Search results for: wheat yield prediction
3580 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 723579 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.Keywords: classification, CRISP-DM, machine learning, predictive quality, regression
Procedia PDF Downloads 1433578 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 773577 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process
Authors: Hong-Ming Chen
Abstract:
This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.Keywords: optimization, interest rate model, jump process, deterministic
Procedia PDF Downloads 1603576 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms
Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi
Abstract:
A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization
Procedia PDF Downloads 4263575 Effects of Plant Growth Promoting Rhizobacteria on the Yield and Nutritive Quality of Tomato Fruits
Authors: Narjes Dashti, Nida Ali, Magdy Montasser, Vineetha Cherian
Abstract:
The influence of two PGPR strains, Pseudomonas aeruginosa and Stenotrophomonas rhizophilia, on fruit yields, pomological traits and chemical contents of tomato (Solanum lycopersicum) fruits were studied. The study was conducted separately on two different cultivar varieties of tomato, namely Supermarmande and UC82B. The results indicated that the presence of the PGPR almost doubled the average yield per plant. There was a significant improvement in the pomological qualities of the PGPR treated tomato fruits compared to the corresponding healthy treatments especially in traits such as the average fruit weight, height, and fruit volume. The chemical analysis of tomato fruits revealed that the presence of the PGPRs increased the total protein, lycopene, alkalinity and phenol content of the tomato fruits compared to the healthy controls. They had no influence on the reduced sugar, total soluble solids or the titerable acid content of fruits. However their presence reduced the amount of ascorbic acid in tomato fruits compared to the healthy controls.Keywords: PGPR, tomato, fruit quality
Procedia PDF Downloads 3233574 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1473573 Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis
Authors: Mohamed Aly, Aliaa Rehan Youssef, Emad Sawerees, Mounir Guirgis
Abstract:
Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise.Keywords: clinical prediction rule, knee osteoarthritis, physical therapy exercises, validity
Procedia PDF Downloads 4213572 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 1193571 Production of Ethanol from Mission Grass
Authors: Darin Khumsupan, Tidarat Komolwanich, Sirirat Prasertwasu, Thanyalak Chaisuwan, Apanee Luengnaruemitchai, Sujitra Wongkasemjit
Abstract:
Bioethanol production has become a subject of interest for many researchers due to its potential to replace fossil fuels. Since the most popular sources of bioethanol originate from food crops including corn and sugarcane, many people become more concerned with increasing demand for food supply. Lignocellulosic biomass, such as grass, could be a practical alternative to replace the conventional fossil fuels due to its low cost, renewability, and abundance in nature. Mission grass (Pennisetum polystachion) is one of the candidates for bioethanol production. This research is focused on the detoxification and fermentation of hydrolysate from mission grass. Glucose in the hydrolysate was detoxified by overliming process at various pH. Although overliming at pH 12 gave the highest yeast population, the ethanol yield was low due to glucose degradation. Overliming at pH 10 showed the highest yield of ethanol production. Various strains of Baker’s yeast (Saccharomyces cerevisiae) will be utilized to produce ethanol at the optimal overliming pH.Keywords: Pennisetum polystachion, lignocellulosic biomass, bioethanol production, detoxification, overliming, Saccharomyces cerevisiae
Procedia PDF Downloads 3813570 Testing Of Populations Of Selected Fungal Pathogens Of Cereals For Resistance To Fungicides
Authors: Ing. Martina Čapková
Abstract:
