Search results for: thickness ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5855

Search results for: thickness ratio

4565 Comparative Effect of Microbial Phytase Supplementation on Layer Chickens Fed Diets with Required or Low Phosphorous Level

Authors: Hamada Ahmed, Mervat A. Abdel-Latif, Alaa. A. Ghoraba, Samah A. Ganna

Abstract:

An experiment was conducted to determine the effect of microbial phytase (Quantum Blue®) supplementation on layer chickens fed diets with required or low phosphorous level in corn-soybean based diets. One hundred and sixteen 23-week-old Lohman brown laying hens were used in 8-week feeding trial. Hens were randomly allotted into four treatments where the group (1) (control group) was fed basal diet without phytase, group (2) fed basal diet supplemented with phytase, group (3) fed diet supplemented with phytase as a replacement of 25% of monocalcium phosphate and group (4) fed diet supplemented with phytase as a replacement of 50% of monocalcium phosphate. Records on daily egg production, egg mass, egg weight and body weight of hens at the end of experimental period were recorded. Results revealed no significant (p ≥ 0.05) differences were observed among the other dietary treatments in BW, egg production, egg mass, feed intake or feed conversion when these parameters were evaluated over the duration of the experiment while egg weight showed significant (p < 0.05) increase in all phytase supplemented groups. There was no significant (p ≥ 0.05) differences in egg quality including egg length, egg width, egg shape index, yolk height, yolk width, yolk index, yolk weight and yolk albumin ratio while egg albumin was significantly increased (p < 0.05) in group (2) and group (3). Egg shell weight increased significantly (p < 0.05) in all phytase supplemented groups when compared with the control group also shell thickness increased significantly (p < 0.05) in both group (2 &3). No significant (P ≥ 0.05) difference was observed in serum Ca, P level while alkaline phosphatase was significantly (P ˂ 0.05) increased in group (3). Egg shell analysis showed increase in egg shell ash% in all phytase supplemented groups when compared with the control group, egg shell calcium % was higher in group (3) and group (4) than the control group while group (2) showed lower egg shell calcium% than the other experimental groups, egg shell phosphorous% was higher in all phytase supplemented groups than the control group. Phosphorous digestability was significantly (P ˂ 0.05) increased in all phytase supplemented groups than the control group and the highest p digestability was in group (4). Calcium digestability showed significant (P ˂ 0.05) increase in all phytase supplemented groups when compared with the control group and the highest digetability was in group (4).

Keywords: layers, microbial phytase, Ca and P availability, egg production, egg characteristics

Procedia PDF Downloads 185
4564 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem

Procedia PDF Downloads 217
4563 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test

Authors: Mohit Chauhan, Atul Narayan

Abstract:

Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.

Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning

Procedia PDF Downloads 135
4562 Children of Quarantine: A Post COVID-19 Mental Health Dilemma

Authors: Salman Abdul Majeed, Vidur Solanki, Ruqiya Shama Tareen

Abstract:

BACKGROUND: The COVID-19 pandemic has affected the way of living as we have known for all strata of society. While disease containment measures imposed by governmental agencies have been instrumental in controlling the spread of the virus, it has had profound collateral impacts on all populations. However, the disruption caused in the lives of one segment of population has been far more damaging than most others: the emotional wellbeing of our child and adolescent populations. This impact was even more pronounced in children who already suffered from neurodevelopmental or psychiatric disorders. In particular, school closures have not only led to profound social isolation, but also negative impacts on normal developmental opportunities and interruptions in mental health services obtained through school systems. It is too soon to understand the full impacts of quarantine, isolation, stress of social detachment and fear of pandemic, but we have started to see the devastating impact on C&A already. This review intends to shed light on the current understanding of psychiatric wellbeing of C&A during COVID-19 pandemic. METHOD: Literature search utilizing key words COVID-19 and children, quarantine and children, social isolation, Loneliness, pandemic stress and children, and mental health of children, disease containment measures was carried out. Over 200 articles were identified, out of which 81 articles were included in this review article. RESULTS: The disruption caused by COVID-19 in the lives of C&A is much more damaging and its impact is far reaching. The C&A ED visits for possible suicide attempts have jumped to 22.3% in 2020 and 39.1% during 2021. One study utilizing T1-weighted structural images, computed the thickness of cortical and subcortical structures including amygdala, hippocampus, and nucleus accumbens. The Peri-COVID group showed reduced cortical and subcortical thickness and more advanced brain aging compared to pre pandemic studies. CONCLUSION: Mental health resources for C&A remain under funded, neglected, and inaccessible to population that needs it most. Children with ongoing mental health disorders were impacted worst, along with those with predisposed biopsychosocial risk factors.

