Search results for: isothermal boundary
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1443

Search results for: isothermal boundary

123 Work-Life Balance: A Landscape Mapping of Two Decades of Scholarly Research

Authors: Gertrude I Hewapathirana, Mohamed M. Moustafa, Michel G. Zaitouni

Abstract:

The purposes of this research are: (a) to provide an epistemological and ontological understanding of the WLB theory, practice, and research to illuminate how the WLB evolved between 2000 to 2020 and (b) to analyze peer-reviewed research to identify the gaps, hotspots, underlying dynamics, theoretical and thematic trends, influential authors, research collaborations, geographic networks, and the multidisciplinary nature of the WLB theory to guide future researchers. The research used four-step bibliometric network analysis to explore five research questions. Using keywords such as WLB and associated variants, 1190 peer-reviewed articles were extracted from the Scopus database and transformed to a plain text format for filtering. The analysis was conducted using the R version 4.1 software (R Development Core Team, 2021) and several libraries such as bibliometrics, word cloud, and ggplot2. We used the VOSviewer software (van Eck & Waltman, 2019) for network visualization. The WLB theory has grown into a multifaceted, multidisciplinary field of research. There is a paucity of research between 2000 to 2005 and an exponential growth from 2006 to 2015. The rapid increase of WLB research in the USA, UK, and Australia reflects the increasing workplace stresses due to hyper competitive workplaces, inflexible work systems, and increasing diversity and the emergence of WLB support mechanisms, legal and constitutional mandates to enhance employee and family wellbeing at multilevel social systems. A severe knowledge gap exists due to inadequate publications disseminating the "core" WLB research. "Locally-centralized-globally-discrete" collaboration among researchers indicates a "North-South" divide between developed and developing nations. A shortage in WLB research in developing nations and a lack of research collaboration hinder a global understanding of the WLB as a universal phenomenon. Policymakers and practitioners can use the findings to initiate supporting policies, and innovative work systems. The boundary expansion of the WLB concepts, categories, relations, and properties would facilitate researchers/theoreticians to test a variety of new dimensions. This is the most comprehensive WLB landscape analysis that reveals emerging trends, concepts, networks, underlying dynamics, gaps, and growing theoretical and disciplinary boundaries. It portrays the WLB as a universal theory.

Keywords: work-life balance, co-citation networks; keyword co-occurrence network, bibliometric analysis

Procedia PDF Downloads 198
122 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System

Authors: Sara Khamseh, Elahe Sharifi

Abstract:

321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.

Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate

Procedia PDF Downloads 91
121 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams

Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim

Abstract:

As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.

Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 446
120 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions

Authors: M. Tarik Boyraz, M. Bilge Imer

Abstract:

Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.

Keywords: heat treatment, IN738LC, simulations, super-alloys

Procedia PDF Downloads 248
119 An Empirical Analysis of the Relation between Entrepreneur's Leadership and Team Creativity: The Role of Psychological Empowerment, Cognitive Diversity, and Environmental Uncertainty

Authors: Rui Xing, Xiaowen Zhao, Hao Huang, Chang Liu

Abstract:

Creativity is regarded as vital for new ventures' development since the whole process of entrepreneurship is rooted in the creation and exploration of new ideas. The entrepreneurial leader is central to the entrepreneurial team, who plays an especially important role in this process. However, few scholars have studied the impact entrepreneurs' leadership styles on the creativity of entrepreneurial teams. In this study, we integrate the historically disjointed literatures of leadership style and team creativity under entrepreneurship circumstance to understand why and when entrepreneurs' different leadership style relates to team creativity. Focus on answering the following questions: Is humility leadership necessarily better than narcissism leadership at increasing the creativity of entrepreneurial teams? Moreover, in which situations humility leadership or narcissism leadership is more conducive to the entrepreneurial team's creativity? Based on the componential theory of creativity and entrepreneurial cognition theory, we explore the relationship between entrepreneurs' leadership style and team creativity, treating team cognitive diversity and environmental uncertainty as moderators and psychological empowerment as mediators. We tested our hypotheses using data gathered from 64 teams and 256 individual members from 53 new firms in China's first-tier cities such as Beijing and Shanghai. We found that there was a significant positive relation between entrepreneurs' humble leadership and psychological empowerment, and the more significant the positive correlation was when the environmental uncertainty was high. In addition, there was a significant negative relation between entrepreneurs' narcissistic leadership and psychological empowerment, and the negative relation was weaker in teams with a high team cognitive diversity value. Furthermore, both entrepreneurs' humble leadership and team psychological empowerment were significantly positively related to team creativity. While entrepreneurs' narcissistic leadership was negatively related to team creativity, and the negative relationship was weaker in teams with a high team cognitive diversity or a high environmental uncertainty value. This study has some implications for both scholars and entrepreneurs. Firstly, our study enriches the understanding of the role of leadership in entrepreneurial team creativity. Different from previous team creativity literatures, focusing on TMT and R&D team, this study is a significant attempt to demonstrate that entrepreneurial leadership style is particularly relevant to the core requirements of team creativity. Secondly, this study introduces two moderating variables, cognitive diversity and environmental uncertainty, to explore the different boundary conditions under which the two leadership styles play their roles, which is helpful for entrepreneurs to understand how to leverage leadership to improve entrepreneurial team creativity, how to recruit cognitively diverse employees to moderate the effects of inappropriate leadership to the team. Finally, our findings showed that entrepreneurs' humble leadership makes a unique contribution to explaining team creativity through team psychological empowerment.

