia PDF Downloads 70
1051 A Fundamental Study on the Molecular Chemistry of Agarwood Water Mixture

Authors: Fatmawati Adam, Saidatul Syaima Mat Tari, Saiful Nizam Tajuddin, Nurul Salwa Azliyana Hamzah

Abstract:

Essential oil of agarwood or known as Gaharu in Malay is highly prized for its value as luxury fragrances and incense. However, the complexities of the chemical composition of agarwood itself is the main challenge for establishment of an effective recovery method, which is able to ensure uniform qualities and standard for each batch of essential oil production. Agarwood markers are actually a blend of volatile and non-volatile compounds. While volatile molecules could be easily retrieved by the present distillation technique, the high solubility properties are the limiting factor for the latter. With regard to this, an elementary chemistry resolution study had been performed on commercial agarwood essential oil-water mixture, by the application of preparative HPLC and FTIR. Interpretation of the results leads to the theoretical postulation that, agarwood water mixture comprise of agarospirol, jinkohol, jinkoh eremol and khusenol. This study provides a pinpoint on the chemical characteristics of water soluble (non-volatile) agarwood compounds, therefore, will be an insight for researchers to develop a more strategic technique for their extraction. Thereafter the optimum quality of this essential oil could be controlled in a more improved way.

Keywords: Agarwood, Aquillaria Malaccensis, agarospirol, jinkohol, jinkoh eremol, khusenol

Procedia PDF Downloads 546
1050 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell

Authors: D. S. Fardhyanti, A. Damayanti

Abstract:

The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).

Keywords: bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy

Procedia PDF Downloads 243
1049 Rare Earth Metal Ion-Doped SiO2 Nanocomposite Membranes for Gas Separation in Steam Atmosphere

Authors: Md. Hasan Zahir

Abstract:

Y2O3-doped silica membranes were synthesized with the sol-gel method by using a tetraethyl orthosilicate-derived sol mixed with yttrium nitrate hexahydrate. These solutions were used to fabricate hydrogen separation microporous membranes with a sandwich-type structure on γ-Al2O3 supported by tubular α-Al2O3. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano-permporometer. The gas permeance properties of the membranes were measured in the temperature range 100–500°C. The Y-doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39×10-7 mol m-2 s -1 Pa-1 for He and 6.19 ×10-10 mol m-2 s -1 Pa-1 for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y-doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2±0.2 and 21.3±0.7 kJ mol−1 for SiO2 and Si/Y, respectively. Very high permeances were obtained for N2 and O2, 2.2 and 5 × 10-8 mol m-2 s -1 Pa-1 respectively, which demonstrates that these materials are promising air purification and/or separation systems that block larger impurity molecules by molecular sieving effects. Y-doped SiO2 exhibits greater hydrothermal stability at high temperatures and higher selectivity than SiO2 membranes.

Keywords: ceramic membrane, gas separation, hydrothermal stability, rare earth doped-Silica

Procedia PDF Downloads 254
1048 Synthesis, Biological Evaluation and Molecular Modeling Studies on Chiral Chloroquine Analogues as Antimalarial Agents

Authors: Srinivasarao Kondaparla, Utsab Debnath, Awakash Soni, Vasantha Rao Dola, Manish Sinha, Kumkum Kumkum Srivastava, Sunil K. Puri, Seturam B. Katti

Abstract:

In a focused exploration, we have designed synthesized and biologically evaluated chiral conjugated new chloroquine (CQ) analogs with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity [for in vitro IC₅₀= 56.98nM (3D7), 97.76nM (K1); for in vivo (up to at the dose of 12.5 mg/kg); SI = 3510] as a new lead of antimalarial agent. Other compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c are also showing moderate activity against CQ-sensitive (3D7) strain and superior activity against resistant (K1) strain of P. falciparum. Furthermore, we have carried out docking and 3D-QSAR studies of all in-house data sets (168 molecules) of chiral CQ analogs to explain the structure activity relationships (SAR). Our new findings specified the significance of H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against 3D7 strain indicated the favorable and unfavorable sites of CQ analogs for incorporating steric, hydrophobic and electropositive groups to improve the antimalarial activity.

