Search results for: squared prediction risk
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8169

Search results for: squared prediction risk

6879 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 364
6878 The Coexistence of Dual Form of Malnutrition among Portuguese Institutionalized Elderly People

Authors: C. Caçador, M. J. Reis Lima, J. Oliveira, M. J. Veiga, M. Teixeira Veríssimo, F. Ramos, M. C. Castilho, E. Teixeira-Lemos

Abstract:

In the present study we evaluated the nutritional status of 214 institutionalized elderly residents of both genders, aged 65 years and older of 11 care homes located in the district of Viseu (center of Portugal). The evaluation was based on anthropometric measurements and the Mini Nutritional Assessment (MNA) score. The mean age of the subjects was 82.3 ± 6.1 years-old. Most of the elderly residents were female (72.0%). The majority had 4 years of formal education (51.9%) and was widowed (74.3%) or married (14.0%). Men presented a mean age of 81.2±8.5 years-old, weight 69.3±14.5 kg and BMI 25.33±6.5 kg/m2. In women, the mean age was 84.5±8.2 years-old, weight 61.2±14.7 kg and BMI 27.43±5.6 kg/m2. The evaluation of the nutritional status using the MNA score showed that 24.0% of the residents show a risk of undernutrition and 76.0% of them were well nourished. There was a high prevalence of obese (24.8%) and overweight residents (33.2%) according to the BMI. 7.5% were considered underweight. We also found that according to their waist circumference measurements 88.3% of the residents were at risk for cardiovascular disease (CVD) and 64.0% of them presented very high risk for CVD (WC≥88 cm for women and WC ≥102 cm for men). The present study revealed the coexistence of a dual form of malnutrition (undernourished and overweight) among the institutionalized Portuguese concomitantly with an excess of abdominal adiposity. The high prevalence of residents at high risk for CVD should not be overlooked. Given the vulnerability of the group of institutionalized elderly, our study highlights the importance of the classification of nutritional status based on both instruments: the BMI and the MNA.

Keywords: nutritional satus, MNA, BMI, elderly

Procedia PDF Downloads 324
6877 Financial Risk Tolerance and Its Impact on Terrorism-Tourism Relation in Pakistan

Authors: Sania Sana, Afnan Nasim, Usman Malik, Maroof Tahir

Abstract:

The aim of this research is to scrutinize the interdependent relationship between terrorism and behavioral changes in the tourism activities in Pakistan with the moderating impact of a unique variable titled 'Financial Risk Tolerance'. The article looks at the inter-reliant relationship with the alleged political and economic aspects and behavioral changes in the tourists and the consumers by these variables over time. The researchers used many underlying theories like the catastrophe theory by (Svyantek, Deshon and Siler 1991), information integration theory (Anderson 1981, 1982) and prospect theory (Kahneman and Tversky 1979) to shape the study’s framework as per tourist decision making model. A sample of around 110 locals was used for this purpose and the data was gathered by convenience sampling. The responses were analyzed using regression analysis. The results exhibited how terrorism along with the influence of financial risk tolerance had inclined a behavioral shift in the travelling patterns and vacation destination choice of the local tourists. Lastly, the paper proposes a number of suggestive measures for the tourism industry and the legislative bodies to ensure the safety of travelers and to boost the tourist activities in the vacation industry of Pakistan.

Keywords: terrorism, tourism, financial risk tolerance, tourist decision-making, destination choice

Procedia PDF Downloads 236
6876 Structural Health Monitoring-Integrated Structural Reliability Based Decision Making

Authors: Caglayan Hizal, Kutay Yuceturk, Ertugrul Turker Uzun, Hasan Ceylan, Engin Aktas, Gursoy Turan

Abstract:

Monitoring concepts for structural systems have been investigated by researchers for decades since such tools are quite convenient to determine intervention planning of structures. Despite the considerable development in this regard, the efficient use of monitoring data in reliability assessment, and prediction models are still in need of improvement in their efficiency. More specifically, reliability-based seismic risk assessment of engineering structures may play a crucial role in the post-earthquake decision-making process for the structures. After an earthquake, professionals could identify heavily damaged structures based on visual observations. Among these, it is hard to identify the ones with minimum signs of damages, even if they would experience considerable structural degradation. Besides, visual observations are open to human interpretations, which make the decision process controversial, and thus, less reliable. In this context, when a continuous monitoring system has been previously installed on the corresponding structure, this decision process might be completed rapidly and with higher confidence by means of the observed data. At this stage, the Structural Health Monitoring (SHM) procedure has an important role since it can make it possible to estimate the system reliability based on a recursively updated mathematical model. Therefore, integrating an SHM procedure into the reliability assessment process comes forward as an important challenge due to the arising uncertainties for the updated model in case of the environmental, material and earthquake induced changes. In this context, this study presents a case study on SHM-integrated reliability assessment of the continuously monitored progressively damaged systems. The objective of this study is to get instant feedback on the current state of the structure after an extreme event, such as earthquakes, by involving the observed data rather than the visual inspections. Thus, the decision-making process after such an event can be carried out on a rational basis. In the near future, this can give wing to the design of self-reported structures which can warn about its current situation after an extreme event.

Keywords: condition assessment, vibration-based SHM, reliability analysis, seismic risk assessment

Procedia PDF Downloads 143
6875 Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou

Authors: Guo-Hui Lu, Jing-Yi Cai, Ke-Yan Tan, Xiao-Cai Yin, Yu Zheng, Peng-Wei Shao, Yong-Liang Yang

Abstract:

Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites.

Keywords: heavy metal, risk assessment, sediment, suspended matter, Wanshan mercury mine, small tributary system

Procedia PDF Downloads 130
6874 Juvenile Justice in Maryland: The Evidence Based Approach to Youth with History of Victimization and Trauma

Authors: Gabriela Wasileski, Debra L. Stanley

Abstract:

Maryland efforts to decrease the juvenile criminality and recidivism shifts towards evidence based sentencing. While in theory the evidence based sentencing has an impact on the reduction of juvenile delinquency and drug abuse; the assessment of juveniles’ risk and needs usually lacks crucial information about juvenile’s prior victimization. The Maryland Comprehensive Assessment and Service Planning (MCASP) Initiative is the primary tool for developing and delivering a treatment service plan for juveniles at risk. Even though it consists of evidence-based screening and assessment instruments very little is currently known regarding the effectiveness and the impact of the assessment in general. In keeping with Maryland’s priority to develop successful evidence-based recidivism reduction programs, this study examined results of assessments based on MCASP using a representative sample of the juveniles at risk and their assessment results. Specifically, it examined: (1) the results of the assessments in an electronic database (2) areas of need that are more frequent among delinquent youth in a system/agency, (3) the overall progress of youth in an agency’s care (4) the impact of child victimization and trauma experiences reported in the assessment. The project will identify challenges regarding the use of MCASP in Maryland, and will provide a knowledge base to support future research and practices.

Keywords: Juvenile Justice, assessment of risk and need, victimization and crime, recidivism

Procedia PDF Downloads 318
6873 Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires

Authors: Kazeem K. Adewole

Abstract:

This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally.

Keywords: across-the-width lamination, tensile properties, lamination location, wire

Procedia PDF Downloads 474
6872 Portfolio Risk Management Using Quantum Annealing

Authors: Thomas Doutre, Emmanuel De Meric De Bellefon

Abstract:

This paper describes the application of local-search metaheuristic quantum annealing to portfolio opti- mization. Heuristic technics are particularly handy when Markowitz’ classical Mean-Variance problem is enriched with additional realistic constraints. Once tailored to the problem, computational experiments on real collected data have shown the superiority of quantum annealing over simulated annealing for this constrained optimization problem, taking advantages of quantum effects such as tunnelling.

Keywords: optimization, portfolio risk management, quantum annealing, metaheuristic

Procedia PDF Downloads 383
6871 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis

Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate

Abstract:

This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.

Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull

Procedia PDF Downloads 73
6870 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection

Authors: Nadia Ben Youssef, Aicha Bouzid

Abstract:

Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.