Today, it is essential to ensure effective protection of cultivated cereal crops against fungal pathogens, which are one of the main factors limiting the yield and quality of cereal crops worldwide. The economic impact of losses caused by the emergence of resistant pathogen populations to fungicides is significant and it is therefore essential to seek effective strategies to protect against the establishment and emergence of resistant populations. In this study, the susceptibility analysis of fungal pathogens to different fungicidal agents was carried out. The results showed variability in the efficacy of fungicidal agents against the pathogens and suggest the need to reconsider the use of certain agents in crop protection. The efficacy of a total of five fungicidal active ingredients (fluxapyroxad, azoxystrobin, fenpicoxamid, prothioconazole, mefentrifluconazole) was tested at different concentrations on a total of 236 isolates of the pathogens Monographella nivalis, Oculimacula yallundae, Zymoseptoria tritici and Ramularia collo-cygni. The hypothesis of this work, based on the assumption of the existence of variation in the susceptibility of pathogens to fungicides, was confirmed. The aim was to determine the level of susceptibility of the selected fungal pathogen isolates of cereal crops to commonly used fungicidal agents. The fungicide with the highest proportion of individuals showing lower susceptibility (EC50 > 0.5 µg/ml) was azoxystrobin. The EC50 value refers to the effective concentration of the fungicidal agent inhibiting mycelial growth by 50%. Most of the Monographella nivalis isolates (94.83%) showed resistance to azoxystrobin, while they did not show resistance to prothioconazole and only 6.78% of the isolates were resistant to fenpicoxamide. Isolates of the pathogen Oculimacula yallundae showed resistance neither to prothioconazole nor to fluxapyroxad. The pathogen Zymoseptoria tritici showed the highest level of variability in fungicide resistance, with isolates showing no resistance to fenpicoxamide, while 85.51% of the isolates showed resistance to azoxystrobin. The pathogen Ramularia collo-cygni showed the highest level of resistance to all the fungicidal active ingredients tested. Overall, the study provides important insights for optimising cereal crop protection strategies and reducing the risk of fungal pathogen resistance to fungicides. However, it is necessary to continuously monitor the occurrence of resistant isolates in pathogen populations and to investigate new control methods and adapt them to changing agricultural conditions.Keywords: wheat, barley, diseases, protection, fungicides, fungicide resistance, monitoring
Procedia PDF Downloads 43569 The Theory behind Logistic Regression
Authors: Jan Henrik Wosnitza
Abstract:
The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression
Procedia PDF Downloads 4253568 Parametric Optimization of Electric Discharge Machining Process Using Taguchi's Method and Grey Relation Analysis
Authors: Pushpendra S. Bharti
Abstract:
Process yield of electric discharge machining (EDM) is directly related to optimal combination(s) of process parameters. Optimization of process parameters of EDM is a multi-objective optimization problem owing to the contradictory behavior of performance measures. This paper employs Grey Relation Analysis (GRA) method as a multi-objective optimization technique for the optimal selection of process parameters combination. In GRA, multi-response optimization is converted into optimization of a single response grey relation grade which ultimately gives the optimal combination of process parameters. Experiments were carried out on die-sinking EDM by taking D2 steel as work piece and copper as electrode material. Taguchi's orthogonal array L36 was used for the design of experiments. On the experimental values, GRA was employed for the parametric optimization. A significant improvement has been observed and reported in the process yield by taking the parametric combination(s) obtained through GRA.Keywords: electric discharge machining, grey relation analysis, material removal rate, optimization
Procedia PDF Downloads 4073567 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran
Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi
Abstract:
Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.Keywords: watershed simulation, WetSpa, runoff, flood prediction
Procedia PDF Downloads 3353566 Rheological Study of Natural Sediments: Application in Filling of Estuaries
Authors: S. Serhal, Y. Melinge, D. Rangeard, F. Hage Chehadeh
Abstract:
Filling of estuaries is an international problem that can cause economic and environmental damage. This work aims the study of the rheological structuring mechanisms of natural sedimentary liquid-solid mixture in estuaries in order to better understand their filling. The estuary of the Rance river, located in Brittany, France is particularly targeted by the study. The aim is to provide answers on the rheological behavior of natural sediments by detecting structural factors influencing the rheological parameters. So we can better understand the fillings estuarine areas and especially consider sustainable solutions of ‘cleansing’ of these areas. The sediments were collected from the trap of Lyvet in Rance estuary. This trap was created by the association COEUR (Comité Opérationnel des Elus et Usagers de la Rance) in 1996 in order to facilitate the cleansing of the estuary. It creates a privileged area for the deposition of sediments and consequently makes the cleansing of the estuary easier. We began our work with a preliminary study to establish the trend of the rheological behavior of the suspensions and to specify the dormant phase which precedes the beginning of the biochemical reactivity of the suspensions. Then we highlight the visco-plastic character at younger age using the Kinexus rheometer, plate-plate geometry. This rheological behavior of suspensions is represented by the Bingham model using dynamic yield stress and viscosity which can be a function of volume fraction, granular extent, and chemical reactivity. The evolution of the viscosity as a function of the solid volume fraction is modeled by the Krieger-Dougherty model. On the other hand, the analysis of the dynamic yield stress showed a fairly functional link with the solid volume fraction.Keywords: estuaries, rheological behavior, sediments, Kinexus rheometer, Bingham model, viscosity, yield stress
Procedia PDF Downloads 1583565 Effect of Plant Nutrients on Anthocyanin Content and Yield Component of Black Glutinous Rice Plants
Authors: Chonlada Bennett, Phumon Sookwong, Sakul Moolkam, Sivapong Naruebal Sugunya Mahatheeranont
Abstract:
The cultivation of black glutinous rice rich in anthocyanins can provide great benefits to both farmers and consumers. Total anthocyanins content and yield component data of black glutinous rice cultivar (KHHK) grown with the addition of mineral elements (Ca, Mg, Cu, Cr, Fe and Se) under soilless conditions were studied. Ca application increased seed anthocyanins content by three-folds compared to controls. Cu application to rice plants obtained the highest number of grains panicle, panicle length and subsequently high panicle weight. Se application had the largest effect on leaf anthocyanins content, the number of tillers, number of panicles and 100-grain weight. These findings showed that the addition of mineral elements had a positive effect on increasing anthocyanins content in black rice plants and seeds as well as the heightened development of black glutinous rice plant growth.Keywords: Anthocyanins, Black Glutinous Rice, Mineral Elements, Soilless Culture
Procedia PDF Downloads 1423564 Virtual Metrology for Copper Clad Laminate Manufacturing
Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho
Abstract:
In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology
Procedia PDF Downloads 3493563 Useful Characteristics of Pleurotus Mushroom Hybrids
Authors: Suvalux Chaichuchote, Ratchadaporn Thonghem
Abstract:
Pleurotus mushroom is one of popular edible mushrooms in Thailand. It is much favored by consumers due to its delicious taste and high nutrition. It is commonly used as an ingredient in several dishes. The commercially cultivated strain grown in most farms is the Pleurotus sp., Hed Bhutan, that is widely distributed to mushroom farms throughout the country and can be cultivated almost all year round. However, it demands different cultivated strains from mushroom growers, therefore, the improving mushroom strains should be done to their benefits. In this study, we used a di-mon mating method to hybrid production from Hed Bhutan (P-3) as dikaryon material and monokaryotic mycelium were isolated from basidiospores of other three Pleurotus sp. by single spore isolation. The 3 hybrids: P-3XSA-6, P-3XSB-24 and P-3XSE-5 were recognized from the 12 hybridized successfully. They were appropriate hybridized in terms