Keywords: entrepreneurs’ leadership style, entrepreneurial team creativity, team psychological empowerment, team cognitive diversity, environmental uncertainty

Procedia PDF Downloads 135
118 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring

Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh

Abstract:

Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.

Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness

Procedia PDF Downloads 340
117 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher

Abstract:

Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.

Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture

Procedia PDF Downloads 157
116 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 271
115 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials

Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu

Abstract:

The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.

Keywords: analytic solution, braided composites, elasticity properties, technology factor

Procedia PDF Downloads 239
114 Automatic Aggregation and Embedding of Microservices for Optimized Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.

Keywords: aggregation, deployment, embedding, resource allocation

Procedia PDF Downloads 204
113 Analysis of Reduced Mechanisms for Premixed Combustion of Methane/Hydrogen/Propane/Air Flames in Geometrically Modified Combustor and Its Effects on Flame Properties

Authors: E. Salem

Abstract:

Combustion has been used for a long time as a means of energy extraction. However, in recent years, there has been a further increase in air pollution, through pollutants such as nitrogen oxides, acid etc. In order to solve this problem, there is a need to reduce carbon and nitrogen oxides through learn burning modifying combustors and fuel dilution. A numerical investigation has been done to investigate the effectiveness of several reduced mechanisms in terms of computational time and accuracy, for the combustion of the hydrocarbons/air or diluted with hydrogen in a micro combustor. The simulations were carried out using the ANSYS Fluent 19.1. To validate the results “PREMIX and CHEMKIN” codes were used to calculate 1D premixed flame based on the temperature, composition of burned and unburned gas mixtures. Numerical calculations were carried for several hydrocarbons by changing the equivalence ratios and adding small amounts of hydrogen into the fuel blends then analyzing the flammable limit, the reduction in NOx and CO emissions, then comparing it to experimental data. By solving the conservations equations, several global reduced mechanisms (2-9-12) were obtained. These reduced mechanisms were simulated on a 2D cylindrical tube with dimensions of 40 cm in length and 2.5 cm diameter. The mesh of the model included a proper fine quad mesh, within the first 7 cm of the tube and around the walls. By developing a proper boundary layer, several simulations were performed on hydrocarbon/air blends to visualize the flame characteristics than were compared with experimental data. Once the results were within acceptable range, the geometry of the combustor was modified through changing the length, diameter, adding hydrogen by volume, and changing the equivalence ratios from lean to rich in the fuel blends, the results on flame temperature, shape, velocity and concentrations of radicals and emissions were observed. It was determined that the reduced mechanisms provided results within an acceptable range. The variation of the inlet velocity and geometry of the tube lead to an increase of the temperature and CO2 emissions, highest temperatures were obtained in lean conditions (0.5-0.9) equivalence ratio. Addition of hydrogen blends into combustor fuel blends resulted in; reduction in CO and NOx emissions, expansion of the flammable limit, under the condition of having same laminar flow, and varying equivalence ratio with hydrogen additions. The production of NO is reduced because the combustion happens in a leaner state and helps in solving environmental problems.

Keywords: combustor, equivalence-ratio, hydrogenation, premixed flames

Procedia PDF Downloads 115
112 Prismatic Bifurcation Study of a Functionally Graded Dielectric Elastomeric Tube Using Linearized Incremental Theory of Deformations

Authors: Sanjeet Patra, Soham Roychowdhury

Abstract:

