Search results for: upper limb amputation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1403

Search results for: upper limb amputation

113 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 498
112 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry

Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke

Abstract:

There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.

Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction

Procedia PDF Downloads 170
111 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 227
110 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols

Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene

Abstract:

The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon

Procedia PDF Downloads 236
109 Electron Bernstein Wave Heating in the Toroidally Magnetized System

Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten

Abstract:

The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.

Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS

Procedia PDF Downloads 96
108 Effects of Long-Term Exposure of Cadmium to the Ovary of Lithobius forficatus (Myriapoda, Chilopoda)

Authors: Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Sebastian Student, Magdalena Rost-Roszkowska

Abstract:

Heavy metals polluting the environment, especially soil, have a harmful effect on organisms, because they can damage the organ structure, disturb their function and cause developmental disorders. They can affect not only the somatic tissues but also the germinal tissues. In the natural environment, plants and animals are exposed to short- and long-term exposure to these stressors, which have a major influence on the functioning of these organisms. Numerous animals have been treated as the bioindicators of the environment. Therefore, studies on any alterations caused by, e.g., heavy metals are in the center of interests of not only environmental but also medical and biological science. Myriapods are invertebrates which are bioindicators of the environment. One of the species which lives in the upper layers of soil, particularly under stones and rocks is Lithobius forficatus (Chilopoda), commonly known as the brown centipede or stone centipede. It is a European species of the family Lithobiidae. This centipede living in the soil is exposed to, e.g., heavy metals such as cadmium, lead, arsenic. The main goal of our project was to analyze the impact of long-term exposure to cadmium on the structure of ovary with the emphasis on the course of oogenesis. As the material for analysis of cadmium exposure to ovaries, we chose the centipede species, L. forficatus. Animals were divided into two experimental groups: C – the control group, the animals cultured in laboratory conditions in a horticultural soil; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2 for 45 days – long-term exposure. Animals were fed with Acheta and Chironomus larvae maintained in tap water. The analyzes were carried out using transmission electron microscopy (TEM), flow cytometry and laser scanning (confocal) microscopy. Here we present the results of long-term exposure to cadmium concentration in soil on the organ responsible for female germ cell formation. Analysis with the use of the transmission electron microscope showed changes in the ultrastructure of both somatic and germ cells in the ovary. Moreover, quantitative analysis revealed the decrease in the percentage of cells viability, the increase in the percentage of cells with depolarized mitochondria and increasing the number of early apoptotic cells. All these changes were statistically significant compared to the control. Additionally, an increase in the ADP/ATP index was recorded. However, changes were not statistically significant to the control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, centipede, ovary, ultrastructure

Procedia PDF Downloads 118
107 Clinical Validation of C-PDR Methodology for Accurate Non-Invasive Detection of Helicobacter pylori Infection

Authors: Suman Som, Abhijit Maity, Sunil B. Daschakraborty, Sujit Chaudhuri, Manik Pradhan

Abstract:

Background: Helicobacter pylori is a common and important human pathogen and the primary cause of peptic ulcer disease and gastric cancer. Currently H. pylori infection is detected by both invasive and non-invasive way but the diagnostic accuracy is not up to the mark. Aim: To set up an optimal diagnostic cut-off value of 13C-Urea Breath Test to detect H. pylori infection and evaluate a novel c-PDR methodology to overcome of inconclusive grey zone. Materials and Methods: All 83 subjects first underwent upper-gastrointestinal endoscopy followed by rapid urease test and histopathology and depending on these results; we classified 49 subjects as H. pylori positive and 34 negative. After an overnight, fast patients are taken 4 gm of citric acid in 200 ml water solution and 10 minute after ingestion of the test meal, a baseline exhaled breath sample was collected. Thereafter an oral dose of 75 mg 13C-Urea dissolved in 50 ml water was given and breath samples were collected upto 90 minute for 15 minute intervals and analysed by laser based high precisional cavity enhanced spectroscopy. Results: We studied the excretion kinetics of 13C isotope enrichment (expressed as δDOB13C ‰) of exhaled breath samples and found maximum enrichment around 30 minute of H. pylori positive patients, it is due to the acid mediated stimulated urease enzyme activity and maximum acidification happened within 30 minute but no such significant isotopic enrichment observed for H. pylori negative individuals. Using Receiver Operating Characteristic (ROC) curve an optimal diagnostic cut-off value, δDOB13C ‰ = 3.14 was determined at 30 minute exhibiting 89.16% accuracy. Now to overcome grey zone problem we explore percentage dose of 13C recovered per hour, i.e. 13C-PDR (%/hr) and cumulative percentage dose of 13C recovered, i.e. c-PDR (%) in exhaled breath samples for the present 13C-UBT. We further explored the diagnostic accuracy of 13C-UBT by constructing ROC curve using c-PDR (%) values and an optimal cut-off value was estimated to be c-PDR = 1.47 (%) at 60 minute, exhibiting 100 % diagnostic sensitivity , 100 % specificity and 100 % accuracy of 13C-UBT for detection of H. pylori infection. We also elucidate the gastric emptying process of present 13C-UBT for H. pylori positive patients. The maximal emptying rate found at 36 minute and half empting time of present 13C-UBT was found at 45 minute. Conclusions: The present study exhibiting the importance of c-PDR methodology to overcome of grey zone problem in 13C-UBT for accurate determination of infection without any risk of diagnostic errors and making it sufficiently robust and novel method for an accurate and fast non-invasive diagnosis of H. pylori infection for large scale screening purposes.

