Search results for: early detection
5270 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1725269 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins
Authors: Haiyang Su, Kun Qian
Abstract:
We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins
Procedia PDF Downloads 2105268 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 4685267 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 2335266 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength
Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma
Abstract:
The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.
Procedia PDF Downloads 555265 Detection of Cryptosporidium Oocysts by Acid-Fast Staining Method and PCR in Surface Water from Tehran, Iran
Authors: Mohamad Mohsen Homayouni, Niloofar Taghipour, Ahmad Reza Memar, Niloofar Khalaji, Hamed Kiani, Seyyed Javad Seyyed Tabaei
Abstract:
Background and Objective: Cryptosporidium is a coccidian protozoan parasite; its oocysts in surface water are a global health problem. Due to the low number of parasites in the water resources and the lack of laboratory culture, rapid and sensitive method for detection of the organism in the water resources is necessarily required. We applied modified acid-fast staining and PCR for the detection of the Cryptosporidium spp. and analysed the genotypes in 55 samples collected from surface water. Methods: Over a period of nine months, 55 surface water samples were collected from the five rivers in Tehran, Iran. The samples were filtered by using cellulose acetate membrane filters. By acid fast method, initial identification of Cryptosporidium oocyst were carried out on surface water samples. Then, nested PCR assay was designed for the specific amplification and analysed the genotypes. Results: Modified Ziehl-Neelsen method revealed 5–20 Cryptosporidium oocysts detected per 10 Liter. Five out of the 55 (9.09%) surface water samples were found positive for Cryptosporidium spp. by Ziehl-Neelsen test and seven (12.7%) were found positive by nested PCR. The staining results were consistent with PCR. Seven Cryptosporidium PCR products were successfully sequenced and five gp60 subtypes were detected. Our finding of gp60 gene revealed that all of the positive isolates were Cryptosporidium parvum and belonged to subtype families IIa and IId. Conclusion: Our investigations were showed that collection of water samples were contaminated by Cryptosporidium, with potential hazards for the significant health problem. This study provides the first report on detection and genotyping of Cryptosporidium species from surface water samples in Iran, and its result confirmed the low clinical incidence of this parasite on the community.Keywords: Cryptosporidium spp., membrane filtration, subtype, surface water, Iran
Procedia PDF Downloads 4165264 Inactivation of Semicarbazide-Sensitive Amine Oxidase Induces the Phenotypic Switch of Smooth Muscle Cells and Aggravates the Development of Atherosclerotic Lesions
Authors: Miao Zhang, Limin Liu, Feng Zhi, Panpan Niu, Mengya Yang, Xuemei Zhu, Ying Diao, Jun Wang, Ying Zhao
Abstract:
Background and Aims: Clinical studies have demonstrated that serum semicarbazide-sensitive amine oxidase (SSAO) activities positively correlate with the progression of atherosclerosis. The aim of the present study is to investigate the effect of SSAO inactivation on the development of atherosclerosis. Methods: Female LDLr knockout (KO) mice were given the Western-type diet for 6 and 9 weeks to induce the formation of early and advanced lesions, and semicarbazide (SCZ, 0.125%) was added into the drinking water to inactivate SSAO in vivo. Results: Despite no impact on plasma total cholesterol levels, abrogation of SSAO by SCZ not only resulted in the enlargement of both early (1.5-fold, p=0.0043) and advanced (1.8-fold, p=0.0013) atherosclerotic lesions, but also led to reduced/increased lesion contents of macrophages/smooth muscle cells (SMCs) (macrophage: ~0.74-fold, p=0.0002(early)/0.0016(advanced); SMC: ~1.55-fold, p=0.0003(early) /0.0001(advanced)), respectively. Moreover, SSAO inactivation inhibited the migration of circulating monocytes into peripheral tissues and reduced the amount of circulating Ly6Chigh monocytes (0.7-fold, p=0.0001), which may account for the reduced macrophage content in lesions. In contrast, the increased number of SMCs in lesions of SCZ-treated mice is attributed to an augmented synthetic vascular SMC phenotype switch as evidenced by the increased proliferation of SMCs and accumulation of collagens in vivo. Conclusion: SSAO inactivation by SCZ promotes the phenotypic switch of SMCs and the development of atherosclerosis. The enzymatic activity of SSAO may thus represent a potential target in the prevention and/or treatment of atherosclerosis.Keywords: atherosclerosis, phenotype switch of smooth muscle cells, SSAO/VAP-1, semicarbazide