In recent times, functionally graded dielectric elastomer (FGDE) has gained significant attention within the realm of soft actuation due to its dual capacity to exert highly localized stresses while maintaining its compliant characteristics on application of electro-mechanical loading. Nevertheless, the full potential of dielectric elastomer (DE) has not been fully explored due to their susceptibility to instabilities when subjected to electro-mechanical loads. As a result, study and analysis of such instabilities becomes crucial for the design and realization of dielectric actuators. Prismatic bifurcation is a type of instability that has been recognized in a DE tube. Though several studies have reported on the analysis for prismatic bifurcation in an isotropic DE tube, there is an insufficiency in studies related to prismatic bifurcation of FGDE tubes. Therefore, this paper aims to determine the onset of prismatic bifurcations on an incompressible FGDE tube when subjected to electrical loading across the thickness of the tube and internal pressurization. The analysis has been conducted by imposing two axial boundary conditions on the tube, specifically axially free ends and axially clamped ends. Additionally, the rigidity modulus of the tube has been linearly graded in the direction of thickness where the inner surface of the tube has a lower stiffness than the outer surface. The static equilibrium equations for deformation of the axisymmetric tube are derived and solved using numerical technique. The condition for prismatic bifurcation of the axisymmetric static equilibrium solutions has been obtained by using the linearized incremental constitutive equations. Two modes of bifurcations, corresponding to two different non-circular cross-sectional geometries, have been explored in this study. The outcomes reveal that the FGDE tubes experiences prismatic bifurcation before the Hessian criterion of failure is satisfied. It is observed that the lower mode of bifurcation can be triggered at a lower critical voltage as compared to the higher mode of bifurcation. Furthermore, the tubes with larger stiffness gradient require higher critical voltages for triggering the bifurcation. Moreover, with the increase in stiffness gradient, a linear variation of the critical voltage is observed with the thickness of the tube. It has been found that on applying internal pressure to a tube with low thickness, the tube becomes less susceptible to bifurcations. A thicker tube with axially free end is found to be more stable than the axially clamped end tube at higher mode of bifurcation.

Keywords: critical voltage, functionally graded dielectric elastomer, linearized incremental approach, modulus of rigidity, prismatic bifurcation

Procedia PDF Downloads 80
111 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy

Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr

Abstract:

Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.

Keywords: ageing, casting, mechanical strength, precipitates

Procedia PDF Downloads 498
110 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma

Authors: Rajat Dhawan, Hitendra K. Malik

Abstract:

Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.

Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness

Procedia PDF Downloads 134
109 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization

Authors: Cheng-Jui Li, Chien-Chou Tseng

Abstract:

This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.

Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray

Procedia PDF Downloads 285
108 Cumulative Pressure Hotspot Assessment in the Red Sea and Arabian Gulf

Authors: Schröde C., Rodriguez D., Sánchez A., Abdul Malak, Churchill J., Boksmati T., Alharbi, Alsulmi H., Maghrabi S., Mowalad, Mutwalli R., Abualnaja Y.

Abstract:

Formulating a strategy for sustainable development of the Kingdom of Saudi Arabia’s coastal and marine environment is at the core of the “Marine and Coastal Protection Assessment Study for the Kingdom of Saudi Arabia Coastline (MCEP)”; that was set up in the context of the Vision 2030 by the Saudi Arabian government and aimed at providing a first comprehensive ‘Status Quo Assessment’ of the Kingdom’s marine environment to inform a sustainable development strategy and serve as a baseline assessment for future monitoring activities. This baseline assessment relied on scientific evidence of the drivers, pressures and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressure hotspot analysis developed for both national waters of the Kingdom following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. The ultimate goals of the analysis were to map and assess the main hotspots of environmental pressures, and identify priority areas for further field surveillance and for urgent management actions. The study identified maritime transport, fisheries, aquaculture, oil, gas, energy, coastal industry, coastal and maritime tourism, and urban development as the main drivers of pollution in the Saudi Arabian marine waters. For each of these drivers, pressure indicators were defined to spatially assess the potential influence of the drivers on the coastal and marine environment. A list of hotspots of 90 locations could be identified based on the assessment. Spatially grouped the list could be reduced to come up with of 10 hotspot areas, two in the Arabian Gulf, 8 in the Red Sea. The hotspot mapping revealed clear spatial patterns of drivers, pressures and hotspots within the marine environment of waters under KSA’s maritime jurisdiction in the Red Sea and Arabian Gulf. The cascading assessment approach based on the DPSIR framework ensured that the root causes of the hotspot patterns, i.e. the human activities and other drivers, can be identified. The adapted CPIA methodology allowed for the combination of the available data to spatially assess the cumulative pressure in a consistent manner, and to identify the most critical hotspots by determining the overlap of cumulative pressure with areas of sensitive biodiversity. Further improvements are expected by enhancing the data sources of drivers and pressure indicators, fine-tuning the decay factors and distances of the pressure indicators, as well as including trans-boundary pressures across the regional seas.