Keywords: COVID-19 and children, quarantine and children, social isolation, Loneliness, pandemic stress and children, disease containment measures, mental health of children

Procedia PDF Downloads 72
4561 Velocity Distribution in Open Channels with Sand: An Experimental Study

Authors: E. Keramaris

Abstract:

In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.

Keywords: particle image velocimetry, sand bed, velocity distribution, Reynolds number

Procedia PDF Downloads 371
4560 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal

Authors: Han Xue, Zhang Lanyue

Abstract:

In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.

Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network

Procedia PDF Downloads 524
4559 The Power House of Mind: Determination of Action

Authors: Sheetla Prasad

Abstract:

The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.

Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche

Procedia PDF Downloads 449
4558 Urban Block Design's Impact on the Indoor Daylight Quality, Heating and Cooling Loads of Buildings in the Semi-Arid Regions: Duhok City in Kurdistan Region-Iraq as a Case Study

Authors: Kawar Salih

Abstract:

It has been proven that designing sustainable buildings starts from early stages of urban design. The design of urban blocks specifically, is considered as one of the pragmatic strategies of sustainable urbanism. There have been previous studies that focused on the impact of urban block design and regulation on the outdoor thermal comfort in the semi-arid regions. However, no studies have been found that concentrated on that impact on the internal behavior of buildings of those regions specifically the daylight quality and energy performance. Further, most studies on semi-arid regions are focusing only on the cooling load reduction, neglecting the heating load. The study has focused on two parameters of urban block distribution which are the block orientation and the surface-to-volume ratio with the consideration of both heating and cooling loads of buildings. In Duhok (a semi-arid city in Kurdistan region of Iraq), energy consumption and daylight quality of different types of residential blocks have been examined using dynamic simulation. The findings suggest that there is a considerable higher energy load for heating than cooling, contradicting many previous studies about these regions. The results also highlight that the orientation of urban blocks can vary the energy consumption to 8%. Regarding the surface-to-volume ratio (S/V), it was observed that after the twice enlargement of the S/V, the energy consumption increased 15%. Though, the study demonstrates as well that there are opportunities for reducing energy consumption with the increase of the S/V which contradicts many previous research on S/V impacts on energy consumption. These results can help to design urban blocks with the bigger S/V than existing blocks in the city which it can provide better indoor daylight and relatively similar energy consumption.

Keywords: blocke orienation, building energy consumption, urban block design, semi-arid regions, surfacet-to-volume ratio

Procedia PDF Downloads 356
4557 Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying

Authors: Jinan B. Al-Dabbagh, Rozman Mohd Tahar, Mahadzir Ishak

Abstract:

TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders.

Keywords: TiAl alloys, nanocrystalline materials, mechanical alloying, materials science

Procedia PDF Downloads 354
4556 The Pressure Effect and First-Principles Study of Strontium Chalcogenides SrS

Authors: Benallou Yassine, Amara Kadda, Bouazza Boubakar, Soudini Belabbes, Arbouche Omar, M. Zemouli

Abstract:

The study of the pressure effect on the materials, their functionality and their properties is very important, insofar as it provides the opportunity to identify others applications such the optical properties in the alkaline earth chalcogenides, as like the SrS. Here we present the first-principles calculations which have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. The treatments of exchange and correlation effects were done by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential for the electronic. The pressure effect on the electronic properties was visualized by calculating the variations of the gap as a function of pressure. The obtained results are compared to available experimental data and to other theoretical calculations

Keywords: SrS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW, pressure effect

Procedia PDF Downloads 562
4555 Anatomical and Histological Analysis of Salpinx and Ovary in Anatolian Wild Goat (Capra aegagrus aegagrus)

Authors: Gulseren Kirbas, Mushap Kuru, Buket Bakir, Ebru Karadag Sari

Abstract:

Capra (mountain goat) is a genus comprising nine species. The domestic goat (C. aegagrus hircus) is a subspecies of the wild goat that is domesticated. This study aimed to determine the anatomical structure of the salpinx and ovary of the Anatolian wild goat (C. aegagrus aegagrus). Animals that were taken to the Kafkas University Wildlife Rescue and Rehabilitation Center, Kars, Turkey, because of various reasons, such as traffic accidents and firearm injuries, were used in this study. The salpinges and ovaries of four wild goats of similar ages, which could not be rescued by the Center despite all interventions, were dissected. Measurements were taken from the right-left salpinx and ovary using digital calipers. The weights of each ovary and salpinx were measured using a precision scale (min: 0.0001 g − max: 220 g, code: XB220A; Precisa, Swiss). The histological structure of the tissues was examined after weighing the organs. The tissue samples were fixed in 10% formaldehyde for 24 h. Then a routine procedure was applied, and the tissues were embedded in paraffin. Mallory’s modified triple staining was used to demonstrate the general structure of the salpinx. The salpinx was found to consist of three different regions (infundibulum, ampulla, and isthmus). These regions consisted of tunica mucosa, tunica muscularis, and tunica serosa. The prismatic epithelial cells were observed in the lamina epithelialis of tunica mucosa in every region, but the prismatic fimbrae cells occurred most in the infundibulum. The ampulla was distinguished by its many mucosal folds. It was the longest region of the salpinx and was joined to the isthmus via the ampullary–isthmus junction. Isthmus was the caudal end of the salpinx joined to the uterus and had the thickest tunica muscularis compared with the other regions. The mean length of the ovary was 13.22 ± 1.27 mm, width was 8.46 ± 0.88 mm, the thickness was 5.67 ± 0.79 mm, and weight was 0.59 ± 0.17 g. The average length of the salpinx was 58.11 ± 14.02 mm, width was 0.80 ± 0.22 mm, the thickness was 0.41 ± 0.01 mm, and weight was 0.30 ± 0.08 g. In conclusion, the Anatolian wild goat, which is included in wildlife diversity in Turkey, has been disappearing due to illegal and uncontrolled hunting as well as traffic accidents in recent years. These findings are believed to contribute to the literature.

Keywords: Anatolian wild goat, anatomy, ovary, salpinx

Procedia PDF Downloads 220
4554 Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis

Authors: Parth Prajapati, A. R. Srinivas

Abstract:

The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system.

Keywords: dynamics, manufacturing, reflectors, segmentation, statics

Procedia PDF Downloads 369
4553 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology

Authors: Markus Remm, Sebastian Dienert

Abstract:

Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.

Keywords: design freedom, interior material processing, laser technology, passive safety

Procedia PDF Downloads 116
4552 The Current Status and Abundance of the Genus Citharinus in Jebba Lake, Niger State, Nigeria

Authors: M. B. Mshelia, J. K Balogun, J. Auta, N. O. Bankole

Abstract:

The current status and abundance of the genus Citharinus was carried out in Jebba Lake, Niger State, Nigeria from January to December, 2011. The aim was to determine the extent of exploitation of the genus Citharinus in Jebba Lake so as to advice the government of Nigeria on how to overcome difficulties in terms of the sustainability of the said fish in the Lake. Descriptive statistics were used to analyze the data obtained. A total of 2,389 of the genus Citharinus were caught during the sampling period. Only two species of the genus Citharinus were caught with 1,220 in number and 430.68kg total weight of Citharinus citharus and 1,169 in number and 418.56kg total weight of Citharinus latus). The current total yield estimated for the genus Citharinus in Jebba Lake in the six (6) sampling sites was calculated and pooled together to be 849.24kg. A day’s catch was calculated to be 35.38kg. The monthly and annual yields of the genus Citharinus were calculated to 1061.55 equivalents to 1 ton and 12 metric tonnes respectively. For the fecundity, June, July and August were discovered as the spawning period for the genus Citharinus and out of total experimental gillnet catch of 2, 389, only 244 (10.21%)of Citharinus citharus and 231 (9.67%) of Citharinus latus were in sexually mature stage. Out of these numbers, 113 (46.31%) were males and 121 (53.69%) were females of Citharinus citharus and 112 (48.48) were males and 119 (51.52) were females of Citharinus latus. The youngest mature males in either of the two had a standard length of 31.5 with a weight of 800.5gWhilethe youngest spawning females were having the standard length of 29.5 cm with a weight of 1,3oo.5g.It was also discovered that females started maturing earlier than the males at the standard length for females and males to be 18.0cm and 19.5cm respectively. Their fecundity ranged from 15,000 to 16, 500 eggs. The sex ratio of 1172 that were males and 1217 that were females was 1 male to 1.0383 females which was equivalent to 1:1 sex ratio of male to female. It was concluded that Jebba Lake had suffered seriously over exploitation of the genus Citharinus and proper management have to be enforced on the lake otherwise the threat of fish being extent may arise.

