Search results for: ensemble learning supervised machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8789

Search results for: ensemble learning supervised machine learning

7469 Cooperative Learning Promotes Successful Learning. A Qualitative Study to Analyze Factors that Promote Interaction and Cooperation among Students in Blended Learning Environments

Authors: Pia Kastl

Abstract:

Potentials of blended learning are the flexibility of learning and the possibility to get in touch with lecturers and fellow students on site. By combining face-to-face sessions with digital self-learning units, the learning process can be optimized, and learning success increased. To examine wether blended learning outperforms online and face-to-face teaching, a theory-based questionnaire survey was conducted. The results show that the interaction and cooperation among students is poorly provided in blended learning, and face-to-face teaching performs better in this respect. The aim of this article is to identify concrete suggestions students have for improving cooperation and interaction in blended learning courses. For this purpose, interviews were conducted with students from various academic disciplines in face-to-face, online, or blended learning courses (N= 60). The questions referred to opinions and suggestions for improvement regarding the course design of the respective learning environment. The analysis was carried out by qualitative content analysis. The results show that students perceive the interaction as beneficial to their learning. They verbalize their knowledge and are exposed to different perspectives. In addition, emotional support is particularly important in exam phases. Interaction and cooperation were primarily enabled in the face-to-face component of the courses studied, while there was very limited contact with fellow students in the asynchronous component. Forums offered were hardly used or not used at all because the barrier to asking a question publicly is too high, and students prefer private channels for communication. This is accompanied by the disadvantage that the interaction occurs only among people who already know each other. Creating contacts is not fostered in the blended learning courses. Students consider optimization possibilities as a task of the lecturers in the face-to-face sessions: Here, interaction and cooperation should be encouraged through get-to-know-you rounds or group work. It is important here to group the participants randomly to establish contact with new people. In addition, sufficient time for interaction is desired in the lecture, e.g., in the context of discussions or partner work. In the digital component, students prefer synchronous exchange at a fixed time, for example, in breakout rooms or an MS Teams channel. The results provide an overview of how interaction and cooperation can be implemented in blended learning courses. Positive design possibilities are partly dependent on subject area and course. Future studies could tie in here with a course-specific analysis.

Keywords: blended learning, higher education, hybrid teaching, qualitative research, student learning

Procedia PDF Downloads 70
7468 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 29
7467 A Program Based on Artistic and Musical Activities to Acquire Some Educational Concepts for Children with Learning Difficulties

Authors: Ahmed Amin Mousa, Huda Mazeed, Eman Saad

Abstract:

The study aims to identify the extent of the effectiveness of the artistic formation program using some types of pastes to reduce the hyperactivity of the kindergarten child. The researcher has discussed the effectiveness of the artistic program using some types of pastes in reducing the hyperactivity of the kindergarten child. The research sample included 120 children of ages between 5 to 6 years old from the five schools for special needs section learning disability, Cairo Province. The study used the empirical like curriculum which depends on designing one group using the before and after application measurement for the group to validate the fidelity of both the hypothesis and the effectiveness of the program. The variables of the study were specified as follows; artistic formation program using paper Mache as an independent variable and its effect on skills of kindergarten child with learning disabilities as a subsequent variable. The researchers depended on applying a group of artistic formation program using pulp melding skills for kindergarten children with learning disabilities. The tools of the study, designed by the researcher, included: recording card used for recording the Effective program using pulp molding skills for kindergarten children with learning disabilities during practicing the artistic formation activity. In additional, there was a program using pulp molding skills for kindergarten children with learning disabilities. The results proved the effectiveness of the program using pulp molding skills for kindergarten children with learning disabilities.