Keywords: Arabian Gulf, DPSIR, hotspot, red sea

Procedia PDF Downloads 143
107 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 86
106 Most Recent Lifespan Estimate for the Itaipu Hydroelectric Power Plant Computed by Using Borland and Miller Method and Mass Balance in Brazil, Paraguay

Authors: Anderson Braga Mendes

Abstract:

Itaipu Hydroelectric Power Plant is settled on the Paraná River, which is a natural boundary between Brazil and Paraguay; thus, the facility is shared by both countries. Itaipu Power Plant is the biggest hydroelectric generator in the world, and provides clean and renewable electrical energy supply for 17% and 76% of Brazil and Paraguay, respectively. The plant started its generation in 1984. It counts on 20 Francis turbines and has installed capacity of 14,000 MWh. Its historic generation record occurred in 2016 (103,098,366 MWh), and since the beginning of its operation until the last day of 2016 the plant has achieved the sum of 2,415,789,823 MWh. The distinct sedimentologic aspects of the drainage area of Itaipu Power Plant, from its stretch upstream (Porto Primavera and Rosana dams) to downstream (Itaipu dam itself), were taken into account in order to best estimate the increase/decrease in the sediment yield by using data from 2001 to 2016. Such data are collected through a network of 14 automatic sedimentometric stations managed by the company itself and operating in an hourly basis, covering an area of around 136,000 km² (92% of the incremental drainage area of the undertaking). Since 1972, a series of lifespan studies for the Itaipu Power Plant have been made, being first assessed by Sir Hans Albert Einstein, at the time of the feasibility studies for the enterprise. From that date onwards, eight further studies were made through the last 44 years aiming to confer more precision upon the estimates based on more updated data sets. From the analysis of each monitoring station, it was clearly noticed strong increase tendencies in the sediment yield through the last 14 years, mainly in the Iguatemi, Ivaí, São Francisco Falso and Carapá Rivers, the latter situated in Paraguay, whereas the others are utterly in Brazilian territory. Five lifespan scenarios considering different sediment yield tendencies were simulated with the aid of the softwares SEDIMENT and DPOSIT, both developed by the author of the present work. Such softwares thoroughly follow the Borland & Miller methodology (empirical method of area-reduction). The soundest scenario out of the five ones under analysis indicated a lifespan foresight of 168 years, being the reservoir only 1.8% silted by the end of 2016, after 32 years of operation. Besides, the mass balance in the reservoir (water inflows minus outflows) between 1986 and 2016 shows that 2% of the whole Itaipu lake is silted nowadays. Owing to the convergence of both results, which were acquired by using different methodologies and independent input data, it is worth concluding that the mathematical modeling is satisfactory and calibrated, thus assigning credibility to this most recent lifespan estimate.

Keywords: Borland and Miller method, hydroelectricity, Itaipu Power Plant, lifespan, mass balance

Procedia PDF Downloads 275
105 The Impact of Formulate and Implementation Strategy for an Organization to Better Financial Consequences in Malaysian Private Hospital

Authors: Naser Zouri

Abstract:

Purpose: Measures of formulate and implementation strategy shows amount of product rate-market based strategic management category such as courtesy, competence, and compliance to reach the high loyalty of financial ecosystem. Despite, it solves the market place error intention to fair trade organization. Finding: Finding shows the ability of executives’ level of management to motivate and better decision-making to solve the treatments in business organization. However, it made ideal level of each interposition policy for a hypothetical household. Methodology/design. Style of questionnaire about the data collection was selected to survey of both pilot test and real research. Also, divide of questionnaire and using of Free Scale Semiconductor`s between the finance employee was famous of this instrument. Respondent`s nominated basic on non-probability sampling such as convenience sampling to answer the questionnaire. The way of realization costs to performed the questionnaire divide among the respondent`s approximately was suitable as a spend the expenditure to reach the answer but very difficult to collect data from hospital. However, items of research survey was formed of implement strategy, environment, supply chain, employee from impact of implementation strategy on reach to better financial consequences and also formulate strategy, comprehensiveness strategic design, organization performance from impression on formulate strategy and financial consequences. Practical Implication: Dynamic capability approach of formulate and implement strategy focuses on the firm-specific processes through which firms integrate, build, or reconfigure resources valuable for making a theoretical contribution. Originality/ value of research: Going beyond the current discussion, we show that case studies have the potential to extend and refine theory. We present new light on how dynamic capabilities can benefit from case study research by discovering the qualifications that shape the development of capabilities and determining the boundary conditions of the dynamic capabilities approach. Limitation of the study :Present study also relies on survey of methodology for data collection and the response perhaps connection by financial employee was difficult to responds the question because of limitation work place.