of fruiting body performance in the three time cycles of cultivation such as the number of days until growing, time for pinning, color and shape of fruiting bodies and yield. For genetic study, genomic DNAs of both Hed Bhutan (P-3) and three hybrids were extracted. A couple of primer ITS1 and ITS4 were used to amplify the gene coding for ITS1, ITS2 and 5.8S rRNA. The similarities between these amplified genes and databases of DNA revealed that Hed Bhutan (P-3) was the Pleurotus pulmonarius as well as P-3XSA-6, P-3XSB-24 and P-3XSE-5 hybrids. Furthermore, Hed Bhutan (P3) and three hybrids were distributed to 3 small-scale farms, with mushroom farming experience, in the countryside. To address this, one hundred and twenty mushroom bags of each strain were supplied to them. The findings, by interview, indicated two mushroom farmers were satisfied with P-3XSA-6 hybrid and P-3XSB-24 hybrid, thanks to their simultaneous fruiting time and good yield. While the other was satisfied with P-3XSB-24 hybrid due to its good yield and P-3XSE-5 hybrids thanks to its gradually fruiting body, benefiting in frequent harvest. Overall, farmers adopted all hybrids to grow as commercially cultivated strains as well as Hed Bhutan (P-3) strain.Keywords: dikaryon, monokaryon, pleurotus, strain improvement
Procedia PDF Downloads 2493562 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 2253561 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method
Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay
Abstract:
Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method
Procedia PDF Downloads 4713560 Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones
Authors: Tooran Tavangar, Masoud Hosseinpoor, Jeffrey S. Marshall, Ammar Yahia, Kamal Henri Khayat
Abstract:
In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe.Keywords: computational fluid dynamics, concrete pumping, coupled CFD-DEM, discrete element method, plug flow, shear-induced particle migration.
Procedia PDF Downloads 643559 Green Chemical Processing in the Teaching Laboratory: A Convenient Solvent Free Microwave Extraction of Natural Products
Authors: Mohamed Amine Ferhat, Mohamed Nadjib Bouhatem, Farid Chemat
Abstract:
One of the principal aims of sustainable and green processing development remains the dissemination and teaching of green chemistry to both developed and developing nations. This paper describes one attempt to show that “north-south” collaborations yield innovative sustainable and green technologies which give major benefits for both nations. In this paper we present early results from a solvent free microwave extraction (SFME) of essential oils using fresh orange peel, a byproduct in the production of orange juice. SFME is performed at atmospheric pressure without added any solvent or water. SFME increases essential oil yield and eliminate wastewater treatment. The procedure is appropriate for the teaching laboratory, and allows the students to learn extraction, chromatographic and spectroscopic analysis skills, and are expose to dramatic visual example of rapid, sustainable and green extraction of essential oil, and are introduced to commercially successful sustainable and green chemical processing with microwave energy.Keywords: essential oil, extraction, green processing, microwave
Procedia PDF Downloads 5413558 Mugil cephalus Presents a Feasible Alternative To Lates calcarifer Farming in Brackishwater: Evidence From Grey Mullet Mugil Cephalus Farming in Bangladesh
Authors: Asif Hasan
Abstract:
Among the reported suitable mariculture species in Bangladesh, seabass and mullet are the two most popular candidates due to their high market values. Several field studies conducted on the culture of seabass in Bangladesh, it still remains a challenge to commercially grow this species due to its exclusive carnivorous nature. In contrast, the grey mullet (M. cephalus) is a fast-growing, omnivorous euryhaline fish that has shown excellent growth in many areas including South Asia. Choice of a sustainable aquaculture technique must consider the productivity and yield as well as their environmental suitability. This study was designed to elucidate the ecologically suitable culture technique of M. cephalus in brakishwater ponds by comparing the biotic and abiotic components of pond ecosystem. In addition to growth parameters (yield, ADG, SGR, weight gain, FCR), Physicochemical parameters (Temperature, DO, pH, salinity, TDS, transparency, ammonia, and Chlorophyll-a concentration) and biological community composition (phytoplankton, zooplankton and benthic macroinvertebrates) were investigated from ponds under Semi-intensive, Improve extensive and Traditional culture system. While temperature were similar in the three culture types, ponds under improve-extensive showed better environmental conditions with significantly higher mean DO and transparency, and lower TDS and Chlorophyll-a. The abundance of zooplankton, phytoplankton and benthic macroinvertebrates were apparently higher in semi-intensive ponds. The Analysis of Similarity (ANOSIM) suggested moderate difference in the planktonic community composition. While the fish growth parameters of M. cephalus and total yield did not differ significantly between three systems, M. cephalus yield (kg/decimal) was apparently higher in semi-intensive pond due to high stocking density and intensive feeding. The results suggested that the difference between the three systems were due to more efficient utilization of nutrients in improve extensive ponds which affected fish growth through trophic cascades. This study suggested that different culture system of M. cephalus is an alternative and more beneficial method owing to its ecological and economic benefits in brackishwater ponds.Keywords: Mugil cephalus, pond ecosystem, mariculture, fisheries management
Procedia PDF Downloads 713557 Crop Water Productivity for Sunflower under Different Irrigation Regimes and Plant Spacing, at Gezira Clay Soil, Sudan
Authors: R. A. Eman Elsheikh, Bart Schultz, Abraham Mehari Haile, Hussein S. Adam
Abstract:
A field experiment was conducted at Gezira research station farm during the winter season in the third week of November 2012, in WadMedani, Sudan (Lat 14.23 W, Long 33.39 E and altitude 405 m above sea level, in deep cracking alkaline heavy clay Vertisols). The objective of this study was to determine the effect of three different irrigation for 10 days (W1), 15 days (W2) and 20 days (W3) and for two rows of 30 cm (S1) and 40 cm (S2), respectively. The experimental design was split plot with three replicates. The sunflower test variety was Hysun 33 cultivar. The seasonal water applied during the study was 6898, 6647, 5256, 5435, 5214, 5416 m3/ha for W1S1, W1S2, W2S1, W2S2, W3S1 and W3S2 respectively. The seed yield obtained for the above treatment in that sequence was 4208, 5542, 5167, 4579, 2931, 2936 kg/ha. The corresponding computed water productivity was 0.61, 0.82, 0.87, 0.95, 0.54, 0.56 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm row spacing and was irrigated every 10 days (W1S2), followed by W2S1.Keywords: water productivity, water deficit, sunflower, plant spacing
Procedia PDF Downloads 3473556 Drought Stress and the Importance of Osmotic Adjustment
Authors: Hooman Rowshanaie
Abstract:
The majority of green plants have 70%-90% water, this amount depend on age of plants, species, tissues of plants and also the environmental conditions that plants growth and development on it. Because of intense plant demanding to achieve the available water for growing and developing, always plants need a water sources and also mechanisms to retention the water and reduction water loss under critical situation and water deficit conditions otherwise the yield of plants would be decreased. Decreasing the yield depend on genotypes, intense of water deficit and also growth stage. Recently the mechanisms and also compound that have major role to water stress adaption of plants would be consideration. Osmotic adjustment is one of the most important mechanisms in terms of this field that many valuable researches focused on it because the majority of organic and inorganic solutes directly or even indirectly have pivotal role in this phenomenon. The contribution of OA to prevent water loss in response to water deficit and resistance to water stress taken to consideration recently and also the organic and inorganic compounds to OA tended has a high rate of significant.Keywords: water deficit, drought stress, osmotic adjustment, organic compound, inorganic compound, solute
Procedia PDF Downloads 4183555 How Does Vicia faba-rhizobia Symbiosis Improve Its Performance under Low Phosphorus Availability?