Keywords: 13C-Urea breath test, c-PDR methodology, grey zone, Helicobacter pylori

Procedia PDF Downloads 302
106 Hypoglossal Nerve Stimulation (Baseline vs. 12 months) for Obstructive Sleep Apnea: A Meta-Analysis

Authors: Yasmeen Jamal Alabdallat, Almutazballlah Bassam Qablan, Hamza Al-Salhi, Salameh Alarood, Ibraheem Alkhawaldeh, Obada Abunar, Adam Abdallah

Abstract:

Obstructive sleep apnea (OSA) is a disorder caused by the repeated collapse of the upper airway during sleep. It is the most common cause of sleep-related breathing disorder, as OSA can cause loud snoring, daytime fatigue, or more severe problems such as high blood pressure, cardiovascular disease, coronary artery disease, insulin-resistant diabetes, and depression. The hypoglossal nerve stimulator (HNS) is an implantable medical device that reduces the occurrence of obstructive sleep apnea by electrically stimulating the hypoglossal nerve in rhythm with the patient's breathing, causing the tongue to move. This stimulation helps keep the patient's airways clear while they sleep. This systematic review and meta-analysis aimed to assess the clinical outcome of hypoglossal nerve stimulation as a treatment of obstructive sleep apnea. A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until August 2022. Studies assessing the following clinical outcomes (Apnea-Hypopnea Index (AHI), Epworth Sleepiness Scale (ESS), Functional Outcomes of Sleep Questionnaire (FOSQ), Oxygen Desaturation Indices (ODI), (Oxygen Saturation (SaO2)) were pooled in the meta-analysis using Review Manager Software. We assessed the quality of studies according to the Cochrane risk-of-bias tool for randomized trials (RoB2), Risk of Bias In Non-randomized Studies - of Interventions (ROBINS-I), and a modified version of NOS for the non-comparative cohort studies.13 Studies (Six Clinical Trials and Seven prospective cohort studies) with a total of 817 patients were included in the meta-analysis. The results of AHI were reported in 11 studies examining OSA 696 patients. We found that there was a significant improvement in the AHI after 12 months of HNS (MD = 18.2 with 95% CI, (16.7 to 19.7; I2 = 0%); P < 0.00001). Further, 12 studies reported the results of ESS after 12 months of intervention with a significant improvement in the range of sleepiness among the examined 757 OSA patients (MD = 5.3 with 95% CI, (4.75 to 5.86; I2 = 65%); P < 0.0001). Moreover, nine studies involving 699 participants reported the results of FOSQ after 12 months of HNS with a significant reported improvement (MD = -3.09 with 95% CI, (-3.41 to 2.77; I2 = 0%); P < 0.00001). In addition, ten studies reported the results of ODI with a significant improvement after 12 months of HNS among the 817 examined patients (MD = 14.8 with 95% CI, (13.25 to 16.32; I2 = 0%); P < 000001). The Hypoglossal Nerve Stimulation showed a significant positive impact on obstructive sleep apnea patients after 12 months of therapy in terms of apnea-hypopnea index, oxygen desaturation indices, manifestations of the behavioral morbidity associated with obstructive sleep apnea, and functional status resulting from sleepiness.

Keywords: apnea, meta-analysis, hypoglossal, stimulation

Procedia PDF Downloads 115
105 Incidences and Factors Associated with Perioperative Cardiac Arrest in Trauma Patient Receiving Anesthesia

Authors: Visith Siriphuwanun, Yodying Punjasawadwong, Suwinai Saengyo, Kittipan Rerkasem

Abstract:

Objective: To determine incidences and factors associated with perioperative cardiac arrest in trauma patients who received anesthesia for emergency surgery. Design and setting: Retrospective cohort study in trauma patients during anesthesia for emergency surgery at a university hospital in northern Thailand country. Patients and methods: This study was permitted by the medical ethical committee, Faculty of Medicine at Maharaj Nakorn Chiang Mai Hospital, Thailand. We clarified data of 19,683 trauma patients receiving anesthesia within a decade between January 2007 to March 2016. The data analyzed patient characteristics, traumas surgery procedures, anesthesia information such as ASA physical status classification, anesthesia techniques, anesthetic drugs, location of anesthesia performed, and cardiac arrest outcomes. This study excluded the data of trauma patients who had received local anesthesia by surgeons or monitoring anesthesia care (MAC) and the patient which missing more information. The factor associated with perioperative cardiac arrest was identified with univariate analyses. Multiple regressions model for risk ratio (RR) and 95% confidence intervals (CI) were used to conduct factors correlated with perioperative cardiac arrest. The multicollinearity of all variables was examined by bivariate correlation matrix. A stepwise algorithm was chosen at a p-value less than 0.02 was selected to further multivariate analysis. A P-value of less than 0.05 was concluded as statistically significant. Measurements and results: The occurrence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was 170.04 per 10,000 cases. Factors associated with perioperative cardiac arrest in trauma patients were age being more than 65 years (RR=1.41, CI=1.02–1.96, p=0.039), ASA physical status 3 or higher (RR=4.19–21.58, p < 0.001), sites of surgery (intracranial, intrathoracic, upper intra-abdominal, and major vascular, each p < 0.001), cardiopulmonary comorbidities (RR=1.55, CI=1.10–2.17, p < 0.012), hemodynamic instability with shock prior to receiving anesthesia (RR=1.60, CI=1.21–2.11, p < 0.001) , special techniques for surgery such as cardiopulmonary bypass (CPB) and hypotensive techniques (RR=5.55, CI=2.01–15.36, p=0.001; RR=6.24, CI=2.21–17.58, p=0.001, respectively), and patients who had a history of being alcoholic (RR=5.27, CI=4.09–6.79, p < 0.001). Conclusion: Incidence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was very high and correlated with many factors, especially age of patient and cardiopulmonary comorbidities, patient having a history of alcoholic addiction, increasing ASA physical status, preoperative shock, special techniques for surgery, and sites of surgery including brain, thorax, abdomen, and major vascular region. Anesthesiologists and multidisciplinary teams in pre- and perioperative periods should remain alert for warning signs of pre-cardiac arrest and be quick to manage the high-risk group of surgical trauma patients. Furthermore, a healthcare policy should be promoted for protecting against accidents in high-risk groups of the population as well.