Keywords: financial ecosystem, loyalty, Malaysian market error, dynamic capability approach, rate-market, optimization intelligence strategy, courtesy, competence, compliance

Procedia PDF Downloads 307
104 Working From Home: On the Relationship Between Place Attachment to Work Place, Extraversion and Segmentation Preference to Burnout

Authors: Diamant Irene, Shklarnik Batya

Abstract:

In on to its widespread effects on health and economic issues, Covid-19 shook the work and employment world. Among the prominent changes during the pandemic is the work-from-home trend, complete or partial, as part of social distancing. In fact, these changes accelerated an existing tendency of work flexibility already underway before the pandemic. Technology and means of advanced communications led to a re-assessment of “place of work” as a physical space in which work takes place. Today workers can remotely carry out meetings, manage projects, work in groups, and different research studies point to the fact that this type of work has no adverse effect on productivity. However, from the worker’s perspective, despite numerous advantages associated with work from home, such as convenience, flexibility, and autonomy, various drawbacks have been identified such as loneliness, reduction of commitment, home-work boundary erosion, all risk factors relating to the quality of life and burnout. Thus, a real need has arisen in exploring differences in work-from-home experiences and understanding the relationship between psychological characteristics and the prevalence of burnout. This understanding may be of significant value to organizations considering a future hybrid work model combining in-office and remote working. Based on Hobfoll’s Theory of Conservation of Resources, we hypothesized that burnout would mainly be found among workers whose physical remoteness from the workplace threatens or hinders their ability to retain significant individual resources. In the present study, we compared fully remote and partially remote workers (hybrid work), and we examined psychological characteristics and their connection to the formation of burnout. Based on the conceptualization of Place Attachment as the cognitive-emotional bond of an individual to a meaningful place and the need to maintain closeness to it, we assumed that individuals characterized with Place Attachment to the workplace would suffer more from burnout when working from home. We also assumed that extrovert individuals, characterized by the need of social interaction at the workplace and individuals with segmentationpreference – a need for separation between different life domains, would suffer more from burnout, especially among fully remote workers relative to partially remote workers. 194 workers, of which 111 worked from home in full and 83 worked partially from home, aged 19-53, from different sectors, were tested using an online questionnaire through social media. The results of the study supported our assumptions. The repercussions of these findings are discussed, relating to future occupational experience, with an emphasis on suitable occupational adjustment according to the psychological characteristics and needs of workers.

Keywords: working from home, burnout, place attachment, extraversion, segmentation preference, Covid-19

Procedia PDF Downloads 191
103 Battle on Historical Water: An Analysis Roots of conflict between India and Sri Lanka and Victimization of Arrested Indian Fishermen

Authors: Xavier Louis, Madhava Soma Sundaram

Abstract:

The Palk Bay, a narrow strip of water, separates the state of Tamil Nadu in India from north Sri Lanka. The bay, which is 137 km in length and varies from 64 to 137 kilometers in width and is home to more than 580 fish species and chunks of shrimp’s resources, is divided by the International Maritime Boundary Line (IMBL). The bay, bordering it are five Tamil Nadu districts of India and three Sri Lankan districts and assumes importance as it is one of the areas presenting permanent and serious challenges to both India and Sri Lanka with respect to the fishing rights in the Bay. Fishermen from both sides were enjoying fishing with hormones for centuries. Katchchadeevu is a tiny Island located in the Bay, which was a part of India. After the Katchchadeevu agreement 1974 it became a part of Sri Lanka and a fishing conflict arose between the two countries' fishermen. Fuelling the dispute over Katchatheevu is the overfishing of Indian mechanized trawlers in Palk Bay and the damaging environmental and economic effects of trawling. Since 2008, more than 300 Indian fishermen have been killed by firing by Sri Lankan Navy, nearly 100 fishermen have gone missing and more than 3000 fishermen were arrested and later released after the trials for trespassing into Sri Lankan waters. Currently, more than 120 fishing boats and 29 fishermen are in Sri Lankan custody. This paper attempts to find out the causes of fishing conflict and who has the fishing rights in the mentioned waters, how the international treaties are complied with at the time of arrest and trials, how the arrested fishermen are treated by them and how they suffer from fishermen families without a breadwinner. A Semi-structured interview schedule tool was prepared by the researcher, which is suitable for measuring quantitative and qualitative aspects of the above-mentioned theme. One hundred arrested fishermen were interviewed and recorded their prison experiences in Sri Lanka. The research found that the majority of the fishermen believe that they have the right to fish in the historical water and that the Sri Lankan Naval personnel have brutally attacked the Indian fishermen at the time of the arrest. The majority of the fishermen accepted that they had limited fishing grounds. As a result, they entered Sri Lankan waters for their livelihood. The majority of the fishermen expected that they would also get their belongings back at the time of release, primarily the boats. Most of the arrested fishermen's families face financial crises in the absence of their breadwinners and this situation has created conditions for child labor among the affected families and some fishers migrate to different places for different occupations. The majority of the fishers have trauma about their victimization and face uncertainty in the future of their occupation. We can discuss more the causes and nature of the fishing conflict and the financial and psychological victimization of Indian fishermen in relation to the conflict.