Authors: B. Makoudi, R. Ghanimi, M. Mouradi, A. Kabbadj, M. Farissi, J. J. Drevon, C. Ghoulam
Abstract:
This work focuses on the responses of Vicia fabarhizobia symbiosis to phosphorus deficiency and their contribution to tolerate this constraint. The study was carried out on four faba bean varieties, Aguadulce, Alfia, Luz Otono, and Reina Mora submitted to two phosphorus treatments, deficient and sufficient and cultivated under field and greenhouse hydroaeroponic culture. Plants were harvested at flowering stage for growth, nodulation and phosphorus content assessment. Phosphatases in nodules and rhizospheric soil were analyzed. The impact of phosphorus deficiency on yield component was assessed at maturity stage. Under field conditions, phosphorus deficiency affected negatively nodule biomass and nodule phosphorus content with Alfia and Reina Mora showing the highest biomass reduction. The phosphatase activities in nodules and rhizospheric soil were increased under phosphorus deficiency. At maturity stage, under soil low available phosphorus, the pods number and 100 seeds weight were reduced. The genotypic variation was evident for almost all tested parameters.Keywords: faba bean, phosphorus, rhizobia, yield
Procedia PDF Downloads 4483554 Comparative Pre-treatment Analysis of RNA-Extraction Methods and Efficient Detection of SARS-COV-2 and PMMoV in Influents and 1ˢᵗ Sedimentation from a Wastewater Treatment Plan
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Fumitake Nishimura, Jaiyeop Lee
Abstract:
This study aimed to compare two pre-treatment and two RNA extraction methods, namely PEG, and Nano bubble, Viral RNA Soil, and Mini Kit, in terms of their efficiency in detecting SARS-CoV-2 and PMMoV in influent and 1st sedimentation samples from a wastewater treatment plant. The extracted RNA samples were quantified and evaluated for purity, yield, and integrity. The results indicated that the nanobubble PEG method provided the highest yield of RNA, while the QIAamp Viral RNA Mini Kit produced the purest RNA samples. In terms of sensitivity and specificity, all these methods were able to detect SARS-CoV-2 and PMMoV in both influent and 1st sedimentation samples. However, the nanobubble PEG method showed slightly higher sensitivity compared to the other methods. These findings suggest that the choice of RNA extraction method should depend on the downstream application and the quality of the RNA required. The study also highlights the potential of wastewater-based epidemiology as an effective and non-invasive method for monitoring the spread of infectious diseases in a community.Keywords: influent, PMMoV, SARS-CoV-2, wastewater based epidemiology
Procedia PDF Downloads 953553 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows
Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava
Abstract:
The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein
Procedia PDF Downloads 2713552 Olive-Mill Wastewater and Organo-Mineral Fertlizers Application for the Control of Parasitic Weed Phelipanche ramosa L. Pomel in Tomato
Authors: Grazia Disciglio, Francesco Lops, Annalisa Tarantino, Emanuele Tarantino
Abstract:
The parasitic weed specie Phelipanche ramosa (L) Pomel is one of the major constraints in tomato crop in Apulia region (southern Italy). The experimental was considered to investigate the effect of six organic compounds (Olive miller wastewater, Allil isothiocyanate®, Alfa plus K®, Radicon®, Rizosum Max®, Kendal Nem®) on the naturally infested field of tomato growing season in 2016. The randomized block design with 3 replicates was adopted. Tomato seedling were transplant on 19 May 2016. During the growing cycle of the tomato at 74, 81, 93 and 103 days after transplantation (DAT), the number of parasitic shoots (branched plants) that had emerged in each plot was determined. At harvesting on 13 September 2016 the major quanti-qualitative yield parameters were determined, including marketable yield, mean weight, dry matter, soluble solids, fruit colour, pH and titratable acidity. The treatments provided the results show that none of treatments provided complete control against P. ramosa. However, among the products tested Olive miller wastewater, Alfa plus K®, Rizosum Max® and Kendal Nem® products applied to the soil show the number of emerged shoots significantly lower than Radicon® and especially than the Allil isothiocyanate® treatment and the untreated control. Regarding the effect of different treatments on the tomato productive parameters, the marketable yield resulted significantly higher in the same mentioned treatments which gave the lower P. ramosa infestation. No significative differences for the other fruit characteristics were observed.Keywords: processing tomato crop, Phelipanche ramosa, olive-mill wastewater, organic fertilizers
Procedia PDF Downloads 3223551 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models
Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg
Abstract:
Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction
Procedia PDF Downloads 307