Search results for: adverse drug reaction reporting systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14876

Search results for: adverse drug reaction reporting systems

13556 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach

Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota

Abstract:

Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.

Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics

Procedia PDF Downloads 501
13555 Development of Extemporaneous Pediatric Syrup of Prednisone

Authors: Amel Chenafa, Sihem Boulenouar, Linda Aoued, Imane Sediri, Ismahan Djebbar, Mohamed Adil Selka

Abstract:

Introduction: The specialties intended for adults are often inadequate marketed for pediatric use, such as for a galenic form or in the dosage. For an industrial, development of a pediatric drug is confronted to various problems. So, the hospital pharmacies have to respond to adaptation needs of pharmaceutical forms for pediatric use. The objective of our work is to develop an oral form of prednisone for pediatric use since no adapted form to children is commercialized. Materials and Methods: Therefore an extemporaneous syrup of prednisone was prepared at the concentration of 0,5mg/ml from 5mg tablets and stored in amber glass bottles. Organoleptic and microbiological stability was studied in two temperatures: 5°C and 25°C, and evaluated at D0, D15, and D30. Results: No organoleptic changes have been detected on the syrup conserved at 25 and 5°C. The results show that there is no presence of bacteria, yeasts, and molds in the syrups stored at both temperatures during the analysis period. Conclusion: Sheltered from light, the developed syrup of prednisone remained stable at room temperature and/or refrigerator for 30 days.

Keywords: extemporaneous syrup, pediatric drug, prednisone, stability

Procedia PDF Downloads 386
13554 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air

Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong

Abstract:

It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.

Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde

Procedia PDF Downloads 133
13553 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy

Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets

Abstract:

Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery

Procedia PDF Downloads 377
13552 Desulfurization of Crude Oil Using Bacteria

Authors: Namratha Pai, K. Vasantharaj, K. Haribabu

Abstract:

Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton.

Keywords: alicyclobacillus acidoterrestrius, potato dextrose agar, fluidized bed reactor principle, reaction time for bacteria, compatibility with crude oil

Procedia PDF Downloads 320
13551 Obtaining the Hydraulic Concrete Resistant to the Aggressive Environment by Using Admixtures

Authors: N. Tabatadze

Abstract:

The research aim is to study the physical and mechanical characteristics of hydraulic concrete in the surface active environment. The specific goal is to obtain high strength and low deformable concrete based on nano additives, resistant to the aggressive environment. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa). Moreover, water absorption (W=0,59 % of admixture instead of W=1,41 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: hydraulic concrete, alkali-silica reaction, water absorption, water-resistance

Procedia PDF Downloads 350
13550 Impect of Human on Prey of Birds in North West Rajasthan

Authors: Dau Lal Bohra, Sradha Vyas

Abstract:

Bird species are already showing climate-related changes in the dates they migrate and breed, and in the timing of other key life-history events. Treats of feeding managements raptors have performed important ecological, traditional and aesthetic functions throughout the Indian subcontinent. The declines in India result from elevated adult and juvenile mortality, and low breeding success. The widespread and rapid pattern of declines, i.e. in all areas irrespective of habitat or protection status suggest that persecution through shooting or poisoning, whilst important at a local scale, are unlikely to have caused the declines. A mass killing of several species of vultures in the Indian subcontinent over the last two decades is largely blamed on the presence of a drug. Veterinary diclofenac caused an unprecedented decline in South Asia’s Gyps vulture populations, with some species declining by more than 97% between 1992 and 2007. Veterinary diclofenac causes renal failure in vultures, and killed tens of millions of such birds in the Indian sub-continent. The drug was finally banned there for veterinary purposes in 2006. This drug is now ‘a global problem’ threatening many vulnerable birds of prey. Recently, stappe eagles are also susceptible to veterinary diclofenac, effectively increasing the potential threat level, and the risks for European biodiversity. Steppe eagles are closely related with golden eagles (Aquila chrysaetus), imperial eagles (Aquila heliaca) and Spanish imperial eagles (Aquila adalberti), and all these species scavenge opportunistically on carcasses throughout their range. The Spanish imperial eagle, considered Vulnerable at global level, is now particularly at risk, due to the availability of diclofenac in Spain. These findings strengthen the case for banning veterinary diclofenac across. From year 2011 to 2014 more than 300 hundred birds dead in jorbeer, Bikaner. Now, with unequivocal evidence that this veterinary drug can cause a much wider impact on Europe´s biodiversity, it is time for action – please ban diclofenac human brand also in multi-dose vial from market.