Keywords: palk bay, historical water, fishing conflict, arrested fishermen, victimization

Procedia PDF Downloads 80
102 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 219
101 Existential and Possessive Constructions in Modern Standard Arabic Two Strategies Reflecting the Ontological (Non-)Autonomy of Located or Possessed Entities

Authors: Fayssal Tayalati

Abstract:

Although languages use very divergent constructional strategies, all existential constructions appear to invariably involve an implicit or explicit locative constituent. This locative constituent either surface as a true locative phrase or are realized as a possessor noun phrase. However, while much research focuses on the supposed underlying syntactic relation of locative and possessive existential constructions, not much is known about possible semantic factors that could govern the choice between these constructions. The main question that we address in this talk concerns the choice between the two related constructions in Modern Standard Arabic (MAS). Although both are used to express the existence of something somewhere, we can distinguish three contexts: First, for some types of entities, only the EL construction is possible (e.g. (1a) ṯammata raǧulun fī l-ḥadīqati vs. (1b) *(kāna) ladā l-ḥadīqati raǧulun). Second, for other types of entities, only the possessive construction is possible (e.g. (2a) ladā ṭ-ṭawilati aklun dāʾiriyyun vs. (2b) *ṯammata šaklun dāʾiriyyun ladā/fī ṭ-ṭawilati). Finally, for still other entities, both constructions can be found (e.g. (3a) ṯammata ḥubbun lā yūṣafu ladā ǧārī li-zawǧati-hi and (3b) ladā ǧārī ḥubbun lā yūṣafu li-zawǧati-hi). The data covering a range of ontologically different entities (concrete objects, events, body parts, dimensions, essential qualities, feelings, etc.) shows that the choice between the existential locative and the possessive constructions is closely linked to the conceptual autonomy of the existential theme with respect to its location or to the whole that it is a part of. The construction with ṯammata is the only possible one to express the existence of a fully autonomous (i.e. nondependent) entity (concrete objects (e.g.1) and abstract objects such as events, especially the ones that Grimshaw called ‘simple events’). The possessive construction with (kāna) ladā is the only one used to express the existence of fully non-autonomous (i.e. fully dependent on a whole) entities (body parts, dimensions (e.g. 2), essential qualities). The two constructions alternate when the existential theme is conceptually dependent but separable of the whole, either because it has an autonomous (independent) existence of the given whole (spare parts of an object), or because it receives a relative autonomy in the speech through a modifier (accidental qualities, feelings (e.g. 3a, 3b), psychological states, among some other kinds of themes). In this case, the modifier expresses an approximate boundary on a scale, and provides relative autonomy to the entity. Finally, we will show that kinship terms (e.g. son), which at first sight may seem to constitute counterexamples to our hypothesis, are nonetheless supported by it. The ontological (non-)autonomy of located or possessed entities is also reflected by morpho-syntactic properties, among them the use and the choice of determiners, pluralisation and the behavior of entities in the context of associative anaphora.

Keywords: existence, possession, autonomous entities, non-autonomous entities

Procedia PDF Downloads 350
100 Evaluation of Iron Application Method to Remediate Coastal Marine Sediment

Authors: Ahmad Seiar Yasser

Abstract:

Sediment is an important habitat for organisms and act as a store house for nutrients in aquatic ecosystems. Hydrogen sulfide is produced by microorganisms in the water columns and sediments, which is highly toxic and fatal to benthic organisms. However, the irons have the capacity to regulate the formation of sulfide by poising the redox sequence and to form insoluble iron sulfide and pyrite compounds. Therefore, we conducted two experiments aimed to evaluate the remediation efficiency of iron application to organically enrich and improve sediments environment. Experiments carried out in the laboratory using intact sediment cores taken from Mikawa Bay, Japan at every month from June to September 2017 and October 2018. In Experiment 1, after cores were collected, the iron powder or iron hydroxide were applied to the surface sediment with 5 g/ m2 or 5.6 g/ m2, respectively. In Experiment 2, we experimentally investigated the removal of hydrogen sulfide using (2mm or less and 2 to 5mm) of the steelmaking slag. Experiments are conducted both in the laboratory with the same boundary conditions. The overlying water were replaced with deoxygenated filtered seawater, and cores were sealed a top cap to keep anoxic condition with a stirrer to circulate the overlying water gently. The incubation experiments have been set in three treatments included the control, and each treatment replicated and were conducted with the same temperature of the in-situ conditions. Water samples were collected to measure the dissolved sulfide concentrations in the overlying water at appropriate time intervals by the methylene blue method. Sediment quality was also analyzed after the completion of the experiment. After the 21 days incubation, experimental results using iron powder and ferric hydroxide revealed that application of these iron containing materials significantly reduced sulfide release flux from the sediment into the overlying water. The average dissolved sulfides concentration in the overlying water of the treatment group was significantly decrease (p = .0001). While no significant difference was observed between the control group after 21 day incubation. Therefore, the application of iron to the sediment is a promising method to remediate contaminated sediments in a eutrophic water body, although ferric hydroxide has better hydrogen sulfide removal effects. Experiments using the steelmaking slag also clarified the fact that capping with (2mm or less and 2 to 5mm) of slag steelmaking is an effective technique for remediation of bottom sediments enriched organic containing hydrogen sulfide because it leads to the induction of chemical reaction between Fe and sulfides occur in sediments which did not occur in conditions naturally. Although (2mm or less) of slag steelmaking has better hydrogen sulfide removal effects. Because of economic reasons, the application of steelmaking slag to the sediment is a promising method to remediate contaminated sediments in the eutrophic water body.