Keywords: perioperative cardiac arrest, trauma patients, emergency surgery, anesthesia, factors risk, incidence

Procedia PDF Downloads 170
104 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 77
103 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system

Procedia PDF Downloads 349
102 Pregnancy Outcomes in Women With History of COVID-19 in Alexandria, Egypt

Authors: Nermeen Elbeltagy, Helmy abd Elsatar, Sara Hassan, Mohamed Darwish

Abstract:

Introduction: with the inial appearance in Wuhan, China, in December 2019, the coronavirus disease-related respiratory infection (COVID-19) has rapidly spread among people all over the world. The WHO considered it a pandemic in March 2020. The severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have proved that pregnant females as well as their fetuses are exposed to adverse outcomes, including high rates of intensive care unit (ICU) admission and case fatality. Physiological changes occurring during pregnancy such as the increased transverse diameter of the thoracic cage as well as the elevation of the diaphragm can expose the mother to severe infections because of her decreased tolerance for hypoxia. Furthermore, vasodilation and changes in lung capacity can cause mucosal edema and an increase in upper respiratory tract secretions. In addition, the increased susceptibility to infection is enhanced by changes in cellmediated immunity. Aim of the work: to study the effect of COVID-19 on pregnant females admitted to El-Shatby Maternity University Hospital regarding maternal antepartum, intrapartum and postpartum adverse effects on the mothers and their neonates. Method: A retrospective cohort study was done between October 2020 and October 2022. Maternal characteristics and associated health conditions of COVID-19 positive parents were investigated. Also, the severity of their conditions and me of infection (first or second or third trimester)were explored. Cases were diagnosed based on presence of symptoms suggestive of COVID-19, laboratory tests (other than PCR) and radiological findings.all cases were confirmed by positive PCR test results. Results: The most common adverse maternal outcomes were pre-term labor (11.6%) followed by premature rupture of membranes (5.7%), post-partum hemorrhage (5.4%), preeclampsia (5.0%) and placental abrupon (4.3%). One sixth of the neonates of the studied paents were admied to NICUs and 6.5% of them had respiratory distress with no neonatal deaths. The majority of neonates (85.4%) had a birth weight of 2500- 4000g (normal range). Most of the neonates (77.9%) had an APGAR score of equal or more than 7 in 5 minutes. Conclusion: the most common comorbidity that might increase the incidence of COVID-19 before pregnancy were diabetes, cardiac disorders/ chronic hypertension and chronic obstructive lung diseases (non-asthma). During pregnancy, anemia followed by gestational diabetes and pre-eclampsia/gestational hypertension were the most prevalent comorbidity. So, severity of infection can be reduced by good antenatal care.

Keywords: COVID-19, pregnancy outcome, complicated pregnancy., COVID in Egypt

Procedia PDF Downloads 79
101 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 86
100 Acceptability of ‘Fish Surimi Peptide’ in Under Five Children Suffering from Moderate Acute Malnutrition in Bangladesh

Authors: M. Iqbal Hossain, Azharul Islam Khan, S. M. Rafiqul Islam, Tahmeed Ahmed

Abstract:

Objective: Moderate acute malnutrition (MAM) is a major cause of morbidity and mortality in under-5 children of low-income countries. Approximately 14.6% of all under-5 mortality worldwide is attributed to MAM with >3 times increased risk of death compared to well-nourished peers. Prevalence of MAM among under-5 children in Bangladesh is ~12% (~1.7 million). Providing a diet containing adequate nutrients is the mainstay of treatment of children with MAM. It is now possible to process fish into fish peptides with longer shelf-life without refrigerator, known as ‘Fish Surimi peptide’ and this could be an attractive alternative to supply fish protein in the diet of children in low-income countries like Bangladesh. We conducted this study to assess the acceptability of Fish Surimi peptide given with various foods/meals in 2-5 years old children with MAM. Design/methods: Fish Surimi peptide is broken down from white fish meat using plant-derived enzyme and the ingredient is just fish meat consisted of 20 different kinds of amino acids including nine essential amino acids. In a convenience sample of 34 children we completed the study ward of Dhaka Hospital of icddr,b in Bangladesh during November 2014 through February 2015. For each child the study was for two consecutive days: i.e. direct observation of food intake of two lunches and two suppers. In a randomly and blinded manner and cross over design an individual child received Fish Surimi peptide (5g at lunch and 5g at supper) mixed meal [e.g. 30g rice and 30g dahl (thick lentil soup) or 60g of a vegetables-lentil-rice mixed local dish known as khichuri in one day and the same meal on other day without any Fish Surimi peptide. We observed the completeness and eagerness of eating and any possible side effect (e.g. allergy, vomiting, diarrhea etc.) over these two days. Results: The mean±SD age of the enrolled children was 38.4±9.4 months, weight 11.22±1.41 kg, height 91.0±6.3 cm, and WHZ was -2.13±0.76. Their mean±SD total feeding time (minutes) for lunch was 25.4±13.6 vs. 20.6±11.1 (p=0.130) and supper was 22.3±9.7 vs. 19.7±11.2 (p=0.297), and total amount (g) of food eaten in lunch and supper was found similar 116.1±7.0 vs. 117.7±8.0 (p=3.01) in A (Fish Surimi) and B group respectively. Score in Hedonic scale by mother on test of food given to children at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) and on overall acceptance (including the texture, smell, and appearance) of food at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) for A and B group respectively. No adverse event was observed in any food group during the study period. Conclusions: Fish Surimi peptide may be a cost effective supplementary food, which should be tested by appropriately designed randomized community level intervention trial both in wasted children and stunted children.

Keywords: protein-energy malnutrition, moderate acute malnutrition, weight-for-height z-score, mid upper arm circumference, acceptability, fish surimi peptide, under-5 children

Procedia PDF Downloads 413
99 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test

Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi

Abstract:

Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.

Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete

Procedia PDF Downloads 149
98 De-Pigmentary Effect of Ayurvedic Treatment on Hyper-Pigmentation of Skin Due to Chloroquine: A Case Report

Authors: Sunil Kumar, Rajesh Sharma

Abstract:

Toxic epidermal necrolysis, pruritis, rashes, lichen planus like eruption, hyper pigmentation of skin are rare toxic effects of choloroquine used over a long time. Skin and mucus membrane hyper pigmentation is generally of a bluish black or grayish color and irreversible after discontinuation of the drug. According to Ayurveda, Dushivisha is the name given to any poisonous substance which is not fully endowed with the qualities of poison by nature (i.e. it acts as an impoverished or weak poison) and because of its mild potency, it remains in the body for many years causing various symptoms, one among them being discoloration of skin.The objective of this case report is to investigate the effect of Ayurvedic management of chloroquine induced hyper-pigmentation on the line of treatment of Dushivisha. Case Report: A 26-year-old female was suffering from hyper-pigmentation of the skin over the neck, forehead, temporo-mandibular joints, upper back and posterior aspect of both the arms since 8 years had history of taking Chloroquine came to Out Patient Department of National Institute of Ayurveda, Jaipur, India in Jan. 2015. The routine investigations (CBC, ESR, Eosinophil count) were within normal limits. Punch biopsy skin studied for histopathology under hematoxylin and eosin staining showed epidermis with hyper-pigmentation of the basal layer. In the papillary dermis as well as deep dermis there were scattered melanophages along with infiltration by mononuclear cells. There was no deposition of amyloid-like substances. These histopathological findings were suggestive of Chloroquine induced hyper-pigmentation. The case was treated on the line of treatment of Dushivisha and was given Vamana and Virechana (therapeutic emesis and purgation) every six months followed by Snehana karma (oleation therapy) with Panchatikta Ghrit and Swedana (sudation). Arogyavardhini Vati -1 g, Dushivishari Vati 500 mg, Mahamanjisthadi Quath 20 ml were given twelve hourly and Aragwadhadi Quath 25 ml at bed time orally. The patient started showing lightening of the pigments after six months and almost complete remission after 12 months of the treatment. Conclusion: This patient presented with the Dushivisha effect of Chloroquineandwas administered two relevant procedures from Panchakarma viz. Vamana and Virechana. Both Vamana and Virechanakarma here referred to Shodhana karma (purification procedures) eliminates accumulated toxins from the body. In this process, oleation dislodge the toxins from the tissues and sudation helps to bring them to the alimentary tract. The line of treatment did not target direct hypo pigmentary effects; rather aimed to eliminate the Dushivisha. This gave promising results in this condition.

Keywords: Ayurveda, chloroquine, Dushivisha, hyper-pigmentation

Procedia PDF Downloads 234
97 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 193
96 Powder Assisted Sheet Forming to Fabricate Ti Capsule Magnetic Hyperthermia Implant

Authors: Keigo Nishitani, Kohei Mizuta Mizuta, Kazuyoshi Kurita, Yukinori Taniguchi

Abstract:

To establish mass production process of Ti capsule which has Fe powder inside as magnetic hyperthermia implant, we assumed that Ti thin sheet can be drawn into a φ1.0 mm die hole through the medium of Fe Powder and becomes outer shell of capsule. This study discusses mechanism of powder assisted deep drawing process by both of numerical simulation and experiment. Ti thin sheet blank was placed on die, and was covered by Fe powder layer without pressurizing. Then upper punch was indented on the Fe powder layer, and the blank can be drawn into die cavity as pressurized powder particles were extruded into die cavity from behind of the drawn blank. Distinct Element Method (DEM) has been used to demonstrate the process. To identify bonding parameters on Fe particles which are cohesion, tensile bond stress and inter particle friction angle, axial and diametrical compression failure test of Fe powder compact was conducted. Several density ratios of powder compacts in range of 0.70 - 0.85 were investigated and relationship between mean stress and equivalent stress was calculated with consideration of critical state line which rules failure criterion in consolidation of Fe powder. Since variation of bonding parameters with density ratio has been experimentally identified, and good agreement has been recognized between several failure tests and its simulation, demonstration of powder assisted sheet forming by using DEM becomes applicable. Results of simulation indicated that indent/drawing length of Ti thin sheet is promoted by smaller Fe particle size, larger indent punch diameter, lower friction coefficient between die surface and Ti sheet and certain degrees of die inlet taper angle. In the deep drawing test, we have made die-set with φ2.4 mm punch and φ1.0 mm die bore diameter. Pure Ti sheet with 100 μm thickness, annealed at 650 deg. C has been tested. After indentation, indented/drawn capsule has been observed by microscope, and its length was measured to discuss the feasibility of this capsulation process. Longer drawing length exists on progressive loading pass comparing with the case of single stroke loading. It is expected that progressive loading has an advantage of which extrusion of powder particle into die cavity with Ti sheet is promoted since powder particle layer can be rebuilt while the punch is withdrawn from the layer in each loading steps. This capsulation phenomenon is qualitatively demonstrated by DEM simulation. Finally, we have fabricated Ti capsule which has Fe powder inside for magnetic hyperthermia cancer care treatment. It is concluded that suggested method is possible to use the manufacturing of Ti capsule implant for magnetic hyperthermia cancer care.

Keywords: metal powder compaction, metal forming, distinct element method, cancer care, magnetic hyperthermia

Procedia PDF Downloads 298
95 Development and Experimental Evaluation of a Semiactive Friction Damper

Authors: Juan S. Mantilla, Peter Thomson

Abstract:

Seismic events may result in discomfort on occupants of the buildings, structural damage or even buildings collapse. Traditional design aims to reduce dynamic response of structures by increasing stiffness, thus increasing the construction costs and the design forces. Structural control systems arise as an alternative to reduce these dynamic responses. A commonly used control systems in buildings are the passive friction dampers, which adds energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Passive friction dampers are usually implemented on the diagonal of braced buildings, but such devices have the disadvantage that are optimal for a range of sliding force and out of that range its efficiency decreases. The above implies that each passive friction damper is designed, built and commercialized for a specific sliding/clamping force, in which the damper shift from a locked state to a slip state, where dissipates energy through friction. The risk of having a variation in the efficiency of the device according to the sliding force is that the dynamic properties of the building can change as result of many factor, even damage caused by a seismic event. In this case the expected forces in the building can change and thus considerably reduce the efficiency of the damper (that is designed for a specific sliding force). It is also evident than when a seismic event occurs the forces in each floor varies in the time what means that the damper's efficiency is not the best at all times. Semi-Active Friction devices adapt its sliding force trying to maintain its motion in the slipping phase as much as possible, because of this, the effectiveness of the device depends on the control strategy used. This paper deals with the development and performance evaluation of a low cost Semiactive Variable Friction Damper (SAVFD) in reduced scale to reduce vibrations of structures subject to earthquakes. The SAVFD consist in a (1) hydraulic brake adapted to (2) a servomotor which is controlled with an (3) Arduino board and acquires accelerations or displacement from (4) sensors in the immediately upper and lower floors and a (5) power supply that can be a pair of common batteries. A test structure, based on a Benchmark structure for structural control, was design and constructed. The SAVFD and the structure are experimentally characterized. A numerical model of the structure and the SAVFD is developed based on the dynamic characterization. Decentralized control algorithms were modeled and later tested experimentally using shaking table test using earthquake and frequency chirp signals. The controlled structure with the SAVFD achieved reductions greater than 80% in relative displacements and accelerations in comparison to the uncontrolled structure.