Keywords: artistic program, developing skills, kindergarten, children, learning disabilities

Procedia PDF Downloads 158
7466 Exploring and Evaluating the Current Style of Teaching Biology in Saudi Universities from Teachers' Points of View

Authors: Ibraheem Alzahrani

Abstract:

The Saudi Arabia ministry of higher education has established 24 universities across various cities in the kingdom. The universities have the mandate of sustaining technological progress in both teaching and learning. The present study explores the statues of teaching in Saudi universities, focusing on biology, a critical curriculum. The paper explores biology teachers’ points of view is several Saudi higher education institutions through questionnaires disseminated via emails. According to the findings, the current teaching methods are traditional and the teachers believe that it is critical to change it. This study also, reviews how biology has been taught in the kingdom over the past, as well as how it is undertaken presently. In addition, some aspects of biology teaching are considered, including the biology curriculum and learning objectives in higher education biology.

Keywords: higher education, teaching style, traditional learning, electronic learning, web 2.0 applications, blended learning

Procedia PDF Downloads 382
7465 The Digitalization of Occupational Health and Safety Training: A Fourth Industrial Revolution Perspective

Authors: Deonie Botha

Abstract:

Digital transformation and the digitization of occupational health and safety training have grown exponentially due to a variety of contributing factors. The literature suggests that digitalization has numerous benefits but also has associated challenges. The aim of the paper is to develop an understanding of both the perceived benefits and challenges of digitalization in an occupational health and safety context in an effort to design and develop e-learning interventions that will optimize the benefits of digitalization and address the associated challenges. The paper proposes, deliberate and tests the design principles of an e-learning intervention to ensure alignment with the requirements of a digitally transformed environment. The results of the research are based on a literature review regarding the requirements and effect of the Fourth Industrial Revolution on learning and e-learning in particular. The findings of the literature review are enhanced with empirical research in the form of a case study conducted in an organization that designs and develops e-learning content in the occupational health and safety industry. The primary findings of the research indicated that: (i) The requirements of learners and organizations in respect of e-learning are different than previously (i.e., a pre-Fourth Industrial Revolution related work setting). (ii) The design principles of an e-learning intervention need to be aligned with the entire value chain of the organization. (iii) Digital twins support and enhance the design and development of e-learning. (iv)Learning should incorporate a multitude of sensory experiences and should not only be based on visual stimulation. (v) Data that are generated as a result of e-learning interventions should be incorporated into big data streams to be analyzed and to become actionable. It is therefore concluded that there is general consensus on the requirements that e-learning interventions need to adhere to in a digitally transformed occupational health and safety work environment. The challenge remains for organizations to incorporate data generated as a result of e-learning interventions into the digital ecosystem of the organization.

Keywords: digitalization, training, fourth industrial revolution, big data

Procedia PDF Downloads 154
7464 Using Music: An Effective Medium of Teaching Vocabulary in ESL Classroom

Authors: Takwa Jahan

Abstract:

Music can be used in ESL classroom to create a learning environment. As literature abounds with positive statements, music can be used as a vehicle for second language acquisition. Music can be applied as an instrument to help second language learners to acquire vocabulary, grammar, spelling and other four skills and to expand cultural knowledge. Vocabulary learning is perceived boring by learners. As listening to music and singing songs are enjoyable to students, it can be used effectively to acquire vocabulary in second language. This paper reports a study to find out how music exhilarates vocabulary acquisition as the learners stay relaxed and thus learning becomes more enjoyable. For conducting my research two groups of fifty students- music and non-music group were formed. Data were collected through class observation, test, questionnaires, and interview. The finding shows that music group acquired much amount of vocabulary than the non-music group. They enjoyed vocabulary learning activities based on listening songs.

Keywords: effective instrument, ESL classroom, music, relax environment, vocabulary learning

Procedia PDF Downloads 370
7463 Classifications of Neuroscientific-Radiological Findings on “Practicing” in Mathematics Learning

Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke

Abstract:

Many people know ‘Mathematics needs practice!’ statement or similar ones from their mathematics lessons. It seems important to practice when learning mathematics. At the same time, it also seems important to practice how to learn mathematics. This paper places neuroscientific-radiological findings on “practicing” while learning mathematics in a context of mathematics education. To accomplish this, we use a literature-based discussion of our case study on practice. We want to describe neuroscientific-radiological findings in the context of mathematics education and point out stimulating connections between both perspectives. From a connective perspective we expect incentives that lead discussions in future research in the field of mathematics education.