Keywords: sedimentary, H2S, iron, iron hydroxide

Procedia PDF Downloads 164
99 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening

Authors: Jaroslaw Gawryluk, Andrzej Teter

Abstract:

Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: angle column, compression, experiment, FEM

Procedia PDF Downloads 207
98 Assessment of Rainfall Erosivity, Comparison among Methods: Case of Kakheti, Georgia

Authors: Mariam Tsitsagi, Ana Berdzenishvili

Abstract:

Rainfall intensity change is one of the main indicators of climate change. It has a great influence on agriculture as one of the main factors causing soil erosion. Splash and sheet erosion are one of the most prevalence and harmful for agriculture. It is invisible for an eye at first stage, but the process will gradually move to stream cutting erosion. Our study provides the assessment of rainfall erosivity potential with the use of modern research methods in Kakheti region. The region is the major provider of wheat and wine in the country. Kakheti is located in the eastern part of Georgia and characterized quite a variety of natural conditions. The climate is dry subtropical. For assessment of the exact rate of rainfall erosion potential several year data of rainfall with short intervals are needed. Unfortunately, from 250 active metro stations running during the Soviet period only 55 of them are active now and 5 stations in Kakheti region respectively. Since 1936 we had data on rainfall intensity in this region, and rainfall erosive potential is assessed, in some old papers, but since 1990 we have no data about this factor, which in turn is a necessary parameter for determining the rainfall erosivity potential. On the other hand, researchers and local communities suppose that rainfall intensity has been changing and the number of haily days has also been increasing. However, finding a method that will allow us to determine rainfall erosivity potential as accurate as possible in Kakheti region is very important. The study period was divided into three sections: 1936-1963; 1963-1990 and 1990-2015. Rainfall erosivity potential was determined by the scientific literature and old meteorological stations’ data for the first two periods. And it is known that in eastern Georgia, at the boundary between steppe and forest zones, rainfall erosivity in 1963-1990 was 20-75% higher than that in 1936-1963. As for the third period (1990-2015), for which we do not have data of rainfall intensity. There are a variety of studies, where alternative ways of calculating the rainfall erosivity potential based on lack of data are discussed e.g.based on daily rainfall data, average annual rainfall data and the elevation of the area, etc. It should be noted that these methods give us a totally different results in case of different climatic conditions and sometimes huge errors in some cases. Three of the most common methods were selected for our research. Each of them was tested for the first two sections of the study period. According to the outcomes more suitable method for regional climatic conditions was selected, and after that, we determined rainfall erosivity potential for the third section of our study period with use of the most successful method. Outcome data like attribute tables and graphs was specially linked to the database of Kakheti, and appropriate thematic maps were created. The results allowed us to analyze the rainfall erosivity potential changes from 1936 to the present and make the future prospect. We have successfully implemented a method which can also be use for some another region of Georgia.

Keywords: erosivity potential, Georgia, GIS, Kakheti, rainfall

Procedia PDF Downloads 225
97 High Impact Biostratigrapgic Study

Authors: Njoku, Joy

Abstract:

The re-calibration of the Campanian to Maastritchian of some parts Anambra basin was carried outusing samples from two exploration wells (Amama-1 and Bara-1), Amama-1 (219M–1829M) and Bara-1 (317M-1594M). Palynological and Paleontological analyses werecarried out on 100 ditch cutting samples. The faunal and floral succession were of terrestrialand marine origin as described and logged. The well penetrated four stratigraphic units inAnambra Basin (the Nkporo, Mamu, Ajali and Nsukka) the wells yielded well preservedformanifera and palynormorphs. The well yielded 53 species of foram and 69 species ofpalynomorphs, with 12 genera Bara-1 (25 Species of foram and 101 species of palynormorphs). Amama-1permitted the recognition of 21 genera with 31 formainiferal assemblage zones, 32 pollen and 37 sporesassemblage zones, and dinoflagellate cyst, biozonation, ranging from late Campanian – earlyPaleocene. Bara-1 yielded (60 pollen, 41 spore assemblage zone and 18 dinoflagellate cyst).The zones, in stratigraphically ascending order for the foraminifera and palynomorphs are asfollows. AmamaBiozone A-Globotruncanellahavanensis zone: Late Campanian –Maastrichtian (695 – 1829m) Biozone B-Morozovellavelascoensis zone: Early Paleocene(165–695m) Bara-1 Biozone A-Globotruncanellahavanensis zone: Late Campanian(1512m) Biozone B-Bolivinaafra, B. explicate zone: Maastrichtian (634–1204m) BiozoneC- Indeterminate (305 – 634m) Palynological Amama-1 A.Ctenolophoniditescostatus zone:Early Maastrichtian (1829m) B-Retidiporitesminiporatus Zone: Late Maastrichtian (1274m)Constructipollenitesineffectus Zone: Early Paleocene(695m) Bara-1 Droseriditessenonicus Zone: Late Campanian (994– 1600m) B. Ctenolophoniditescostatus Zone: EarlyMaastrichtian (713–994m) C. Retidiporitesminiporatus Zone: Late Maastrichtian (305 –713m) The paleo – environment of deposition were determined to range from non-marine toouter netritic. A detailed categorization of the palynormorphs into terrestrially derivedpalynormorphs and marine derived palynormorphs based on the distribution of three broadvegetation types; mangrove, fresh water swamps and hinther land communities were used toevaluate sea level fluctuations with respect to sediments deposited in the basins and linkedwith a particular depositional system tract. Amama-1 recorded 4 maximum flooding surface(MFS) at depth 165-1829, dated b/w 61ma-76ma and three sequence boundary(SB) at depth1048m-1533m and 1581 dated b/w 634m-1387m, dated 69.5ma-82ma and four sequenceboundary(SB) at 552m-876m, dated 68ma-77.5ma respectively. The application ofecostratigraphic description is characterised by the prominent expansion of the hinterlandcomponent consisting of the Mangrove to Lowland Rainforest and Afromontane – Savannah vegetation.

Keywords: formanifera, palynomorphs. campanian, maastritchian, ecostratigraphic anambra

Procedia PDF Downloads 33
96 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 132
95 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan

Authors: Munenari Inoguchi, Keiko Tamura

Abstract:

In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.

Keywords: building damage inspection, flood, geographic information system, spatial interpolation

Procedia PDF Downloads 126
94 Queer Anti-Urbanism: An Exploration of Queer Space Through Design

Authors: William Creighton, Jan Smitheram

Abstract:

Queer discourse has been tied to a middle-class, urban-centric, white approach to the discussion of queerness. In doing so, the multilayeredness of queer existence has been washed away in favour of palatable queer occupation. This paper uses design to explore a queer anti-urbanist approach to facilitate a more egalitarian architectural occupancy. Scott Herring’s work on queer anti-urbanism is key to this approach. Herring redeploys anti-urbanism from its historical understanding of open hostility, rejection and desire to destroy the city towards a mode of queer critique that counters normative ideals of homonormative metronormative gay lifestyles. He questions how queer identity has been closed down into a more diminutive frame where those who do not fit within this frame are subjected to persecution or silenced through their absence. We extend these ideas through design to ask how a queer anti-urbanist approach facilitates a more egalitarian architectural occupancy. Following a “design as research” methodology, the design outputs allow a vehicle to ask how we might live, otherwise, in architectural space. A design as research methodologically is a process of questioning, designing and reflecting – in a non-linear, iterative approach – establishes itself through three projects, each increasing in scale and complexity. Each of the three scales tackled a different body relationship. The project began exploring the relations between body to body, body to known others, and body to unknown others. Moving through increasing scales was not to privilege the objective, the public and the large scale; instead, ‘intra-scaling’ acts as a tool to re-think how scale reproduces normative ideas of the identity of space. There was a queering of scale. Through this approach, the results were an installation that brings two people together to co-author space where the installation distorts the sensory experience and forces a more intimate and interconnected experience challenging our socialized proxemics: knees might touch. To queer the home, the installation was used as a drawing device, a tool to study and challenge spatial perception, drawing convention, and as a way to process practical information about the site and existing house – the device became a tool to embrace the spontaneous. The final design proposal operates as a multi-scalar boundary-crossing through “private” and “public” to support kinship through communal labour, queer relationality and mooring. The resulting design works to set adrift bodies in a sea of sensations through a mix of pleasure programmes. To conclude, through three design proposals, this design research creates a relationship between queer anti-urbanism and design. It asserts that queering the design process and outcome allows a more inclusive way to consider place, space and belonging. The projects lend to a queer relationality and interdependence by making spaces that support the unsettled, out-of-place, but is it queer enough?

Keywords: queer, queer anti-urbanism, design as research, design

Procedia PDF Downloads 178