Procedia PDF Downloads 3275263 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors
Authors: Darshna Sharma, Suban K. Sahoo
Abstract:
The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT
Procedia PDF Downloads 3995262 Giftedness Cloud Model: A Psychological and Ecological Vision of Giftedness Concept
Authors: Rimeyah H. S. Almutairi, Alaa Eldin A. Ayoub
Abstract:
The aim of this study was to identify empirical and theoretical studies that explored giftedness theories and identification. In order to assess and synthesize the mechanisms, outcomes, and impacts of gifted identification models. Thus, we sought to provide an evidence-informed answer to how does current giftedness theories work and effectiveness. In order to develop a model that incorporates the advantages of existing models and avoids their disadvantages as much as possible. We conducted a systematic literature review (SLR). The disciplined analysis resulted in a final sample consisting of 30 appropriate searches. The results indicated that: (a) there is no uniform and consistent definition of Giftedness; (b) researchers are using several non-consistent criteria to detect gifted, and (d) The detection of talent is largely limited to early ages, and there is obvious neglect of adults. This study contributes to the development of Giftedness Cloud Model (GCM) which defined as a model that attempts to interpretation giftedness within an interactive psychological and ecological framework. GCM aims to help a talented to reach giftedness core and manifestation talent in creative productivity or invention. Besides that, GCM suggests classifying giftedness into four levels of mastery, excellence, creative productivity, and manifestation. In addition, GCM presents an idea to distinguish between talent and giftedness.Keywords: giftedness cloud model, talent, systematic literature review, giftedness concept
Procedia PDF Downloads 1655261 Efficient Passenger Counting in Public Transport Based on Machine Learning
Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa
Abstract:
Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.Keywords: computer vision, object detection, passenger counting, public transportation
Procedia PDF Downloads 1515260 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition
Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil
Abstract:
The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.Keywords: DT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.
Procedia PDF Downloads 2335259 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion
Procedia PDF Downloads 1725258 How Technology Can Help Teachers in Reflective Practice
Authors: Ambika Perisamy, Asyriawati binte Mohd Hamzah
Abstract:
The focus of this presentation is to discuss teacher professional development (TPD) through the use of technology. TPD is necessary to prepare teachers for future challenges they will face throughout their careers and to develop new skills and good teaching practices. We will also be discussing current issues in embracing technology in the field of early childhood education and the impact on the professional development of teachers. Participants will also learn to apply teaching and learning practices through the use of technology. One major objective of this presentation is to coherently fuse practical, technology and theoretical content. The process begins by concretizing a set of preconceived ideas which need to be joined with theoretical justifications found in the literature. Technology can make observations fairer and more reliable, easier to implement, and more preferable to teachers and principals. Technology will also help principals to improve classroom observations of teachers and ultimately improve teachers’ continuous professional development. Video technology allows the early childhood teachers to record and keep the recorded video for reflection at any time. This will also provide opportunities for her to share with her principals for professional dialogues and continuous professional development plans. A total of 10 early childhood teachers and 4 principals were involved in these efforts which identified and analyze the gaps in the quality of classroom observations and its co relation to developing teachers as reflective practitioners. The methodology used involves active exploration with video technology recordings, conversations, interviews and authentic teacher child interactions which forms the key thrust in improving teaching and learning practice. A qualitative analysis of photographs, videos, transcripts which illustrates