Keywords: functional magnetic resonance imaging, fMRI, education, mathematics learning, practicing

Procedia PDF Downloads 338
7462 Active Learning Based on Science Experiments to Improve Scientific Literacy

Authors: Kunihiro Kamataki

Abstract:

In this study, active learning based on simple science experiments was developed in a university class of the freshman, in order to improve their scientific literacy. Through the active learning based on simple experiments of generation of cloud in a plastic bottle, students increased the interest in the global atmospheric problem and were able to discuss and find solutions about this problem positively from various viewpoints of the science technology, the politics, the economy, the diplomacy and the relations among nations. The results of their questionnaires and free descriptions of this class indicate that they improve the scientific literacy and motivations of other classroom lectures to acquire knowledge. It is thus suggested that the science experiment is strong tool to improve their intellectual curiosity rapidly and the connections that link the impression of science experiment and their interest of the social problem is very important to enhance their learning effect in this education.

Keywords: active learning, scientific literacy, simple scientific experiment, university education

Procedia PDF Downloads 256
7461 Perceptions of Higher Education Online Learning Faculty in Lebanon

Authors: Noha Hamie Haidar

Abstract:

The purpose of this case study was to explore faculty attitudes toward online learning in a Lebanese Higher Education Institution (HEI). The research problem addressed the disinterest among faculty at the Arts, Sciences, and Technology University of Lebanon (AUL) in enhancing learning using online technology. The research questions for the study examined the attitudes of the faculty toward applying online learning and the extent of the faculty readiness to adopt this technological change. A qualitative case study design was used that employed multiple sources of information including semi-structured interviews and existing literature. The target population was AUL faculty including full-time instructors and administration (n=25). Data analysis was guided by the lens of Kanter’s theoretical approach, which focused on faculty’s awareness, desire, knowledge, ability, and reinforcement model (ADKAR) for adopting change. Key findings indicated negative impressions concerning online learning such as authority (ministry of education, culture, and rules); and change (increased enrollment and different teaching styles). Yet, within AUL’s academic environment, the opportunity for the adoption of online learning was identified; faculty showed positive elements, such as the competitive advantage to first enter the Lebanese Market, and higher student enrollment. These results may encourage AUL’s faculty to adopt online learning and to achieve a positive social change by expanding the ability of students in HEIs to compete globally.

Keywords: faculty, higher education, technology, online learning

Procedia PDF Downloads 404
7460 College Students’ Multitasking and Its Causes

Authors: Huey-Wen Chou, Shuo-Heng Liang

Abstract:

This study focuses on studying college students’ multitasking with cellphones/laptops during lectures. In-class multitasking behavior is defined as the activities students engaged that are irrelevant to learning. This study aims to understand if students' learning engagement affects students' multitasking as well as to investigate the causes or motivations that contribute to the occurrence of multitasking behavior. Survey data were collected and analyzed by PLS method and multiple regression to test the research model and hypothesis. Major results include: 1. Students' multitasking motivation positively predicts students’ in-class multitasking. 2. Factors affecting multitasking in class, including efficiency, entertainment and social needs, significantly impact on multitasking. 3. Polychronic personality traits will positively predict students’ multitasking. 4. Students' classroom learning engagement negatively predicts multitasking. 5. Course attributes negatively predict student learning engagement and positively predict student multitasking.