Keywords: mortility, prey of birds, diclofenac, Rajasthan

Procedia PDF Downloads 374
13549 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet

Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry

Abstract:

Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.

Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride

Procedia PDF Downloads 242
13548 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 135
13547 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: cavitation, drug delivery, nanodroplets, ultra-sound

Procedia PDF Downloads 111
13546 Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide

Authors: Mohamed Gar Alalm, Ahmed Tawfik

Abstract:

In this study, photo-catalytic degradation of phenol by titanium dioxide (TiO2) in aqueous solution was evaluated. The UV energy of solar light was utilized by compound parabolic collectors (CPCs) technology. The effect of irradiation time, initial pH, and dosage of TiO2 were investigated. Aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. 94.5% degradation efficiency of phenol was achieved after 150 minutes of irradiation when the initial concentration was 100 mg/L. The dosage of TiO2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 5.2. Phenol photo-catalytic degradation fitted to the pseudo-first order kinetic according to Langmuir–Hinshelwood model.

Keywords: compound parabolic collectors, phenol, photo-catalytic, titanium dioxide

Procedia PDF Downloads 409
13545 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 144
13544 Synthesize of Cobalt Oxide Nanoballs/Carbon Aerogel Nanostructures: Towards High-Performance Materials for Supercapacitors

Authors: A. Bahadoran, M. Zomorodian

Abstract:

The synthesizer of cobalt oxide nanoballs (length 3−4 μm, width 250−400 nm) was achieved by a simple high-temperature supercritical solution method. Multiwalled carbon aerogels are a step towards high-density nanometer-scale nanostructures. Cobalt oxide nanoballs were prepared by supercritical solution method. Synthesis in an aqueous solution containing cobalt hydroxide at ∼80 °C without any further heat treatment at high temperature. The formation of cobalt oxide nanoballs on carbon aerogel was confirmed by X-ray diffraction and Raman spectroscopy. The FE-SEM images showed the presence of cobalt oxide nanoballs. The reaction mechanism of the ultrasound-assisted synthesis of cobalt oxide nanostructures was proposed on the basis of the XRD, X-ray absorption spectroscopy analysis and FE-SEM observation of the reaction products taken during the course of the synthesis.

Keywords: cobalt oxide nano balls, carbon aerogel, synthesize, nanostructure

Procedia PDF Downloads 359
13543 Issues of Accounting of Lease and Revenue according to International Financial Reporting Standards

Authors: Nadezhda Kvatashidze, Elena Kharabadze

Abstract:

It is broadly known that lease is a flexible means of funding enterprises. Lease reduces the risk related to access and possession of assets, as well as obtainment of funding. Therefore, it is important to refine lease accounting. The lease accounting regulations under the applicable standard (International Accounting Standards 17) make concealment of liabilities possible. As a result, the information users get inaccurate and incomprehensive information and have to resort to an additional assessment of the off-balance sheet lease liabilities. In order to address the problem, the International Financial Reporting Standards Board decided to change the approach to lease accounting. With the deficiencies of the applicable standard taken into account, the new standard (IFRS 16 ‘Leases’) aims at supplying appropriate and fair lease-related information to the users. Save certain exclusions; the lessee is obliged to recognize all the lease agreements in its financial report. The approach was determined by the fact that under the lease agreement, rights and obligations arise by way of assets and liabilities. Immediately upon conclusion of the lease agreement, the lessee takes an asset into its disposal and assumes the obligation to effect the lease-related payments in order to meet the recognition criteria defined by the Conceptual Framework for Financial Reporting. The payments are to be entered into the financial report. The new lease accounting standard secures supply of quality and comparable information to the financial information users. The International Accounting Standards Board and the US Financial Accounting Standards Board jointly developed IFRS 15: ‘Revenue from Contracts with Customers’. The standard allows the establishment of detailed revenue recognition practical criteria such as identification of the performance obligations in the contract, determination of the transaction price and its components, especially price variable considerations and other important components, as well as passage of control over the asset to the customer. IFRS 15: ‘Revenue from Contracts with Customers’ is very similar to the relevant US standards and includes requirements more specific and consistent than those of the standards in place. The new standard is going to change the recognition terms and techniques in the industries, such as construction, telecommunications (mobile and cable networks), licensing (media, science, franchising), real property, software etc.