teacher’s reflections and classroom observation checklists before and after the use of video technology were adopted. Arguably, although PD support can be magnanimously strong, if teachers could not connect or create meaning out of the opportunities made available to them, they may remain passive or uninvolved. Therefore, teachers must see the value of applying new ideas such as technology and approaches to practice while creating personal meaning out of professional development. These video recordings are transferable, can be shared and edited through social media, emails and common storage between teachers and principals. To conclude the importance of reflective practice among early childhood teachers and addressing the concerns raised before and after the use of video technology, teachers and principals shared the feasibility, practical and relevance use of video technology.Keywords: early childhood education, reflective, improve teaching and learning, technology
Procedia PDF Downloads 4995257 Truthful or Untruthful Social Media Posts: Applying Statement Analysis to Decode online Deception
Authors: Christa L. Arnold, Margaret C. Stewart
Abstract:
This research shares the results of an exploratory study examining Statement Analysis (SA) to detect deception in online truthful and untruthful social media posts. Applying a Law Enforcement methodology SA, used in criminal interview statements, this research analyzes what is stated to assist in evaluating written deceptive information. Preliminary findings reveal qualitative and quantitative nuances for SA in online deception detection and uncover insights regarding digital deceptive behavior. Thus far, findings reveal truthful statements tend to differ from untruthful statements in both content and quality.Keywords: deception detection, online deception, social media content, statement analysis
Procedia PDF Downloads 635256 Allelopathic Effects of Lambsquarters (Chenopodium album) Extract on the Germination and Early Growth of Wheat (Triticum aestivum L.)
Authors: Amir Halabianfar, Jamshid Razmjoo
Abstract:
In order to evaluate the competitive effects of Lambsqua on the germination and early growth of two wheat (Triticum aestivum L.) varieties, an experiment was conducted in laboratory conditions in researches of agronomy, College of agriculture, Isfahan University of Technology in 2015. A laboratory experiment was conducted on a factorial arrangement in a randomized complete design with four replications. Testing factors include two wheat cultivars (Flat and Atila -4) and three level of Lambsqua (Chenopodium album) extract (30, 60 and 90 percent) plus control with no extract. Twenty-five seeds of each wheat varieties were placed in petri dish, then the root extract of lambsqua, which was prepared previously at three levels, was poured on the seeds in each petri dish. The result showed that allelopathic effect of Lambsquarter on germination, root, and shoot dry weight of two varieties was highly significant. Among varieties, the Atila–4 showed minimum germination at 60% while the Flat showed minimum germination at 90% concentration. In case of root dry weight, Atila–4 was more suppressed as compared to Flat at 60% concentration but at 90% concentration, the both wheat varieties were reduced non-significantly. Shoot dry weight of Flat were decreased non-significantly concentrations except Atila -4 that was more reduced at 60 % than 90% concentration.Keywords: allelopathy, Chenopodium album, extract, germination, wheat, early growth
Procedia PDF Downloads 1805255 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 2345254 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1045253 Factors Contributing to Adverse Maternal and Fetal Outcome in Patients with Eclampsia
Authors: T. Pradhan, P. Rijal, M. C. Regmi
Abstract:
Background: Eclampsia is a multisystem disorder that involves vital organs and failure of these may lead to deterioration of maternal condition and hypoxia and acidosis of fetus resulting in high maternal and perinatal mortality and morbidity. Thus, evaluation of the contributing factors for this condition and its complications leading to maternal deaths should be the priority. Formulating the plan and protocol to decrease these losses should be our goal. Aims and Objectives: To evaluate the risk factors associated with adverse maternal and fetal outcome in patients with eclampsia and to correlate the risk factors associated with maternal and fetal morbidity and mortality. Methods: All patients with eclampsia admitted in Department of Obstetrics and Gynecology, B. P. Koirala Institute of Health Sciences were enrolled after informed consent from February 2013 to February 2014. Questions as per per-forma were asked