Keywords: piperazines, CQ-sensitive strain-3D7, in-vitro and in-vivo assay, docking, 3D-QSAR

Procedia PDF Downloads 168
1047 Enhancement in Seebeck Coefficient of MBE Grown Un-Doped ZnO by Thermal Annealing

Authors: M. Asghar, K. Mahmood, F. Malik, Lu Na, Y-H Xie, Yasin A. Raja, I. Ferguson

Abstract:

In this paper, we have reported an enhancement in Seebeck coefficient of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at 500°C – 800°C, keeping a step of 100°C for one hour. Room temperature Seebeck measurements showed that Seebeck coefficient and power factor increased from 222 to 510 µV/K and 8.8×10^-6 to 2.6×10^-4 Wm^-1K^-2 as annealing temperature increased from 500°C to 800°C respectively. This is the highest value of Seebeck coefficient ever reported for un-doped MBE grown ZnO according to best of our knowledge. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Keywords: ZnO, MBE, thermoelectric properties, annealing temperature, crystal structure

Procedia PDF Downloads 443
1046 Investigation of Film and Mechanical Properties of Poly(Lactic Acid)

Authors: Reyhan Özdoğan, Özgür Ceylan, Mehmet Arif Kaya, Mithat Çelebi

Abstract:

Food packaging is important for the food industry. Bioplastics have been used as food packaging materials. According to the European Bioplastics organization, bioplastics can be defined as plastics based on renewable resources (bio-based) or as plastics which are biodegradable and/or compostable. Poly(lactic acid) (PLA) has an industrially importance of bioplastic polymers. PLA is a family of biodegradable thermoplastic polyester made from renewable resources. It is produced by conversion of corn, or other carbohydrate sources, into dextrose, followed by fermentation into lactic acid through direct polycondensation of lactic acid monomers or through ring-opening polymerization of lactide. The processing possibilities of this transparent material are very wide, ranging from injection molding and extrusion over cast film extrusion to blow molding and thermoforming. In this study, PLA films were prepared by solution casting method. PLAs which are different molecular weights were plasticized with glycerol and the morphology of films was monitored by optical microscopy. Properties of mechanical and film of PLA were researched with the mechanical testing machine.

Keywords: biodegradable, bioplastics, morphology, solution casting, poly(lactic acid)

Procedia PDF Downloads 371
1045 Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES)

Authors: Hamidreza Sharifan, Audra Morse

Abstract:

Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed.

Keywords: passive sampler, water contaminants, PES-transfer rate, contaminant concentrations

Procedia PDF Downloads 449
1044 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 354
1043 Expression Profiling of Chlorophyll Biosynthesis Pathways in Chlorophyll B-Lacking Mutants of Rice (Oryza sativa L.)

Authors: Khiem M. Nguyen, Ming C. Yang

Abstract:

Chloroplast pigments are extremely important during photosynthesis since they play essential roles in light absorption and energy transfer. Therefore, understanding the efficiency of chlorophyll (Chl) biosynthesis could facilitate enhancement in photo-assimilates accumulation, and ultimately, in crop yield. The Chl-deficient mutants have been used extensively to study the Chl biosynthetic pathways and the biogenesis of the photosynthetic apparatus. Rice (Oryza sativa L.) is one of the most leading food crops, serving as staple food for many parts of the world. To author’s best knowledge, Chl b–lacking rice has been found; however the molecular mechanism of Chl biosynthesis still remains unclear compared to wild-type rice. In this study, the ultrastructure analysis, photosynthetic properties, and transcriptome profile of wild-type rice (Norin No.8, N8) and its Chl b-lacking mutant (Chlorina 1, C1) were examined. The finding concluded that total Chl content and Chl b content in the C1 leaves were strongly reduced compared to N8 leaves, suggesting that reduction in the total Chl content contributes to leaf color variation at the physiological level. Plastid ultrastructure of C1 possessed abnormal thylakoid membranes with loss of starch granule, large number of vesicles, and numerous plastoglobuli. The C1 rice also exhibited thinner stacked grana, which was caused by a reduction in the number of thylakoid membranes per granum. Thus, the different Chl a/b ratio of C1 may reflect the abnormal plastid development and function. Transcriptional analysis identified 23 differentially expressed genes (DEGs) and 671 transcription factors (TFs) that were involved in Chl metabolism, chloroplast development, cell division, and photosynthesis. The transcriptome profile and DEGs revealed that the gene encoding PsbR (PSII core protein) was down-regulated, therefore suggesting that the lower in light-harvesting complex proteins are responsible for the lower photosynthetic capacity in C1. In addition, expression level of cell division protein (FtsZ) genes were significantly reduced in C1, causing chloroplast division defect. A total of 19 DEGs were identified based on KEGG pathway assignment involving Chl biosynthesis pathway. Among these DEGs, the GluTR gene was down-regulated, whereas the UROD, CPOX, and MgCH genes were up-regulated. Observation through qPCR suggested that later stages of Chl biosynthesis were enhanced in C1, whereas the early stages were inhibited. Plastid structure analysis together with transcriptomic analysis suggested that the Chl a/b ratio was amplified both by the reduction in Chl contents accumulation, owning to abnormal chloroplast development, and by the enhanced conversion of Chl b to Chl a. Moreover, the results indicated the same Chl-cycle pattern in the wild-type and C1 rice, indicating another Chl b degradation pathway. Furthermore, the results demonstrated that normal grana stacking, along with the absence of Chl b and greatly reduced levels of Chl a in C1, provide evidence to support the conclusion that other factors along with LHCII proteins are involved in grana stacking. The findings of this study provide insight into the molecular mechanisms that underlie different Chl a/b ratios in rice.