Keywords: earthquake response, friction damper, semiactive control, shaking table

Procedia PDF Downloads 378
94 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number

Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza

Abstract:

The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.

Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil

Procedia PDF Downloads 388
93 C-Spine Imaging in a Non-trauma Centre: Compliance with NEXUS Criteria Audit

Authors: Andrew White, Abigail Lowe, Kory Watkins, Hamed Akhlaghi, Nicole Winter

Abstract:

The timing and appropriateness of diagnostic imaging are critical to the evaluation and management of traumatic injuries. Within the subclass of trauma patients, the prevalence of c-spine injury is less than 4%. However, the incidence of delayed diagnosis within this cohort has been documented as up to 20%, with inadequate radiological examination most cited issue. In order to assess those in which c-spine injury cannot be fully excluded based on clinical examination alone and, therefore, should undergo diagnostic imaging, a set of criteria is used to provide clinical guidance. The NEXUS (National Emergency X-Radiography Utilisation Study) criteria is a validated clinical decision-making tool used to facilitate selective c-spine radiography. The criteria allow clinicians to determine whether cervical spine imaging can be safely avoided in appropriate patients. The NEXUS criteria are widely used within the Emergency Department setting given their ease of use and relatively straightforward application and are used in the Victorian State Trauma System’s guidelines. This audit utilized retrospective data collection to examine the concordance of c-spine imaging in trauma patients to that of the NEXUS criteria and assess compliance with state guidance on diagnostic imaging in trauma. Of the 183 patients that presented with trauma to the head, neck, or face (244 excluded due to incorrect triage), 98 did not undergo imaging of the c-spine. Out of those 98, 44% fulfilled at least one of the NEXUS criteria, meaning the c-spine could not be clinically cleared as per the current guidelines. The criterion most met was intoxication, comprising 42% (18 of 43), with midline spinal tenderness (or absence of documentation of this) the second most common with 23% (10 of 43). Intoxication being the most met criteria is significant but not unexpected given the cohort of patients seen at St Vincent’s and within many emergency departments in general. Given these patients will always meet NEXUS criteria, an element of clinical judgment is likely needed, or concurrent use of the Canadian C-Spine Rules to exclude the need for imaging. Midline tenderness as a met criterion was often in the context of poor or absent documentation relating to this, emphasizing the importance of clear and accurate assessments. The distracting injury was identified in 7 out of the 43 patients; however, only one of these patients exhibited a thoracic injury (T11 compression fracture), with the remainder comprising injuries to the extremities – some studies suggest that C-spine imaging may not be required in the evaluable blunt trauma patient despite distracting injuries in any body regions that do not involve the upper chest. This emphasises the need for standardised definitions for distracting injury, at least at a departmental/regional level. The data highlights the currently poor application of the NEXUS guidelines, with likely common themes throughout emergency departments, highlighting the need for further education regarding implementation and potential refinement/clarification of criteria. Of note, there appeared to be no significant differences between levels of experience with respect to inappropriately clearing the c-spine clinically with respect to the guidelines.

Keywords: imaging, guidelines, emergency medicine, audit

Procedia PDF Downloads 72
92 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency

Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva

Abstract:

This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.

Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium

Procedia PDF Downloads 233
91 Implementing the WHO Air Quality Guideline for PM2.5 Worldwide can Prevent Millions of Premature Deaths Per Year

Authors: Despina Giannadaki, Jos Lelieveld, Andrea Pozzer, John Evans

Abstract:

Outdoor air pollution by fine particles ranks among the top ten global health risk factors that can lead to premature mortality. Epidemiological cohort studies, mainly conducted in United States and Europe, have shown that the long-term exposure to PM2.5 (particles with an aerodynamic diameter less than 2.5μm) is associated with increased mortality from cardiovascular, respiratory diseases and lung cancer. Fine particulates can cause health impacts even at very low concentrations. Previously, no concentration level has been defined below which health damage can be fully prevented. The World Health Organization ambient air quality guidelines suggest an annual mean PM2.5 concentration limit of 10μg/m3. Populations in large parts of the world, especially in East and Southeast Asia, and in the Middle East, are exposed to high levels of fine particulate pollution that by far exceeds the World Health Organization guidelines. The aim of this work is to evaluate the implementation of recent air quality standards for PM2.5 in the EU, the US and other countries worldwide and estimate what measures will be needed to substantially reduce premature mortality. We investigated premature mortality attributed to fine particulate matter (PM2.5) under adults ≥ 30yrs and children < 5yrs, applying a high-resolution global atmospheric chemistry model combined with epidemiological concentration-response functions. The latter are based on the methodology of the Global Burden of Disease for 2010, assuming a ‘safe’ annual mean PM2.5 threshold of 7.3μg/m3. We estimate the global premature mortality by PM2.5 at 3.15 million/year in 2010. China is the leading country with about 1.33 million, followed by India with 575 thousand and Pakistan with 105 thousand. For the European Union (EU) we estimate 173 thousand and the United States (US) 52 thousand in 2010. Based on sensitivity calculations we tested the gains from PM2.5 control by applying the air quality guidelines (AQG) and standards of the World Health Organization (WHO), the EU, the US and other countries. To estimate potential reductions in mortality rates we take into consideration the deaths that cannot be avoided after the implementation of PM2.5 upper limits, due to the contribution of natural sources to total PM2.5 and therefore to mortality (mainly airborne desert dust). The annual mean EU limit of 25μg/m3 would reduce global premature mortality by 18%, while within the EU the effect is negligible, indicating that the standard is largely met and that stricter limits are needed. The new US standard of 12μg/m3 would reduce premature mortality by 46% worldwide, 4% in the US and 20% in the EU. Implementing the AQG by the WHO of 10μg/m3 would reduce global premature mortality by 54%, 76% in China and 59% in India. In the EU and US, the mortality would be reduced by 36% and 14%, respectively. Hence, following the WHO guideline will prevent 1.7 million premature deaths per year. Sensitivity calculations indicate that even small changes at the lower PM2.5 standards can have major impacts on global mortality rates.