to patients, and attendants like Antenatal clinic visits, parity, number of episodes of seizures, duration from onset of seizure to magnesium sulfate and the patients were followed as per the hospital protocol, the mode of delivery, outcome of baby, post partum maternal condition like maternal Intensive Care Unit admission, neurological impairment and mortality were noted before discharge. Statistical analysis was done using Statistical Package for the Social Sciences (SPSS 11). Mean and percentage were calculated for demographic variables. Pearson’s correlation test and chi-square test were applied to find the relation between the risk factors and the outcomes. P value less than 0.05 was considered significant. Results: There were 10,000 antenatal deliveries during the study period. Fifty-two patients with eclampsia were admitted. All of the patients were unbooked for our institute. Thirty-nine patients were antepartum eclampsia. Thirty-one patients required mechanical ventilator support. Twenty-four patients were delivered by emergency c-section and 21 babies were Low Birth Weight and there were 9 stillbirths. There was one maternal mortality and 45 patients were discharged with improvement but 3 patients had neurological impairment. Mortality was significantly related with number of seizure episodes and time interval between seizure onset and administration of magnesium sulphate. Conclusion: Early detection and management of hypertensive complicating pregnancy during antenatal clinic check up. Early hospitalization and management with magnesium sulphate for eclampsia can help to minimize the maternal and fetal adverse outcomes.Keywords: eclampsia, maternal mortality, perinatal mortality, risk factors
Procedia PDF Downloads 1675252 Electrospray Deposition Technique of Dye Molecules in the Vacuum
Authors: Nouf Alharbi
Abstract:
The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION
Procedia PDF Downloads 1305251 Threshold Sand Detection Limits for Acoustic Monitors in Multiphase Flow
Authors: Vinod Ponnagandla, Brenton McLaury, Siamack Shirazi
Abstract:
Sand production can lead to deposition of particles or erosion. Low production rates resulting in deposition can partially clog systems and cause under deposit corrosion. Commercially available nonintrusive acoustic sand detectors are attractive as they claim to detect sand production. Acoustic sand detectors are used during oil and gas production; however, operators often do not know the threshold detection limits of these devices. It is imperative to know the detection limits to appropriately plan for cleaning of separation equipment or examine risk of erosion. These monitors are based on detecting the acoustic signature of sand as the particles impact the pipe walls. The objective of this work is to determine threshold detection limits for acoustic sand monitors that are commercially available. The minimum threshold sand concentration that can be detected in a pipe are determined as a function of flowing gas and liquid velocities. A large scale flow loop with a 4-inch test section is utilized. Commercially available sand monitors (ClampOn and Roxar) are evaluated for different flow regimes, sand sizes and pipe orientation (vertical and horizontal). The manufacturers’ recommend that the monitors be placed on a bend to maximize the number of particle impacts, so results are shown for monitors placed at 45 and 90 degree positions in a bend. Acoustic sand monitors that clamp to the outside of pipe are passive and listen for solid particle impact noise. The threshold sand rate is calculated by eliminating the background noise created by the flow of gas and liquid in the pipe for various flow regimes that are generated in horizontal and vertical test sections. The average sand sizes examined are 150 and 300 microns. For stratified and bubbly flows the threshold sand rates are much higher than other flow regimes such as slug and annular flow regimes that are investigated. However, the background noise generated by slug flow regime is very high and cause a high uncertainty in detection limits. The threshold sand rates for annular flow and dry gas conditions are the lowest because of high gas velocities. The effects of monitor placement around elbows that are in vertical and horizontal pipes are also examined for 150 micron. The results show that the threshold sand rates that are detected in vertical orientation are generally lower for all various flow regimes that are investigated.Keywords: acoustic monitor, sand, multiphase flow, threshold
Procedia PDF Downloads 4045250 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4635249 Robust Diagnosis Efficiency by Bond-Graph Approach
Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi
Abstract:
This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR
Procedia PDF Downloads 3035248 A Comparative Study in Acute Pancreatitis to Find out the Effectiveness of Early Addition of Ulinastatin to Current Standard Care in Indian Subjects
Authors: Dr. Jenit Gandhi, Dr. Manojith SS, Dr. Nakul GV, Dr. Sharath Honnani, Dr. Shaurav Ghosh, Dr. Neel Shetty, Dr. Nagabhushan JS, Dr. Manish Joshi
Abstract:
Introduction: Acute pancreatitis is an inflammatory condition of the pancreas which begins in pancreatic acinar cells and triggers local inflammation that may progress to systemic inflammatory response (SIRS) and causing distant organ involvement and its function and ending up with multiple organ dysfunction syndromes (MODS). Aim: A comparative study in acute pancreatitis to find out the effectiveness of early addition of Ulinastatin to current standard care in Indian subjects . Methodology: A current prospective observational study is done during study period of 1year (Dec 2018 –Dec 2019) duration to evaluate the effect of early addition of Ulinastatin to the current standard treatment and its efficacy to reduce the early complication, analgesic requirement and duration of hospital stay in patients with Acute Pancreatitis. Results: In the control group 25 were males and 05 were females. In the test group 18 were males and 12 females. Majority was in the age group between 30 - 70 yrs of age with >50% in the 30-50yrs age group in both test and control groups. The VAS was median grade 3 in control group as compared to median grade 2 in test group , the pain was more in the initial 2 days in test group compared to 4 days in test group , the analgesic requirement was used for more in control group (median 6) to test group( median 3 days ). On follow up after 5 days for a period of 2 weeks none of the patients in the test group developed any complication. Where as in the control group 8 patients developed pleural effusion, 04-Pseudopancreatic cyst, 02 – patient developed portal vein and splenic vein thrombosis, 02 patients – ventilator with ARDS which were treated symptomatically whereas in test group 02 patient developed pleural effusions and 01 pseudo pancreatic cyst with splenic artery aneurysm, 01 – patient with AKI and MODS symptomatically treated. The duration of hospital stay for a median period of 4 days (2 – 7 days) in test group and 7 days (4 -10 days) in control group. All patients were able to return to normal work on an average of 5days compared 8days in control group, the difference was significant. Conclusion:The study concluded that early addition of Ulinastatin to current standard treatment of acute Pancreatitis is effective in reducing pain, early complication and duration of hospital stay in Indian subjectKeywords: Ulinastatin, VAS – visual analogue score , AKI – acute kidney injury , ARDS – acute respiratory distress syndrome
Procedia PDF Downloads 1205247 A Research on the Improvement of Small and Medium-Sized City in Early-Modern China (1895-1927): Taking Southern Jiangsu as an Example
Authors: Xiaoqiang Fu, Baihao Li
Abstract:
In 1895, the failure of Sino-Japanese prompted the trend of comprehensive and systematic study of western pattern in China. In urban planning and construction, urban reform movement sprang up slowly, which aimed at renovating and reconstructing the traditional cities into modern cities similar to the concessions. During the movement, Chinese traditional city initiated a process of modern urban planning for its modernization. Meanwhile, the traditional planning morphology and system started to disintegrate, on the contrary, western form and technology had become the paradigm. Therefore, the improvement of existing cities had become the prototype of urban planning of early modern China. Currently, researches of the movement mainly concentrate on large cities, concessions, railway hub cities and some special cities resembling those. However, the systematic research about the large number of traditional small and medium-sized cities is still blank, up to now. This paper takes the improvement constructions of small and medium-sized cities in Southern region of Jiangsu Province as the research object. First of all, the criteria of small and medium-sized cities are based on the administrative levels of general office and cities at the county level. Secondly, the suitability of taking the Southern Jiangsu as the research object. The southern area of Jiangsu province called Southern Jiangsu for short, was the most economically developed region in Jiangsu, and also one of the most economically developed and the highest urbanization regions in China. As the most developed agricultural areas in ancient China, Southern Jiangsu