Keywords: assessment of the lease assets and liabilities, contractual liability, division of contract, identification of contracts, contract price, lease identification, lease liabilities, off-balance sheet, transaction value

Procedia PDF Downloads 322
13542 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 138
13541 Electrospinning of Nanofibrous Meshes and Surface-Modification for Biomedical Application

Authors: Hyuk Sang Yoo, Young Ju Son, Wei Mao, Myung Gu Kang, Sol Lee

Abstract:

Biomedical applications of electrospun nanofibrous meshes have been received tremendous attentions because of their unique structures and versatilities as biomaterials. Incorporation of growth factors in fibrous meshes can be performed by surface-modification and encapsulation. Those growth factors stimulate differentiation and proliferation of specific types of cells and thus lead tissue regenerations of specific cell types. Topographical cues of electrospun nanofibrous meshes also increase differentiation of specific cell types according to alignments of fibrous structures. Wound healing treatments of diabetic ulcers were performed using nanofibrous meshes encapsulating multiple growth factors. Aligned nanofibrous meshes and those with random configuration were compared for differentiating mesenchymal stem cells into neuronal cells. Thus, nanofibrous meshes can be applied to drug delivery carriers and matrix for promoting cellular proliferation.

Keywords: nanofiber, tissue, mesh, drug

Procedia PDF Downloads 340
13540 Healthcare Professionals' Perspectives on Warfarin Therapy at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR

Authors: Vanlounni Sibounheuang, Wanarat Anusornsangiam, Pattarin Kittiboonyakun, Chanthanom Manithip

Abstract:

In worldwide, one of the most common use of oral anticoagulant is warfarin. Its margin between therapeutic inhibition of clot formation and bleeding complications is narrow. Mahosot Hospital, warfarin clinic had not been established yet. The descriptive study was conducted by investigating drug-related problems of outpatients using warfarin, the value of the international normalized ratio (INR) higher than normal ranges (25.40 % of the total 272 outpatients) were mostly identified at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. This result led to the present study conducting qualitative interviews in order to help establish a warfarin clinic at Mahosot Hospital for the better outcomes of patients using warfarin. The purpose of this study was to explore perspectives of healthcare professional providing services for outpatients using warfarin. The face to face, in-depth interviews were undertaken among nine healthcare professionals (doctor=3, nurse=3, pharmacist=3) working at out-patient clinic, Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. The interview guides were developed, and they were validated by the experts in the fields of qualitative research. Each interview lasted approximately 20 minutes. Three major themes emerged; healthcare professional’s experiences of current practice problems with warfarin therapy, healthcare professionals’ views of medical problems related to patients using warfarin, and healthcare professionals’ perspectives on ways of service improvement. All healthcare professionals had the same views that it’s difficult to achieve INR goal for individual patients because of some important patient barriers especially lack of knowledge about to use warfarin properly and safety, patients not regularly follow-up due to problems with transportations and financial support. Doctors and nurses agreed to have a pharmacist running a routine warfarin clinic and provided counselling to individual patients on the following points: how to take drug properly and safety, drug-drug and food-drug interactions, common side effects and how to manage them, lifestyle modifications. From the interviews, some important components of the establishment of a warfarin clinic included financial support, increased human resources, improved the system of keeping patients’ medical records, short course training for pharmacists. This study indicated the acceptance of healthcare professionals on the important roles of pharmacists and the feasibility of setting up warfarin clinic by working together with the multidisciplinary health care team in order to help improve health outcomes of patients using warfarin at Mahosot Hospital, Lao PDR.

Keywords: perspectives, healthcare professional, warfarin therapy, Mahosot Hospital

Procedia PDF Downloads 103
13539 Identification of Analogues to EGCG for the Inhibition of HPV E7: A Fundamental Insights through Structural Dynamics Study

Authors: Murali Aarthy, Sanjeev Kumar Singh

Abstract:

High risk human papillomaviruses are highly associated with the carcinoma of the cervix and the other genital tumors. Cervical cancer develops through the multistep process in which increasingly severe premalignant dysplastic lesions called cervical intraepithelial neoplastic progress to invasive cancer. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers drives the cells into S-phase creating an environment conducive for viral genome replication and cell proliferation. The replication of the virus occurs in the terminally differentiating epithelium and requires the activation of cellular DNA replication proteins. To date, no suitable drug molecule is available to treat HPV infection whereas identification of potential drug targets and development of novel anti-HPV chemotherapies with unique mode of actions are expected. Hence, our present study aimed to identify the potential inhibitors analogous to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems. A 3D similarity search on the natural small molecule library from natural product database using EGCG identified 11 potential hits based on their similarity score. The structure based docking strategies were implemented in the potential hits and the key interacting residues of protein with compounds were identified through simulation studies and binding free energy calculations. The conformational changes between the apoprotein and the complex were analyzed with the simulation and the results demonstrated that the dynamical and structural effects observed in the protein were induced by the compounds and indicated the dominance to the oncoprotein. Overall, our study provides the basis for the structural insights of the identified potential hits and EGCG and hence, the analogous compounds identified can be potent inhibitors against the HPV 16 E7 oncoprotein.