Keywords: engagement, monochronic personality, multitasking, learning, personality traits

Procedia PDF Downloads 131
7459 Evaluating Key Attributes of Effective Digital Games in Tertiary Education

Authors: Roopali Kulkarni, Yuliya Khrypko

Abstract:

A major problem in educational digital game design is that game developers are often focused on maintaining the fun and playability of an educational game, whereas educators are more concerned with the learning aspect of the game rather than its entertaining characteristics. There is a clear need to understand what key aspects of digital learning games make them an effective learning medium in tertiary education. Through a systematic literature review and content analysis, this paper identifies, evaluates, and summarizes twenty-three key attributes of digital games used in tertiary education and presents a summary digital game-based learning (DGBL) model for designing and evaluating an educational digital game of any genre that promotes effective learning in tertiary education. The proposed solution overcomes limitations of previously designed models for digital game evaluation, such as a small number of game attributes considered or applicability to a specific genre of digital games. The proposed DGBL model can be used to assist game designers and educators with creating effective and engaging educational digital games for the tertiary education curriculum.

Keywords: DGBL model, digital games, educational games, game-based learning, tertiary education

Procedia PDF Downloads 281
7458 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
7457 Motivating the Independent Learner at the Arab Open University, Kuwait Branch

Authors: Hassan Sharafuddin, Chekra Allani

Abstract:

Academicians at the Arab Open University have always voiced their concern about the efficacy of the blended learning process. Based on 75% independent study and 25% face-to-face tutorial, it poses the challenge of the predisposition to adjustment. Being used to the psychology of traditional educational systems, AOU students cannot be easily weaned from being spoon-fed. Hence they lack the motivation to plunge into self-study. For better involvement of AOU students into the learning practices, it is imperative to diagnose the factors that impede or increase their motivation. This is conducted through an empirical study grounded upon observations and tested hypothesis and aimed at monitoring and optimizing the students’ learning outcome. Recommendations of the research will follow the findings.

Keywords: academic performance, blended learning, educational psychology, independent study, pedagogy

Procedia PDF Downloads 433
7456 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 383
7455 The Barriers That ESOL Learners Face Accessing Further Education

Authors: Jamie David Hopkin

Abstract:

This study aims to contribute uniquely to help colleges and community learning and development institutes to help aid progression within ESOL learning. The study investigates the barriers that migrant and displaced learners face accessing further education in Scotland. The study also includes a set of recommendations both for colleges and CLD institutes to help ESOL learners in their journey to further education. The research found that integration into Scottish society is one of the biggest motivators for ESOL students to learn English. It also found that the place of gender and “gender roles” contribute to the barriers that learners face in terms of progression and learning. The study also reviews all literature related to ESOL learning in Scotland and found that there are only two main policies that support ESOL learning, and both are slightly outdated in terms of supporting progression. This study aims to help bridge the gap in knowledge around the progression from informal learning to formal education. The recommendations that are made in this study are aimed to help institutes and learners on their journey to a positive destination. The main beneficiaries of this research are current and future ESOL learners in Scotland, ESOL institutes, and TESOL professionals.

Keywords: community learning and development, English for speakers of other languages, further education, higher education TESOL, teaching English as a second language

Procedia PDF Downloads 134
7454 The Design of Local Wisdom Learning for Providing Creative Activities for Juveniles with Exhibit Media: Suan-Oui Youth Center

Authors: Jong Boonpracha

Abstract:

This paper studied the application of the design of local wisdom learning for providing creative activity for juveniles with exhibit media. The Suan-oui Youth Center has the objectives to design and develop exhibit media that encourage participation and learning of youths on local wisdom of Ratanakosin Island. The research was conducted in three stages: 1) to study the principle of local wisdom learning of cultural heritage at Ratanakosin Island 2) to study exhibit media that encouraged participation and creative activities of youth on local wisdom learning, and 3) to design a youth center that provide media exhibition for local wisdom learning. The research revealed the following: 34.6 percent of respondents wanted to apply local living wisdom in their career and for hobby. At least two kinds of exhibit media effectively provided creative activities for youths. A multi-purpose area, for example, with still pictures, visual symbols, and simulations would increase the level of youths’ interaction and participation.