Keywords: air quality guidelines, outdoor air pollution, particulate matter, premature mortality

Procedia PDF Downloads 310
90 Study of Silent Myocardial Ischemia in Type 2 Diabeic Males: Egyptian Experience

Authors: Ali Kassem, Yhea Kishik, Ali Hassan, Mohamed Abdelwahab

Abstract:

Introduction: Accelerated coronary and peripheral vascular atherosclerosis is one of the most common and chronic complications of diabetes mellitus. A recent aspect of coronary artery disease in this condition is its silent nature. The aim of the work: Detection of the prevalence of silent myocardial ischemia (SMI) in Upper Egypt type 2 diabetic males and to select male diabetic population who should be screened for SMI. Patients and methods: 100 type 2 diabetic male patients with a negative history of angina or anginal equivalent symptoms and 30 healthy control were included. Full medical history and thorough clinical examination were done for all participants. Fasting and post prandial blood glucose level, lipid profile, (HbA1c), microalbuminuria, and C-reactive protein were done for all participants Resting ECG, trans-thoracic echocardiography, treadmill exercise ECG, myocardial perfusion imaging were done for all participants and patients positive for one or more NITs were subjected for coronary angiography. Results Twenty nine patients (29%) were positive for one or more NITs in the patients group compared to only one case (3.3%) in the controls. After coronary angiography, 20 patients were positive for significant coronary artery stenosis in the patients group, while it was refused to be done by the patient in the controls. There were statistical significant difference between the two groups regarding, hypertension, dyslipidemia and obesity, family history of DM and IHD with higher levels of microalbuminuria, C-reactive protein, total lipids in patient group versus controls According to coronary angiography, patients were subdivided into two subgroups, 20 positive for SMI (positive for coronary angiography) and 80 negative for SMI (negative for coronary angiography). No statistical difference regarding family history of DM and type of diabetic therapy was found between the two subgroups. Yet, smoking, hypertension, obesity, dyslipidemia and family history of IHD were significantly higher in diabetics positive versus those negative for SMI. 90% of patients in subgroup positive for SMI had two or more cardiac risk factors while only two patients had one cardiac risk factor (10%). Uncontrolled DM was detected more in patients positive for SMI. Diabetic complications were more prevalent in patients positive for SMI versus those negative for SMI. Most of the patients positive for SMI have DM more than 5 years duration. Resting ECG and resting Echo detected only 6 and 11 cases, respectively, of the 20 positive cases in group positive for SMI compared to treadmill exercise ECG and myocardial perfusion imaging that detected 16 and 18 cases respectively, Conclusion: Type 2 diabetic male patients should be screened for detection of SMI when aged above 50 years old, diabetes duration is more than 5 years, presence of two or more cardiac risk factors and/or patients suffering from one or more of the chronic diabetic complications. CRP, is an important parameter for selection of type 2 diabetic male patients who should be screened for SMI. Non invasive cardiac tests are reliable for screening of SMI in these patients in our locality.

Keywords: C-reactive protein, Silent myocardial ischemia, Stress tests, type 2 DM

Procedia PDF Downloads 385
89 Hospital Malnutrition and its Impact on 30-day Mortality in Hospitalized General Medicine Patients in a Tertiary Hospital in South India

Authors: Vineet Agrawal, Deepanjali S., Medha R., Subitha L.

Abstract:

Background. Hospital malnutrition is a highly prevalent issue and is known to increase the morbidity, mortality, length of hospital stay, and cost of care. In India, studies on hospital malnutrition have been restricted to ICU, post-surgical, and cancer patients. We designed this study to assess the impact of hospital malnutrition on 30-day post-discharge and in-hospital mortality in patients admitted in the general medicine department, irrespective of diagnosis. Methodology. All patients aged above 18 years admitted in the medicine wards, excluding medico-legal cases, were enrolled in the study. Nutritional assessment was done within 72 h of admission, using Subjective Global Assessment (SGA), which classifies patients into three categories: Severely malnourished, Mildly/moderately malnourished, and Normal/well-nourished. Anthropometric measurements like Body Mass Index (BMI), Triceps skin-fold thickness (TSF), and Mid-upper arm circumference (MUAC) were also performed. Patients were followed-up during hospital stay and 30 days after discharge through telephonic interview, and their final diagnosis, comorbidities, and cause of death were noted. Multivariate logistic regression and cox regression model were used to determine if the nutritional status at admission independently impacted mortality at one month. Results. The prevalence of malnourishment by SGA in our study was 67.3% among 395 hospitalized patients, of which 155 patients (39.2%) were moderately malnourished, and 111 (28.1%) were severely malnourished. Of 395 patients, 61 patients (15.4%) expired, of which 30 died in the hospital, and 31 died within 1 month of discharge from hospital. On univariate analysis, malnourished patients had significantly higher morality (24.3% in 111 Cat C patients) than well-nourished patients (10.1% in 129 Cat A patients), with OR 9.17, p-value 0.007. On multivariate logistic regression, age and higher Charlson Comorbidity Index (CCI) were independently associated with mortality. Higher CCI indicates higher burden of comorbidities on admission, and the CCI in the expired patient group (mean=4.38) was significantly higher than that of the alive cohort (mean=2.85). Though malnutrition significantly contributed to higher mortality on univariate analysis, it was not an independent predictor of outcome on multivariate logistic regression. Length of hospitalisation was also longer in the malnourished group (mean= 9.4 d) compared to the well-nourished group (mean= 8.03 d) with a trend towards significance (p=0.061). None of the anthropometric measurements like BMI, MUAC, or TSF showed any association with mortality or length of hospitalisation. Inference. The results of our study highlight the issue of hospital malnutrition in medicine wards and reiterate that malnutrition contributes significantly to patient outcomes. We found that SGA performs better than anthropometric measurements in assessing under-nutrition. We are of the opinion that the heterogeneity of the study population by diagnosis was probably the primary reason why malnutrition by SGA was not found to be an independent risk factor for mortality. Strategies to identify high-risk patients at admission and treat malnutrition in the hospital and post-discharge are needed.