Keywords: EGCG, oncoprotein, molecular dynamics simulation, analogues

Procedia PDF Downloads 127
13538 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian

Procedia PDF Downloads 330
13537 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate

Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua

Abstract:

As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.

Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation

Procedia PDF Downloads 288
13536 Accounting Quality and The Adoption of IFRS: Evidence from China

Authors: Khaldoon G. Albitar, Hassan Y. Kikhia, Jin P. Zhang

Abstract:

Since 2007, all companies listed on both Shanghai Stock Exchange and Shenzhen Stock Exchange are required to prepare their consolidated financial statements in accordance with International Financial Reporting Standards (IFRS). This study investigates the impact of adopting IFRS on accounting quality for a sample of listed on Chinese companies during the period 2003-2013 with sample of 10846 observations over a four-year period before and a five-year period after the adoption of IFRS. This study tests whether the level of earnings management is significantly lower after the adoption of IFRS, and reported earnings is more value relevant during the IFRS period by using the Ohlson model and Jones model, as modified by Dechow. The empirical results show that accounting quality improved with lower earnings management and higher value relevant after the adoption of IFRS in China. The current study contributes to the literature on IFRS adoption and earning quality in two ways. First, As most of the existing studies on earnings quality and IFRS have been conducted on data from the U.S and European countries, this study fills a gap in the existing literature by studying the effect of adoption of IFRS on earnings quality in an emerging market. Second, the findings of our study have important implications for policymakers, auditors, multinational firms, and users of financial reports. As the rapid growth of China's economy gains global recognition, the Chinese stock market is capturing the attention of international investor.

Keywords: international financial reporting standards (ifrs), accounting quality, earnings management, value relevance, china

Procedia PDF Downloads 337
13535 Cissampelos capensis Rhizome Extract Induces Intracellular ROS Production, Capacitation, and DNA Fragmentation in Human Spermatozoa

Authors: S. Shalaweh, P. Bouic, F. Weitz, R. Henkel

Abstract:

More than 3000 plants of notable phyto-therapeutic value grow in South Africa; these include Cissampelos capensis, commonly known in Afrikaans as dawidjie or dawidjiewortel. C. capensis is the most significant and popular medicinal plant used by the Khoisan as well as other rural groups in the Western region of South Africa. Its rhizomes are traditionally used to treat male fertility problems. Yet, no studies have investigated the effects of this plant or its extracts on human spermatozoa. Therefore, this study aimed at investigating the effects of C. capensis rhizome extract (CRE) fractions on ejaculated human spermatozoa in vitro. Spermatozoa from a total of 77 semen samples were washed with human tubular fluid medium supplemented with bovine serum albumin (HTF-BSA) and incubated for 2 hourswith 20 µg/ml progesterone (P4) followed by incubation with different concentrations (0, 0.05, 0.5, 5, 50, 200 µg/ml) of fractionated CRE (F1=0% MeOH, F2=30% MeOH, F3=60% MeOH and F4=100% MeOH) for 1.5 hours at 37°C. A sample without addition of CRE fractions served as control. Samples were analyzed for sperm motility, reactive oxygen species (ROS), DNA-fragmentation, acrosome reaction and capacitation. Results showed that F1 resulted in significantly higher values for ROS, capacitation and hyper-activation compared to F2, F3, and F4 with P4-stimulated samples generally having higher values. No significant effect was found for the other parameters. In conclusion, alkaloids present in F1 of CRE appear to have triggered sperm intrinsic ROS production leading to sperm capacitation and acrosome reaction induced by P4.