formed a large number of traditional small and medium-sized cities. In early modern times, with the help of the Shanghai economic radiation, geographical advantage and powerful economic foundation, Southern Jiangsu became an important birthplace of Chinese national industry. Furthermore, the strong business atmosphere promoted the widespread urban improvement practices, which were incomparable of other regions. Meanwhile, the demonstration of Shanghai, Zhenjiang, Suzhou and other port cities became the improvement pattern of small and medium-sized city in Southern Jiangsu. This paper analyzes the reform movement of the small and medium-sized cities in Southern Jiangsu (1895-1927), including the subjects, objects, laws, technologies and the influence factors of politic and society, etc. At last, this paper reveals the formation mechanism and characteristics of urban improvement movement in early modern China. According to the paper, the improvement of small-medium city was a kind of gestation of the local city planning culture in early modern China,with a fusion of introduction and endophytism.Keywords: early modern China, improvement of small-medium city, southern region of Jiangsu province, urban planning history of China
Procedia PDF Downloads 2595246 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1875245 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1275244 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3385243 In silico Analysis of Differentially Expressed Genes in High-Grade Squamous Intraepithelial Lesion and Squamous Cell Carcinomas Stages of Cervical Cancer
Authors: Rahul Agarwal, Ashutosh Singh
Abstract:
Cervical cancer is one of the women related cancers which starts from the pre-cancerous cells and a fraction of women with pre-cancers of the cervix will develop cervical cancer. Cervical pre-cancers if treated in pre-invasive stage can prevent almost all true cervical squamous cell carcinoma. The present study investigates the genes and pathways that are involved in the progression of cervical cancer and are responsible in transition from pre-invasive stage to other advanced invasive stages. The study used GDS3292 microarray data to identify the stage specific genes in cervical cancer and further to generate the network of the significant genes. The microarray data GDS3292 consists of the expression profiling of 10 normal cervices, 7 HSILs and 21 SCCs samples. The study identifies 70 upregulated and 37 downregulated genes in HSIL stage while 95 upregulated and 60 downregulated genes in SCC stages. Biological process including cell communication, signal transduction are highly enriched in both HSIL and SCC stages of cervical cancer. Further, the ppi interaction of genes involved in HSIL and SCC stages helps in identifying the interacting partners. This work may lead to the identification of potential diagnostic biomarker which can be utilized for early stage detection.Keywords: cervical cancer, HSIL, microarray, SCC
Procedia PDF Downloads 2305242 Stack Overflow Detection and Prevention on Operating Systems Using Machine Learning and Control-Flow Enforcement Technology
Authors: Cao Jiayu, Lan Ximing, Huang Jingjia, Burra Venkata Durga Kumar
Abstract:
The first virus to attack personal computers was born in early 1986, called C-Brain, written by a pair of Pakistani brothers. In those days, people still used dos systems, manipulating computers with the most basic command lines. In the 21st century today, computer performance has grown geometrically. But computer viruses are also evolving and escalating. We never stop fighting against security problems. Stack overflow is one of the most common security vulnerabilities in operating systems. It may result in serious security issues for an operating system if a program in it has a vulnerability with administrator privileges. Certain viruses change the value of specific memory through a stack overflow, allowing computers to run harmful programs. This study developed a mechanism to detect and respond to time whenever a stack overflow occurs. We demonstrate the effectiveness of standard machine learning algorithms and control flow enforcement techniques in predicting computer OS security using generating suspicious vulnerability functions (SVFS) and associated suspect areas (SAS). The method can minimize the possibility of stack overflow attacks occurring.Keywords: operating system, security, stack overflow, buffer overflow, machine learning, control-flow enforcement technology
Procedia PDF Downloads 1135241 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection
Authors: O. Hassoon, M. Tarfoui, A. El Malk
Abstract:
Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring
Procedia PDF Downloads 360