Keywords: hospitalization outcome, length of hospital stay, mortality, malnutrition, subjective global assessment (SGA)

Procedia PDF Downloads 150
88 Design Flood Estimation in Satluj Basin-Challenges for Sunni Dam Hydro Electric Project, Himachal Pradesh-India

Authors: Navneet Kalia, Lalit Mohan Verma, Vinay Guleria

Abstract:

Introduction: Design Flood studies are essential for effective planning and functioning of water resource projects. Design flood estimation for Sunni Dam Hydro Electric Project located in State of Himachal Pradesh, India, on the river Satluj, was a big challenge in view of the river flowing in the Himalayan region from Tibet to India, having a large catchment area of varying topography, climate, and vegetation. No Discharge data was available for the part of the river in Tibet, whereas, for India, it was available only at Khab, Rampur, and Luhri. The estimation of Design Flood using standard methods was not possible. This challenge was met using two different approaches for upper (snow-fed) and lower (rainfed) catchment using Flood Frequency Approach and Hydro-metrological approach. i) For catchment up to Khab Gauging site (Sub-Catchment, C1), Flood Frequency approach was used. Around 90% of the catchment area (46300 sqkm) up to Khab is snow-fed which lies above 4200m. In view of the predominant area being snow-fed area, 1 in 10000 years return period flood estimated using Flood Frequency analysis at Khab was considered as Probable Maximum Flood (PMF). The flood peaks were taken from daily observed discharges at Khab, which were increased by 10% to make them instantaneous. Design Flood of 4184 cumec thus obtained was considered as PMF at Khab. ii) For catchment between Khab and Sunni Dam (Sub-Catchment, C2), Hydro-metrological approach was used. This method is based upon the catchment response to the rainfall pattern observed (Probable Maximum Precipitation - PMP) in a particular catchment area. The design flood computation mainly involves the estimation of a design storm hyetograph and derivation of the catchment response function. A unit hydrograph is assumed to represent the response of the entire catchment area to a unit rainfall. The main advantage of the hydro-metrological approach is that it gives a complete flood hydrograph which allows us to make a realistic determination of its moderation effect while passing through a reservoir or a river reach. These studies were carried out to derive PMF for the catchment area between Khab and Sunni Dam site using a 1-day and 2-day PMP values of 232 and 416 cm respectively. The PMF so obtained was 12920.60 cumec. Final Result: As the Catchment area up to Sunni Dam has been divided into 2 sub-catchments, the Flood Hydrograph for the Catchment C1 has been routed through the connecting channel reach (River Satluj) using Muskingum method and accordingly, the Design Flood was computed after adding the routed flood ordinates with flood ordinates of catchment C2. The total Design Flood (i.e. 2-Day PMF) with a peak of 15473 cumec was obtained. Conclusion: Even though, several factors are relevant while deciding the method to be used for design flood estimation, data availability and the purpose of study are the most important factors. Since, generally, we cannot wait for the hydrological data of adequate quality and quantity to be available, flood estimation has to be done using whatever data is available. Depending upon the type of data available for a particular catchment, the method to be used is to be selected.

Keywords: design flood, design storm, flood frequency, PMF, PMP, unit hydrograph

Procedia PDF Downloads 327
87 Fuzzy Availability Analysis of a Battery Production System

Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz

Abstract:

In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.

Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)

Procedia PDF Downloads 225
86 Subcutan Isosulfan Blue Administration May Interfere with Pulse Oximetry

Authors: Esra Yuksel, Dilek Duman, Levent Yeniay, Sezgin Ulukaya

Abstract:

Sentinel lymph node biopsy (SLNB) is a minimal invasive technique with lower morbidity in axillary staging of breast cancer. Isosulfan blue stain is frequently used in SLNB and regarded as safe. The present case report aimed to report severe decrement in SpO2 following isosulfan blue administration, as well as skin and urine signs and inconsistency with clinical picture in a 67-year-old ,77 kg, ASA II female case that underwent SLNB under general anesthesia. Ten minutes after subcutaneous administration of 10 ml 1% isosulfan blue by the surgeons into the patient, who were hemodynamically stable, SpO2 first reduced to 87% from 99%, and then to 75% in minutes despite 100% oxygen support. Meanwhile, blood pressure and EtCO2 monitoring was unremarkable. After specifying that anesthesia device worked normally, airway pressure did not increase and the endotracheal tube has been placed accurately, the blood sample was taken from the patient for arterial gas analysis. A severe increase was thought in MetHb concentration since SpO2 persisted to be 75% although the concentration of inspired oxygen was 100%, and solution of 2500 mg ascorbic acid in 500 ml 5% Dextrose was given to the patient via intravenous route until the results of arterial blood gas were obtained. However, arterial blood gas results were as follows: pH: 7.54, PaCO2: 23.3 mmHg, PaO2: 281 mmHg, SaO2: %99, and MetHb: %2.7. Biochemical analysis revealed a blood MetHb concentration of 2%.However, since arterial blood gas parameters were good, hemodynamics of the patient was stable and methemoglobin concentration was not so high, the patient was extubated after surgery when she was relaxed, cooperated and had adequate respiration. Despite the absence of respiratory or neurological distress, SpO2 value was increased only up to 85% within 2 hours with 5 L/min oxygen support via face mask in the surgery room as the patient was extubated. At that time, the skin of particularly the upper part of her body has turned into blue, more remarkable on the face. The color of plasma of the blood taken from the patient for biochemical analysis was blue. The color of urine coming throughout the urinary catheter placed in intensive care unit was also blue. Twelve hours after 5 L/min. oxygen inhalation via a mask, the SpO2 reached to 90%. During monitoring in intensive care unit on the postoperative 1st day, facial color and urine color of the patient was still blue, SpO2 was 92%, and arterial blood gas levels were as follows: pH: 7.44, PaO2: 76.1 mmHg, PaCO2: 38.2 mmHg, SaO2: 99%, and MetHb 1%. During monitoring in clinic on the postoperative 2nd day, SpO2 was 95% without oxygen support and her facial and urine color turned into normal. The patient was discharged on the 3rd day without any problem.In conclusion, SLNB is a less invasive alternative to axillary dissection. However, false pulse oximeter reading due to pigment interference is a rare complication of this procedure. Arterial blood gas analysis should be used to confirm any fall in SpO2 reading during monitoring.