Keywords: capacitaion, acrosome reaction, DNA fragmentation, ROS

Procedia PDF Downloads 310
13534 Commutativity of Fractional Order Linear Time-Varying System

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of Matlab (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, and analog control

Procedia PDF Downloads 77
13533 Environmental Impacts on the British Era Structures of Faisalabad-a Detailed Study of the Clock Tower of Faisalabad

Authors: Bazla Manzoor, Aqsa Yasin

Abstract:

Pakistan is the country which is progressing by leaps and bounds through agricultural and industrial growth. The main area, which presents the largest income rate through industrial activities, is Faisalabad from the Province of Punjab. Faisalabad’s main occupations include agriculture and industry. As these sectors i.e. agriculture and industry is developing day by day, they are earning much income for the country and generating thousands of job vacancies. On one hand the city, i.e. Faisalabad is on the way of development through industrial growth, while on the other hand this industrial growth is producing a bad impact on the environment. In return, that damaged environment is affecting badly on the people and built environment. This research is chiefly based on one of the above-mentioned factors i.e. adverse environmental impacts on the built structures. Faisalabad is an old city, therefore; it is having many old structures especially from British Era. Many of those structures are still surviving and are functioning as the government, private and public buildings. However, these structures are getting in a poor condition with the passage of time due to bad maintenance and adverse environmental impacts. Bad maintenance is a factor, which can be controlled by financial assistance and management. The factor needs to be seriously considered is the other one i.e. adverse environmental impacts on British Era structures of the city because this factor requires controlled and refined human activities and actions. For this reason, a research was required to conserve the British Era structures of Faisalabad so that these structures can function well. The other reason to conserve them is that these structures are historically important and are the heritage of the city. For doing this research, literature has been reviewed which was present in the libraries of the city. Department of Environment, Town Municipal Administration, Faisalabad Development Authority and Lyallpur Heritage Foundation were visited to collect the existing data available. Various British Era structures were also visited to note down the environmental impacts on them. From all the structures “Clock Tower,” was deeply studied as it is one of the oldest and most important heritage structures of the city because the earlier settlements of the city were planned based on its location by The British Government. The architectural and environmental analyses were done for The Clock Tower. This research study found the deterioration factors of the tower according to which suggestions have been made.

Keywords: lyallpur, heritage, architecture, environment

Procedia PDF Downloads 303
13532 Biodistribution of Fluorescence-Labelled Epidermal Growth Factor Protein from Slow Release Nanozolid Depots in Mouse

Authors: Stefan Gruden, Charlott Brunmark, Bo Holmqvist, Erwin D. Brenndorfer, Martin Johansson, Jian Liu, Ying Zhao, Niklas Axen, Moustapha Hassan

Abstract:

Aim: The study was designed to evaluate the ability of the calcium sulfate-based NanoZolid® drug delivery technology to locally release the epidermal growth factor (EGF) protein while maintaining its biological activity. Methods: NanoZolid-formulated EGF protein labelled with a near-infrared dye (EGF-NIR) depots or EGF-NIR dissolved in PBS were injected subcutaneously into mice bearing EGF receptor (EGFR) positive human A549 lung cancer tumors inoculated subcutaneously. The release and biodistribution of the EGF-NIR were investigated in vivo longitudinally up to 96 hours post-administration, utilizing whole-body fluorescence imaging. In order to confirm the in vivo findings, histological analysis of tumor cryosections was performed to investigate EGF-NIR fluorescent signal and EGFR expression level by immunofluorescence labelling. Results: The in vivo fluorescence imaging showed a controlled release profile of the EGF-NIR loaded in the NanoZolid depots compared to free EGF-NIR. Histological analysis of the tumors further demonstrated a prevailing distribution of EGF-NIR in regions with high levels of EGFR expression. Conclusion: Calcium sulfate based depots can be used to formulate EGF while maintaining its biological activity, e.g., receptor binding capability. This may have good clinical potential for local delivery of biomolecules to enhance treatment efficacy and minimize systemic adverse effects.

Keywords: bioresorbable, calcium sulfate, controlled release, NanoZolid

Procedia PDF Downloads 166
13531 Small Scale Stationary and Mobile Production of Biodiesel

Authors: Muhammad Yusuf Abduh, Robert Manurung, Hero Jan Heeres

Abstract:

Biodiesel can be produced in small scale mobile units which are designed with local input and demand. Unlike the typical biodiesel production plants, mobile biodiesel unit consiss of a biodiesel production facility placed inside a standard cargo container and mounted on a truck so that it can be transported to a region near the location of raw materials. In this paper, we review the existing concept and unit for the development of community-scale and mobile production of biodiesel. This includes the main reactor technology to produce biodiesel as well as the pre-treatment prior to the reaction unit. The pre-treatment includes the oil-expeller unit to obtain oil from the oilseeds as well as the quality control of the oil before it enters the reaction unit. This paper also discusses the post-treatment after the production of biodiesel. It includes the refining and purification of biodiesel to meet the product specification set by the biodiesel industry.