Keywords: exhibit media, local wisdom, youth center, design

Procedia PDF Downloads 399
7453 An Exploratory Study of E-Learning Stakeholders’ Experiences of Developing, Implementing and Enhancing E-Courses in One Saudi University

Authors: Zahra Alqahtani

Abstract:

The use of e-learning technologies is gaining momentum in all educational institutions of the world, including Saudi universities. In the e-learning context, there is a growing need and concern among Saudi universities to improve and enhance quality assurance for e-learning systems. Practicing quality assurance activities and applying quality standards in e-learning in Saudi universities is thought to reduce the negative viewpoints of some stakeholders and ensure stakeholders’ satisfaction and needs. As a contribution to improving the quality of e-learning method in Saudi universities, the main purpose of this study is to explore and investigate strategies for the development of quality assurance in e-learning in one university in Saudi Arabia, which is considered a good reference university using the best and ongoing practices in e-learning systems among Saudi universities. In order to ensure the quality of its e-learning methods, Saudi university has adopted Quality Matters Standards as a controlling guide for the quality of its blended and full e-course electronic courses. Furthermore, quality assurance can be further improved if a variety of perspectives are taken into consideration from the comprehensive viewpoints of faculty members, administrative staff, and students.This qualitative research involved the use of different types of interviews, as well as documents that contain data related to e-learning methods in the Saudi university environment. This exploratory case study was undertaken, from the perspectives of various participants, to understand the phenomenon of quality assurance using an inductive technique.The results revealed six main supportive factors that assist in ensuring the quality of e-learning in the Saudi university environment. Essentially, these factors are institutional support, faculty member support, evaluation of faculty, quality of e-course design, technology support, and student support, which together have a remarkable positive effect on quality, forming intrinsic columns connected by bricks leading to quality e-learning. Quality Matters standards are considered to have a strong impact on improving faculty members' skills and on the development of high-quality blended and full e-courses.

Keywords: E-learning, quality assurance, quality matters standards, KKU-supportive factors

Procedia PDF Downloads 120
7452 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 254
7451 A Pilot Study of Bangkok High School Students’ Satisfaction Towards Online Learning Platform During Covid-19 Pandemic

Authors: Aung Aung Kyi, Khin Khin Aye

Abstract:

The mode of teaching and learning has been changed dramatically due to the Covid-19 pandemic that made schools close and students may have been away from the campus. However, many schools all over the countries are helping students to facilitate e-learning through online teaching and learning platform. Regarding this, Sarasas bilingual school in Bangkok conducted the high school students’ satisfaction survey since it is important for every school to improve its quality of education that must meet the students' need. For the good of the school's reputation, the purpose of the study is to examine the level of satisfaction that enhances the best services in the future. This study applied random sampling techniques and the data were collected using a self-administered survey. Descriptive analysis and independent sample t-tests were used to measure the importance of satisfaction components. The results showed G-11 (A) students were extremely satisfied with “Accessibility of course resources and materials through online platform” and “Ontime homework submission” while G-11 (B) students were extremely satisfied with “Teacher assisted with guiding my learning activities” and “Course teacher for this online course interacted with me in a timely fashion”. Additionally, they were also satisfied with a clear understanding of the teacher’s introduction during online learning. A significant difference in the satisfaction was observed between G-11 (A) and G-11 (B) students in terms of “A clear understanding on introduction was given by the teacher at the beginning of this online course”(P=0.03), “Teacher assisted with guiding my learning activities” (P=0.003), and “Comfortable surrounding during online learning” (P=0.02). With regard to gender, it has been seen that female high school students were extremely satisfied with the amount of course interaction with their teacher and her guidance with learning activities during online learning. By understanding the survey assessment, schools can improve their quality of education through the best digital educational platform that helps satisfy their students in the future.