Keywords: Jebba Lake, Niger State, Nigeria, Citharinus citharus, Citharinus latus, fecundity, sex ratio

Procedia PDF Downloads 258
4551 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.

Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide

Procedia PDF Downloads 267
4550 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison

Authors: B. S. Abdelwahed, B. B. Belkassem

Abstract:

Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.

Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance

Procedia PDF Downloads 460
4549 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction

Procedia PDF Downloads 308
4548 Effective Medium Approximations for Modeling Ellipsometric Responses from Zinc Dialkyldithiophosphates (ZDDP) Tribofilms Formed on Sliding Surfaces

Authors: Maria Miranda-Medina, Sara Salopek, Andras Vernes, Martin Jech

Abstract:

Sliding lubricated surfaces induce the formation of tribofilms that reduce friction, wear and prevent large-scale damage of contact parts. Engine oils and lubricants use antiwear and antioxidant additives such as zinc dialkyldithiophosphate (ZDDP) from where protective tribofilms are formed by degradation. The ZDDP tribofilms are described as a two-layer structure composed of inorganic polymer material. On the top surface, the long chain polyphosphate is a zinc phosphate and in the bulk, the short chain polyphosphate is a mixed Fe/Zn phosphate with a gradient concentration. The polyphosphate chains are partially adherent to steel surface through a sulfide and work as anti-wear pads. In this contribution, ZDDP tribofilms formed on gray cast iron surfaces are studied. The tribofilms were generated in a reciprocating sliding tribometer with a piston ring-cylinder liner configuration. Fully formulated oil of SAE grade 5W-30 was used as lubricant during two tests at 40Hz and 50Hz. For the estimation of the tribofilm thicknesses, spectroscopic ellipsometry was used due to its high accuracy and non-destructive nature. Ellipsometry works under an optical principle where the change in polarisation of light reflected by the surface, is associated with the refractive index of the surface material or to the thickness of the layer deposited on top. Ellipsometrical responses derived from tribofilms are modelled by effective medium approximation (EMA), which includes the refractive index of involved materials, homogeneity of the film and thickness. The materials composition was obtained from x-ray photoelectron spectroscopic studies, where the presence of ZDDP, O and C was confirmed. From EMA models it was concluded that tribofilms formed at 40 Hz are thicker and more homogeneous than the ones formed at 50 Hz. In addition, the refractive index of each material is mixed to derive an effective refractive index that describes the optical composition of the tribofilm and exhibits a maximum response in the UV range, being a characteristic of glassy semitransparent films.

Keywords: effective medium approximation, reciprocating sliding tribometer, spectroscopic ellipsometry, zinc dialkyldithiophosphate

Procedia PDF Downloads 249
4547 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material

Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy

Abstract:

Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.

Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength

Procedia PDF Downloads 312
4546 A Study on the Pressure Void Ratio Relationship for Waste Material

Authors: Aktan Ozsoy, Ali Fırat Cabalar, Eyyub Karakan

Abstract:

Climate change is one of the biggest issues facing communities. Increasing population, growing economies, rapid industrialization are the main factors triggering it. On the other hand, the millions of tons of waste have generated by the period of rapid global growth not only harm to the environment but also lead to the use of valuable lands around the world as landfill sites. Moreover, it is rapidly consuming our resources and this forcing the human population and wildlife to share increasingly shrinking space. In this direction, it is vital to reuse waste materials with a sustainability philosophy. This study was carried out to contribute to the combat against climate change, conserve our natural resources and the environment. An oedometer (consolidation) test was performed on two waste materials combined in certain proportions to evaluate their sustainable usage. Crushed brick (BD) was mixed with rock powder (RP) in 0, 5, 10, 20, 30, 40, and 50% (dry weight of soil). The results obtained revealed the importance of the gradation of the material used in the consolidation test. It was found that there was a negligible difference between the initial and final void ratio of mixtures with brick dust added.