Keywords: isosulfan blue, pulse oximetry, SLNB, methemoglobinemia

Procedia PDF Downloads 315
85 Analysis of Stress and Strain in Head Based Control of Cooperative Robots through Tetraplegics

Authors: Jochen Nelles, Susanne Kohns, Julia Spies, Friederike Schmitz-Buhl, Roland Thietje, Christopher Brandl, Alexander Mertens, Christopher M. Schlick

Abstract:

Industrial robots as part of highly automated manufacturing are recently developed to cooperative (light-weight) robots. This offers the opportunity of using them as assistance robots and to improve the participation in professional life of disabled or handicapped people such as tetraplegics. Robots under development are located within a cooperation area together with the working person at the same workplace. This cooperation area is an area where the robot and the working person can perform tasks at the same time. Thus, working people and robots are operating in the immediate proximity. Considering the physical restrictions and the limited mobility of tetraplegics, a hands-free robot control could be an appropriate approach for a cooperative assistance robot. To meet these requirements, the research project MeRoSy (human-robot synergy) develops methods for cooperative assistance robots based on the measurement of head movements of the working person. One research objective is to improve the participation in professional life of people with disabilities and, in particular, mobility impaired persons (e.g. wheelchair users or tetraplegics), whose participation in a self-determined working life is denied. This raises the research question, how a human-robot cooperation workplace can be designed for hands-free robot control. Here, the example of a library scenario is demonstrated. In this paper, an empirical study that focuses on the impact of head movement related stress is presented. 12 test subjects with tetraplegia participated in the study. Tetraplegia also known as quadriplegia is the worst type of spinal cord injury. In the experiment, three various basic head movements were examined. Data of the head posture were collected by a motion capture system; muscle activity was measured via surface electromyography and the subjective mental stress was assessed via a mental effort questionnaire. The muscle activity was measured for the sternocleidomastoid (SCM), the upper trapezius (UT) or trapezius pars descendens, and the splenius capitis (SPL) muscle. For this purpose, six non-invasive surface electromyography sensors were mounted on the head and neck area. An analysis of variance shows differentiated muscular strains depending on the type of head movement. Systematically investigating the influence of different basic head movements on the resulting strain is an important issue to relate the research results to other scenarios. At the end of this paper, a conclusion will be drawn and an outlook of future work will be presented.

Keywords: assistance robot, human-robot interaction, motion capture, stress-strain-concept, surface electromyography, tetraplegia

Procedia PDF Downloads 316
84 Using the Theory of Reasoned Action and Parental Mediation Theory to Examine Cyberbullying Perpetration among Children and Adolescents

Authors: Shirley S. Ho

Abstract:

The advancement and development of social media have inadvertently brought about a new form of bullying – cyberbullying – that transcends across physical boundaries of space. Although extensive research has been conducted in the field of cyberbullying, most of these studies have taken an overwhelmingly empirical angle. Theories guiding cyberbullying research are few. Furthermore, very few studies have explored the association between parental mediation and cyberbullying, with majority of existing studies focusing on cyberbullying victimization rather than perpetration. Therefore, this present study investigates cyberbullying perpetration from a theoretical angle, with a focus on the Theory of Reasoned Action and the Parental Mediation Theory. More specifically, this study examines the direct effects of attitude, subjective norms, descriptive norms, injunctive norms and active mediation and restrictive mediation on cyberbullying perpetration on social media among children and adolescents in Singapore. Furthermore, the moderating role of age on the relationship between parental mediation and cyberbullying perpetration on social media are examined. A self-administered paper-and-pencil nationally-representative survey was conducted. Multi-stage cluster random sampling was used to ensure that schools from all the four (North, South, East, and West) regions of Singapore were equally represented in the sample used for the survey. In all 607 upper primary school children (i.e., Primary 4 to 6 students) and 782 secondary school adolescents participated in our survey. The total average response rates were 69.6% for student participation. An ordinary least squares hierarchical regression analysis was conducted to test the hypotheses and research questions. The results revealed that attitude and subjective norms were positively associated with cyberbullying perpetration on social media. Descriptive norms and injunctive norms were not found to be significantly associated with cyberbullying perpetration. The results also showed that both parental mediation strategies were negatively associated with cyberbullying perpetration on social media. Age was a significant moderator of both parental mediation strategies and cyberbullying perpetration. The negative relationship between active mediation and cyberbullying perpetration was found to be greater in the case of children than adolescents. Children who received high restrictive parental mediation were less likely to perform cyberbullying behaviors, while adolescents who received high restrictive parental mediation were more likely to be engaged in cyberbullying perpetration. The study reveals that parents should apply active mediation and restrictive mediation in different ways for children and adolescents when trying to prevent cyberbullying perpetration. The effectiveness of active parental mediation for reducing cyberbullying perpetration was more in the case of children than for adolescents. Younger children were found to be more likely to respond more positively toward restrictive parental mediation strategies, but in the case of adolescents, overly restrictive control was found to increase cyberbullying perpetration. Adolescents exhibited less cyberbullying behaviors when under low restrictive strategies. Findings highlight that the Theory of Reasoned Action and Parental Mediation Theory are promising frameworks to apply in the examination of cyberbullying perpetration. The findings that different parental mediation strategies had differing effectiveness, based on the children’s age, bring about several practical implications that may benefit educators and parents when addressing their children’s online risk.

Keywords: cyberbullying perpetration, theory of reasoned action, parental mediation, social media, Singapore

Procedia PDF Downloads 254