Keywords: Bangkok high school students., covid-19 pandemic, online learning platform, satisfaction

Procedia PDF Downloads 212
7450 The Complexities of Designing a Learning Programme in Higher Education with the End-User in Mind

Authors: Andre Bechuke

Abstract:

The quality of every learning programme in Higher Education (HE) is dependent on the planning, design, and development of the curriculum decisions. These curriculum development decisions are highly influenced by the knowledge of the end-user, who are not always just the students. When curriculum experts plan, design and develop learning programmes, they always have the end-users in mind throughout the process. Without proper knowledge of the end-user(s), the design and development of a learning programme might be flawed. Curriculum experts often struggle to determine who the real end-user is. As such, it is even more challenging to establish what needs to be known about the end user that should inform the plan, design, and development of a learning programme. This research sought suggest approaches to guide curriculum experts to identify the end-user(s), taking into consideration the pressure and influence other agencies and structures or stakeholders (industry, students, government, universities context, lecturers, international communities, professional regulatory bodies) have on the design of a learning programme and the graduates of the programmes. Considering the influence of these stakeholders, which is also very important, the task of deciding who the real end-user of the learning programme becomes very challenging. This study makes use of criteria 1 and 18 of the Council on Higher Education criteria for programme accreditation to guide the process of identifying the end-users when developing a learning programme. Criterion 1 suggests that designers must ensure that the programme is consonant with the institution’s mission, forms part of institutional planning and resource allocation, meets national requirements and the needs of students and other stakeholders, and is intellectually credible. According to criterion 18, in designing a learning programme, steps must be taken to enhance the employability of students and alleviate shortages of expertise in relevant fields. In conclusion, there is hardly ever one group of end-users to be considered for developing a learning programme, and the notion that students are the end-users is not true, especially when the graduates are unable to use the qualification for employment.

Keywords: council on higher education, curriculum design and development, higher education, learning programme

Procedia PDF Downloads 79
7449 Sustaining Language Learning: A Case Study of Multilingual Writers' ePortfolios

Authors: Amy Hodges, Deanna Rasmussen, Sherry Ward

Abstract:

This paper examines the use of ePortfolios in a two-course sequence for ESL (English as a Second Language) students at an international branch campus in Doha, Qatar. ePortfolios support the transfer of language learning, but few have examined the sustainability of that transfer across an ESL program. Drawing upon surveys and interviews with students, we analyze three case studies that complicate previous research on metacognition, language learning, and ePortfolios. Our findings have implications for those involved in ESL programs and assessment of student writing.

Keywords: TESOL, electronic portfolios, assessment, technology

Procedia PDF Downloads 259
7448 Future Education: Changing Paradigms

Authors: Girish Choudhary

Abstract:

Education is in a state of flux. Not only one need to acquire skills in order to cope with a fast changing global world, an explosive growth in technology, on the other hand is providing a new wave of teaching tools - computer aided video instruction, hypermedia, multimedia, CD-ROMs, Internet connections, and collaborative software environments. The emerging technology incorporates the group qualities of interactive, classroom-based learning while providing individual students the flexibility to participate in an educational programme at their own time and place. The technology facilitating self learning also seems to provide a cost effective solution to the dilemma of delivering education to masses. Online education is a unique learning domain that provides for many to many communications as well. The computer conferencing software defines the boundaries of the virtual classroom. The changing paradigm provides access of instruction to a large proportion of society, promises a qualitative change in the quality of learning and echoes a new way of thinking in educational theory that promotes active learning and open new learning approaches. Putting it to practice is challenging and may fundamentally alter the nature of educational institutions. The subsequent part of paper addresses such questions viz. 'Do we need to radically re-engineer the curriculum and foster an alternate set of skills in students?' in the onward journey.

Keywords: on-line education, self learning, energy and power engineering, future education

Procedia PDF Downloads 328
7447 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System

Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi

Abstract:

Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.

Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process

Procedia PDF Downloads 139
7446 Implementing Universal Design for Learning in Social Work Education

Authors: Kaycee Bills

Abstract:

Action research is a method of inquiry useful in solving social problems in social work. This study seeks to address a significant problem: higher education’s use of traditional instructional methods in social work education. Ineffective techniques, such as lecturing, fail to account for students’ variable learning needs. In contrast to traditional pedagogy, universal design for learning (UDL) is a robust framework that '[improves] and [optimizes] teaching and learning for all people' (CAST, 2018), including students with disabilities. For this project, the research team interviewed the UDL and Accessibility Specialist at their institution for two reasons: (1) to learn how to implement UDL practices in their classrooms, and in turn, (2) to motivate other faculty members at their institution to consider enacting UDL principles. A thematic analysis of the interview’s transcript reveals themes relevant to practicing UDL. Implications for future practice, as well as the researcher’s reflections on the research process, are shared in the discussion section.

Keywords: disabilities, higher education, inclusive education, universal design for learning

Procedia PDF Downloads 127
7445 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 138
7444 An Innovative Approach to Improve Skills of Students in Qatar University Spending in Virtual Class though LMS

Authors: Mohammad Shahid Jamil

Abstract:

In this study we have investigated students’ learning and satisfaction in one of the course offered in the Foundation Program at Qatar University. We implied innovative teaching methodology that emphasizes on enhancing students’ thinking skills, decision making, and problem solving skills. Some interesting results were found which can be used to further improve the teaching methodology. To make sure the full use of technology in Foundation Program at Qatar University has started implementing new ways of teaching Math course by using Blackboard as an innovative interactive tool to support standard teaching such as Discussion board, Virtual class, and Study plan in My Math Lab “MML”. In MML Study Plan is designed in such a way that the student can improve their skills wherever they face difficulties with in their Homework, Quiz or Test. Discussion board and Virtual Class are collaborative learning tools encourages students to engage outside of class time. These tools are useful to share students’ knowledge and learning experiences, promote independent and active learning and they helps students to improve their critical thinking skills through the learning process.

Keywords: blackboard, discussion board, critical thinking, active learning, independent learning, problem solving

Procedia PDF Downloads 427
7443 Online Foreign Language Learning Motivation for Tunisian Students of English

Authors: Leila Najeh

Abstract:

This study investigates the motivational factors influencing Tunisian university students learning English through online platforms. Using a mixed-methods approach, data were collected from 112 undergraduate students of English across universities in Tunisia. The study employed an online questionnaire to measure intrinsic and extrinsic motivation, incorporating the Learning Motivation Questionnaire (FFLLM-Q) developed by Gonzales in 2001 and semi-structured interviews to explore students’ perspectives on their online learning experiences. Quantitative analysis revealed a significant correlation between intrinsic motivation and interactive features such as gamification and adaptive content delivery, while extrinsic motivation was strongly linked to career aspirations and academic requirements. Qualitative findings highlighted challenges such as limited interaction with peers and teachers, technical constraints, and a lack of immediate feedback as demotivating factors. Participants expressed a preference for blended learning models, combining the flexibility of online education with the collaborative environment of traditional classrooms. This study underscores the need for tailored online learning solutions to enhance the motivational landscape for Tunisian students, emphasizing the importance of culturally relevant content, accessible platforms, and supportive learning communities. Further research is recommended to evaluate the long-term impact of these interventions on language proficiency and learner autonomy.