Keywords: waste material, oedometer test, environmental geotechnics, sustainability

Procedia PDF Downloads 65
4545 Strong Microcapsules with Macroporous Polymer Shells

Authors: Eve S. A. Loiseau, Marion Frey, Yves Blickenstorfer, Fabian Niedermair, André R. Studart

Abstract:

Porous microcapsules have a broad range of applications that require a robust shell. We propose a new method to produce macroporous polymer capsules with controlled size, shell thickness, porosity and mechanical properties using co-flow flow-focusing glass capillary devices. The porous structure was investigated through SEM and the permeability through confocal microscopy. Compression tests on single capsules were performed. We obtained microcapsules with tailored permeability from open to close pores structures and able to withstand loads up to 150 g.

Keywords: microcapsules, micromechanics, porosity, polymer shells

Procedia PDF Downloads 446
4544 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data

Authors: Prayas Sharma

Abstract:

This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.

Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution

Procedia PDF Downloads 153
4543 Patients' Out-Of-Pocket Expenses-Effectiveness Analysis of Presurgical Teledermatology

Authors: Felipa De Mello-Sampayo

Abstract:

Background: The aim of this study is to undertake, from a patient perspective, an economic analysis of presurgical teledermatology, comparing it with a conventional referral system. Store-and-forward teledermatology allows surgical planning, saving both time and number of visits involving travel, thereby reducing patients’ out-of-pocket expenses, i.e., costs that patients incur when traveling to and from health providers for treatment, visits’ fees, and the opportunity cost of time spent in visits. Method: Patients’ out-of-pocket expenses-effectiveness of presurgical teledermatology were analyzed in the setting of a public hospital during two years. The mean delay in surgery was used to measure effectiveness. The teledermatology network covering the area served by the Hospital Garcia da Horta (HGO), Portugal, linked the primary care centers of 24 health districts with the hospital’s dermatology department. The patients’ opportunity cost of visits, travel costs, and visits’ fee of each presurgical modality (teledermatology and conventional referral), the cost ratio between the most and least expensive alternative, and the incremental cost-effectiveness ratio were calculated from initial primary care visit until surgical intervention. Two groups of patients: those with squamous cell carcinoma and those with basal cell carcinoma were distinguished in order to compare the effectiveness according to the dermatoses. Results: From a patient perspective, the conventional system was 2.15 times more expensive than presurgical teledermatology. Teledermatology had an incremental out-of-pocket expenses-effectiveness ratio of €1.22 per patient and per day of delay avoided. This saving was greater in patients with squamous cell carcinoma than in patients with basal cell carcinoma. Conclusion: From a patient economic perspective, teledermatology used for presurgical planning and preparation is the dominant strategy in terms of out-of-pocket expenses-effectiveness than the conventional referral system, especially for patients with severe dermatoses.

Keywords: economic analysis, out-of-pocket expenses, opportunity cost, teledermatology, waiting time

Procedia PDF Downloads 137
4542 Sports Preferente Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian

Authors: Felix Olajide Ibikunle

Abstract:

Introductory Statement: Sustainable participation of teenagers in sport requires deliberate and concerted plan and managerial policy rooted in the “philosophy of catch them young”. At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into the security breach and attractive nuisance free lifestyles. Basic Methodology: The population consists of children within 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. Majority of the teenagers were out of school, street hawkers, motor pack, touts, and unserious vocation apprentices. These groups have the potentials of security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile, and Moniya axis = 72, Agbowo, Ajibode, and Apete axis = 74; Akobo, Basorun, and Idi-ape axis 79; Wofun, Monatan, and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru, and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentage. The respondents average age was 15.6 years old, and with 100% male. The instrument(questionnaire) used yielded; sport preference (r = 0.72); intervention (r = 0.68) and the sustainable participation (r = 0.70).The relative contributions of sport preference on participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on participation of at risk teenagers = produced (F-ratio of 12.095) was significant while sustainable participation of at risk teenager produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sport. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sport. While sustainable participation contributed positively to evolve at risk teenagers participation in their preferred sport.

Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers

Procedia PDF Downloads 107
4541 Influencing Factors on Stability of Shale with Silt Layers at Slopes

Authors: A. K. M. Badrul Alam, Yoshiaki Fujii, Nahid Hasan Dipu, Shakil Ahmed Razo

Abstract:

Shale rockmasses often include silt layers, impacting slope stability in construction and mining. Analyzing their interaction is crucial for long-term stability. A study used an elastoplastic model, incorporating the stress transfer method and Coulomb's criterion, to assess a shale rock mass with silt layers. It computed stress distribution, assessed failure potential, and identified vulnerable regions where nodal forces were calculated for a comprehensive analysis. A shale rock mass ranging from 14.75 to 16.75 meters thick, with silt layers varying from 0.36 to 0.5 meters, was considered in the model. It examined four silt layer conditions: horizontal (SiHL), vertical (SiVL), inclined against slope (SiIincAGS), and along slope (SilincALO). Mechanical parameters like uniaxial compressive strength (UCS), tensile strength (TS), Young’s modulus (E), Poisson’s ratio, and density were adjusted for varied scenarios: UCS (0.5 to 5 MPa), TS (0.1 to 1 MPa), and E (6 to 60 MPa). In elastic analysis of shale rock masses, stress distributions vary based on layer properties. When shale and silt layers have the same elasticity modulus (E), stress concentrates at corners. If the silt layer has a lower E than shale, marginal changes in maximum stress (σmax) occur for SilHL. A decrease in σmax is evident at SilVL. Slight variations in σmax are observed for SilincAGS and SilincALO. In the elastoplastic analysis, the overall decrease of 20%, 40%, 60%, 80%, and 90% was considered. For SilHL:(i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: strength decrease led to shear (S), tension then shear (T then S) failure; noticeable failure at 60% decrease, significant at 80%, collapse at 90%. (ii) Lower E for silt layer, same strength as shale: No significant differences. (iii) Lower E and UCS, silt layer strength 1/10: No significant differences. For SilVL: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar effects as SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip. For SilincAGS: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Effects similar to SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Tension failure also observed with larger slip. For SilincALO: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar to SilHL with tension failure. (ii) Lower E for silt layer, same strength as shale: No significant differences; failure diverged. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip; failure diverged. Toppling failure was observed for lower E cases of SilVL and SilincAGS. The presence of silt interlayers in shale greatly impacts slope stability. Designing slopes requires careful consideration of both the silt and shale's mechanical properties. The temporal degradation of strength in these layers is a major concern. Thus, slope design must comprehensively analyze the immediate and long-term mechanical behavior of interlayer silt and shale to effectively mitigate instability.

Keywords: shale rock masses, silt layers, slope stability, elasto-plastic model, temporal degradation

Procedia PDF Downloads 52
4540 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 136
4539 Discriminant Shooting-Related Statistics between Winners and Losers 2023 FIBA U19 Basketball World Cup

Authors: Navid Ebrahmi Madiseh, Sina Esfandiarpour-Broujeni, Rahil Razeghi

Abstract:

Introduction: Quantitative analysis of game-related statistical parameters is widely used to evaluate basketball performance at both individual and team levels. Non-free throw shooting plays a crucial role as the primary scoring method, holding significant importance in the game's technical aspect. It has been explored the predictive value of game-related statistics in relation to various contextual and situational variables. Many similarities and differences also have been found between different age groups and levels of competition. For instance, in the World Basketball Championships after the 2010 rule change, 2-point field goals distinguished winners from losers in women's games but not in men's games, and the impact of successful 3-point field goals on women's games was minimal. The study aimed to identify and compare discriminant shooting-related statistics between winning and losing teams in men’s and women’s FIBA-U19-Basketball-World-Cup-2023 tournaments. Method: Data from 112 observations (2 per game) of 16 teams (for each gender) in the FIBA-U19-Basketball-World-Cup-2023 were selected as samples. The data were obtained from the official FIBA website using Python. Specific information was extracted, organized into a DataFrame, and consisted of twelve variables, including shooting percentages, attempts, and scoring ratio for 3-pointers, mid-range shots, paint shots, and free throws. Made% = scoring type successful attempts/scoring type total attempts¬ (1)Free-throw-pts% (free throw score ratio) = (free throw score/total score) ×100 (2)Mid-pts% (mid-range score ratio) = (mid-range score/total score) ×100 (3) Paint-pts% (paint score ratio) = (Paint score/total score) ×100 (4) 3p_pts% (three-point score ratio) = (three-point score/total score) ×100 (5) Independent t-tests were used to examine significant differences in shooting-related statistical parameters between winning and losing teams for both genders. Statistical significance was p < 0.05. All statistical analyses were completed with SPSS, Version 18. Results: The results showed that 3p-made%, mid-pts%, paint-made%, paint-pts%, mid-attempts, and paint-attempts were significantly different between winners and losers in men (t=-3.465, P<0.05; t=3.681, P<0.05; t=-5.884, P<0.05; t=-3.007, P<0.05; t=2.549, p<0.05; t=-3.921, P<0.05). For women, significant differences between winners and losers were found for 3p-made%, 3p-pts%, paint-made%, and paint-attempt (t=-6.429, P<0.05; t=-1.993, P<0.05; t=-1.993, P<0.05; t=-4.115, P<0.05; t=02.451, P<0.05). Discussion: The research aimed to compare shooting-related statistics between winners and losers in men's and women's teams at the FIBA-U19-Basketball-World-Cup-2023. Results indicated that men's winners excelled in 3p-made%, paint-made%, paint-pts%, paint-attempts, and mid-attempt, consistent with previous studies. This study found that losers in men’s teams had higher mid-pts% than winners, which was inconsistent with previous findings. It has been indicated that winners tend to prioritize statistically efficient shots while forcing the opponent to take mid-range shots. In women's games, significant differences in 3p-made%, 3p-pts%, paint-made%, and paint-attempts were observed, indicating that winners relied on riskier outside scoring strategies. Overall, winners exhibited higher accuracy in paint and 3P shooting than losers, but they also relied more on outside offensive strategies. Additionally, winners acquired a higher ratio of their points from 3P shots, which demonstrates their confidence in their skills and willingness to take risks at this competitive level.