Keywords: biodiesel, community scale, mobile biodiesel unit, reactor technology

Procedia PDF Downloads 236
13530 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles

Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica

Abstract:

Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.

Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation

Procedia PDF Downloads 305
13529 Ethnic-Racial Breakdown in Psychological Research among Latinx Populations in the U.S.

Authors: Madeline Phillips, Luis Mendez

Abstract:

The 21st century has seen an increase in the amount and variety of psychological research on Latinx, the largest minority group in the U.S., with great variability from the individual’s cultural origin (e.g., ethnicity) to region (e.g., nationality). We were interested in exploring how scientists recruit, conduct and report research on Latinx samples. Ethnicity and race are important components of individuals and should be addressed to capture a broader and deeper understanding of psychological research findings. In order to explore Latinx/Hispanic work, the Journal of Latinx Psychology (JLP) and Hispanic Journal of Behavioral Sciences (HJBS) were analyzed for 1) measures of ethnicity and race in empirical studies 2) nationalities represented 3) how researchers reported ethnic-racial demographics. The analysis included publications from 2013-2018 and revealed two common themes of reporting ethnicity and race: overrepresentation/underrepresentation and overgeneralization. There is currently not a systematic way of reporting ethnicity and race among Latinx/Hispanic research, creating a vague sense of what and how ethnicity/race plays a role in the lives of participants. Second, studies used the Hispanic/Latinx terms interchangeably and are not consistent across publications. For the purpose of this project, we were only interested in publications with Latinx samples in the U.S. Therefore, studies outside of the U.S. and non-empirical studies were excluded. JLP went from N = 118 articles to N = 94 and HJBS went from N = 174 to N = 154. For this project, we developed a coding rubric for ethnicity/race that reflected the different ways researchers reported ethnicity and race and was compatible with the U.S. census. We coded which ethnicity/race was identified as the largest ethnic group in each sample. We used the ethnic-racial breakdown numbers or percentages if provided. There were also studies that simply did not report the ethnic composition besides Hispanic or Latinx. We found that in 80% of the samples, Mexicans are overrepresented compared to the population statistics of Latinx in the US. We observed all the ethnic-racial breakdowns, demonstrating the overrepresentation of Mexican samples and underrepresentation and/or lack of representation of certain ethnicities (e.g., Chilean, Guatemalan). Our results showed an overgeneralization of studies that cluster their participants to Latinx/Hispanic, 23 for JLP and 63 for HJBS. The authors discuss the importance of transparency from researchers in reporting the context of the sample, including country, state, neighborhood, and demographic variables that are relevant to the goals of the project, except when there may be an issue of privacy and/or confidentiality involved. In addition, the authors discuss the importance to recognize the variability within the Latinx population and how it is reflected in the scientific discourse.

Keywords: Latinx, Hispanic, race and ethnicity, diversity

Procedia PDF Downloads 114
13528 Energetics of Photosynthesis with Respect to the Environment and Recently Reported New Balanced Chemical Equation

Authors: Suprit Pradhan, Sushil Pradhan

Abstract:

Photosynthesis is a physiological process where green plants prepare their food from carbon dioxide from the atmosphere and water being absorbed from the soil in presence of sun light and chlorophyll. From this definition it is clear that four reactants (Carbon Dioxide, Water, Light and Chlorophyll) are essential for the process to proceed and the product is a sugar or carbohydrate ultimately stored as starch. The entire process has “Light Reaction” (Photochemical) and “Dark Reaction” (Biochemical). Biochemical reactions are very much complicated being catalysed by various enzymes and the path of carbon is known as “Calvin Cycle” according to the name of its discover. The overall reaction which is now universally accepted can be explained like this. Six molecules of carbon dioxide react with twelve molecules of water in presence of chlorophyll and sun light to give only one molecule of sugar (Carbohydrate) six molecules of water and six molecules of oxygen is being evolved in gaseous form. This is the accepted equation and also chemically balanced. However while teaching the subject the author came across a new balanced equation from among the students who happened to be the daughter of the author. In the new balanced equation in place of twelve water molecules in the reactant side seven molecules can be expressed and accordingly in place of six molecules of water in the product side only one molecule of water is produced. The energetics of the photosynthesis as related to the environment and the newly reported balanced chemical equation has been discussed in detail in the present research paper presentation in this international conference on energy, environmental and chemical engineering.

Keywords: biochemistry, enzyme , isotope, photosynthesis

Procedia PDF Downloads 511
13527 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 484