Keywords: motivational factor, online foreign language learnig, tunsian students of english, online learning platforms

Procedia PDF Downloads 0
7442 Engaging Students with Special Education Needs through Technology-Enhanced Interactive Activities in Class

Authors: Pauli P.Y. Lai

Abstract:

Students with Special Education Needs (SEN) face many challenges in learning. Various challenges include difficulty in handwriting, slow understanding and assimilation, difficulty in paying attention during class, and lack of communication skills. To engage students with Special Education Needs in class with general students, Blackboard Collaborate is used as a teaching and learning tool to deliver a lecture with interactive activities. Blackboard Collaborate provides a good platform to create and enhance active, collaborative and interactive learning experience whereby the SEN students can easily interact with their general peers and the instructor by using the features of drawing on a virtual whiteboard, file sharing, classroom chatter, breakout room, hand-raising feature, polling, etc. By integrating a blended learning approach with Blackboard Collaborate, the students with Special Education Needs could engage in interactive activities with ease in class. Our research aims at exploring and discovering the use of Blackboard Collaborate for inclusive education based on a qualitative design with in-depth interviews. Being served in a general education environment, three university students with different kinds of learning disabilities have participated in our study. All participants agreed that functions provided by Blackboard Collaborate have enhanced their learning experiences and helped them learn better. Their academic performances also showed that SEN students could perform well with the help of technology. This research studies different aspects of using Blackboard Collaborate to create an inclusive learning environment for SEN students.

Keywords: blackboard collaborate, enhanced learning experience, inclusive education, special education needs

Procedia PDF Downloads 131
7441 Comparing Effects of Supervised Exercise Therapy versus Home-Based Exercise Therapy on Low Back Pain Severity, Muscle Strength and Anthropometric Parameters in Patients with Nonspecific Chronic Low Back Pain

Authors: Haleh Dadgostar, Faramarz Akbari, Hosien Vahid Tari, Masoud Solaymani-Dodaran, Mohammad Razi

Abstract:

Introduction: There are a number of exercises-protocols have been applied to improve low back pain. We compared the effect of supervised exercise therapy and home-based exercise therapy among patients with nonspecific chronic low back pain. Methods: 70 patients with nonspecific chronic low back pain were randomly (using a random number generator, excel) divided into two groups to compare the effects of two types of exercise therapy. After a common educational session to learn how to live with low back pain as well as to use core training protocols to strengthen the muscles, the subjects were randomly assigned to follow supervised exercise therapy (n = 31) or home-based exercise therapy (n = 34) for 20 weeks. Results: Although both types of exercise programs resulted in reduced pain, this factor decreased more significantly in supervised exercise program. All scores of fitness improved significantly in supervised exercise group. But only knee extensor strength score was increased in the home base exercise group. Conclusion: Comparing between two types of exercise, supervised group exercise showed more effective than the other one. Reduction in low back pain severity and improvement in muscle flexibility and strength can be more achieved by using a 20-week supervised exercise program compared to the home-based exercise program in patients with nonspecific chronic low back pain.

Keywords: low back pain, anthropometric parameters, supervised exercise therapy, home-based exercise therapy

Procedia PDF Downloads 326
7440 E-Book: An Essential Tool for Promoting Reading and Learning Amongst Students of Niger State College of Education, Minna

Authors: Abdulkadir Mustapha Gana, Musa Baba Adamu, Edimeh Augustine Jr

Abstract:

There are growing concerns over the astronomical decline inquality of teaching and learning amongst youths especially in developing countries, and handful research have been conducted in this regard. However, results from many of these studies revealed similar findings which all pointed to the steady decline in quality of teaching and learning across the globe. One common factor attributed for this drawback was the new media due to the evolution and advancement of technology as studies have revealed. In the beginning, what was then the new media (broadcast media of radio and television) was singled out as being responsible for diverting people’s attention from reading; particularly television. At present times, it was revealed that the social media and internet connectivity were responsible for diverting the attention of many, thus distracting attentions from reading. However, it is pertinent to note that the devastating effects, social media platforms have a couple of tools that could improve reading by extension teaching and learning amongst students. Therefore, this study reviewed the literature on the advantageous aspect of social media to reading and learning; whilst laying emphasis on how youths can utilize social media to improve their reading habits.

Keywords: ebook, reading, learning, students

Procedia PDF Downloads 74