Keywords: gender, losers, shoot-statistic, U19, winners

Procedia PDF Downloads 95
4538 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique

Authors: Prashant Motwani, Arghadeep Laskar

Abstract:

The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.

Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder

Procedia PDF Downloads 234
4537 Biogas Production from Zebra Manure and Winery Waste Co-Digestion

Authors: Wicleffe Musingarimi

Abstract:

Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.

Keywords: anaerobic digestion, biogas, co-digestion, methanogens

Procedia PDF Downloads 224
4536 Durability of Functionally Graded Concrete

Authors: Prasanna Kumar Acharya, Mausam Kumari Yadav

Abstract:

Cement concrete has emerged as the most consumed construction material. It has also dominated all other construction materials because of its versatility. Apart from numerous advantages it has a disadvantage concerning durability. The large structures constructed with cement concrete involving the consumption of huge natural materials remain in serviceable condition for 5 – 7 decades only while structures made with stones stand for many centuries. The short life span of structures not only affects the economy but also affects the ecology greatly. As such, the improvement of durability of cement concrete is a global concern and scientists around the globe are trying for this purpose. Functionally graded concrete (FGC) is an exciting development. In contrast to conventional concrete, FGC demonstrates different characteristics depending on its thickness, which enables it to conform to particular structural specifications. The purpose of FGC is to improve the performance and longevity of conventional concrete structures with cutting-edge building materials. By carefully distributing various kinds and amounts of reinforcements, additives, mix designs and/or aggregates throughout the concrete matrix, this variety is produced. A key component of functionally graded concrete's performance is its durability, which affects the material's capacity to tolerate aggressive environmental influences and load-bearing circumstances. This paper reports the durability of FGC made using Portland slag cement (PSC). For this purpose, control concretes (CC) of M20, M30 and M40 grades were designed. Single-layered samples were prepared using each grade of concrete. Further using combinations of M20 + M30, M30 + M40 and M40 + M20, doubled layered concrete samples in a depth ratio of 1:1 was prepared those are herein called FGC samples. The efficiency of FGC samples was compared with that of the higher-grade concrete of parent materials in terms of compressive strength, water absorption, sorptivity, acid resistance, sulphate resistance, chloride resistance and abrasion resistance. The properties were checked at the age of 28 and 91 days. Apart from strength and durability parameters, the microstructure of CC and FGC were studied in terms of X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray. The result of the study revealed that there is an increase in the efficiency of concrete evaluated in terms of strength and durability when it is made functionally graded using a layered technology having different grades of concrete in layers. The results may help to enhance the efficiency of structural concrete and its durability.

Keywords: fresh on compacted, functionally graded concrete, acid, chloride, sulphate test, sorptivity, abrasion, water absorption test

Procedia PDF Downloads 11