Keywords: Chl-deficient mutant, grana stacked, photosynthesis, RNA-Seq, transcriptomic analysis

Procedia PDF Downloads 117
1042 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 147
1041 Association of Selected Polymorphisms of BER Pathway with the Risk of Colorectal Cancer in the Polish Population

Authors: Jacek Kabzinski, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Ireneusz Majsterek

Abstract:

The incidence of colorectal cancer (CRC) is increasing from year to year. Despite intensive research CRC etiology remains unknown. Studies suggest that at the basis of the process of carcinogenesis can lie reduced efficiency of DNA repair mechanisms, often caused by polymorphisms in DNA repair genes. The aim of the study was to determine the relationship between gene polymorphisms Pro242Arg of PolB gene and Arg780His of Lig3 gene and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 780Arg/His of Lig3 gene is associated with an increased risk of colorectal cancer. On the basis of these results, we conclude that Lig3 gene polymorphism Arg780His may be associated with an increased risk of colorectal cancer.

Keywords: BER, colorectal cancer, PolB, Lig3, polymorphisms

Procedia PDF Downloads 453
1040 Recovery of Helicobacter Pylori from Stagnant and Moving Water Biofilms

Authors: Maryam Zafar, Sajida Rasheed, Imran Hashmi

Abstract:

Water as an environmental reservoir is reported to act as a habitat and transmission route to microaerophilic bacteria such as Heliobacter pylori. It has been studied that in biofilms are the predominant dwellings for the bacteria to grow in water and protective reservoir for numerous pathogens by protecting them against harsh conditions, such as shear stress, low carbon concentration and less than optimal temperature. In this study, influence of these and many other parameters was studied on H. pylori in stagnant and moving water biofilms both in surface and underground aquatic reservoirs. H. pylori were recovered from pipe of different materials such as Polyvinyl Chloride, Polypropylene and Galvanized iron pipe cross sections from an urban water distribution network. Biofilm swabbed from inner cross section was examined by molecular biology methods coupled with gene sequencing and H. pylori 16S rRNA peptide nucleic acid probe showing positive results for H. pylori presence. Studies showed that pipe material affect growth of biofilm which in turn provide additional survival mechanism for pathogens like H. pylori causing public health concerns.

Keywords: biofilm, gene sequencing, heliobacter pylori, pipe materials

Procedia PDF Downloads 356
1039 Electron Impact Ionization Cross-Sections for e-C₅H₅N₅ Scattering

Authors: Manoj Kumar

Abstract:

Ionization cross sections of molecules due to electron impact play an important role in chemical processes in various branches of applied physics, such as radiation chemistry, gas discharges, plasmas etching in semiconductors, planetary upper atmospheric physics, mass spectrometry, etc. In the present work, we have calculated the total ionization cross sections for Adenine (C₅H₅N₅), a biologically important molecule, by electron impact in the incident electron energy range from ionization threshold to 2 keV employing a well-known Jain-Khare semiempirical formulation based on Bethe and Möllor cross sections. In the non-availability of the experimental results, the present results are in good agreement qualitatively as well as quantitatively with available theoretical results. The present results drive our confidence for further investigation of complex bio-molecule with better accuracy. Notwithstanding, the present method can deduce reliable cross-sectional data for complex targets with adequate accuracy and may facilitate the acclimatization of calculated cross-sections into atomic molecular cross-section data sets for modeling codes and other applications.

Keywords: electron impact ionization cross-sections, oscillator strength, jain-khare semiempirical approach

Procedia PDF Downloads 109
1038 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)

Authors: Cheng-Yen Lu, Chin-Yuan Hsu

Abstract:

Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.

Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome

Procedia PDF Downloads 457