Keywords: gradient, edge detection, color image, quaternion

Procedia PDF Downloads 234
6869 Transparency Obligations under the AI Act Proposal: A Critical Legal Analysis

Authors: Michael Lognoul

Abstract:

In April 2021, the European Commission released its AI Act Proposal, which is the first policy proposal at the European Union level to target AI systems comprehensively, in a horizontal manner. This Proposal notably aims to achieve an ecosystem of trust in the European Union, based on the respect of fundamental rights, regarding AI. Among many other requirements, the AI Act Proposal aims to impose several generic transparency obligationson all AI systems to the benefit of natural persons facing those systems (e.g. information on the AI nature of systems, in case of an interaction with a human). The Proposal also provides for more stringent transparency obligations, specific to AI systems that qualify as high-risk, to the benefit of their users, notably on the characteristics, capabilities, and limitations of the AI systems they use. Against that background, this research firstly presents all such transparency requirements in turn, as well as related obligations, such asthe proposed obligations on record keeping. Secondly, it focuses on a legal analysis of their scope of application, of the content of the obligations, and on their practical implications. On the scope of transparency obligations tailored for high-risk AI systems, the research notably notes that it seems relatively narrow, given the proposed legal definition of the notion of users of AI systems. Hence, where end-users do not qualify as users, they may only receive very limited information. This element might potentially raise concern regarding the objective of the Proposal. On the content of the transparency obligations, the research highlights that the information that should benefit users of high-risk AI systems is both very broad and specific, from a technical perspective. Therefore, the information required under those obligations seems to create, prima facie, an adequate framework to ensure trust for users of high-risk AI systems. However, on the practical implications of these transparency obligations, the research notes that concern arises due to potential illiteracy of high-risk AI systems users. They might not benefit from sufficient technical expertise to fully understand the information provided to them, despite the wording of the Proposal, which requires that information should be comprehensible to its recipients (i.e. users).On this matter, the research points that there could be, more broadly, an important divergence between the level of detail of the information required by the Proposal and the level of expertise of users of high-risk AI systems. As a conclusion, the research provides policy recommendations to tackle (part of) the issues highlighted. It notably recommends to broaden the scope of transparency requirements for high-risk AI systems to encompass end-users. It also suggests that principles of explanation, as they were put forward in the Guidelines for Trustworthy AI of the High Level Expert Group, should be included in the Proposal in addition to transparency obligations.

Keywords: aI act proposal, explainability of aI, high-risk aI systems, transparency requirements

Procedia PDF Downloads 317
6868 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 144
6867 Spatially Random Sampling for Retail Food Risk Factors Study

Authors: Guilan Huang

Abstract:

In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.

Keywords: geospatial technology, restaurant, retail food risk factor study, spatially random sampling

Procedia PDF Downloads 350
6866 Risk Assessment of Contamination by Heavy Metals in Sarcheshmeh Copper Complex of Iran Using Topsis Method

Authors: Hossein Hassani, Ali Rezaei

Abstract:

In recent years, the study of soil contamination problems surrounding mines and smelting plants has attracted some serious attention of the environmental experts. These elements due to the non- chemical disintegration and nature are counted as environmental stable and durable contaminants. Variability of these contaminants in the soil and the time and financial limitation for the favorable environmental application, in order to reduce the risk of their irreparable negative consequences on environment, caused to apply the favorable grading of these contaminant for the further success of the risk management processes. In this study, we use the contaminants factor risk indices, average concentration, enrichment factor and geoaccumulation indices for evaluating the metal contaminant of including Pb, Ni, Se, Mo and Zn in the soil of Sarcheshmeh copper mine area. For this purpose, 120 surface soil samples up to the depth of 30 cm have been provided from the study area. And the metals have been analyzed using ICP-MS method. Comparison of the heavy and potentially toxic elements concentration in the soil samples with the world average value of the uncontaminated soil and shale average indicates that the value of Zn, Pb, Ni, Se and Mo is higher than the world average value and only the Ni element shows the lower value than the shale average. Expert opinions on the relative importance of each indicators were used to assign a final weighting of the metals and the heavy metals were ranked using the TOPSIS approach. This allows us to carry out efficient environmental proceedings, leading to the reduction of environmental ricks form the contaminants. According to the results, Ni, Pb, Mo, Zn, and Se have the highest rate of risk contamination in the soil samples of the study area.

Keywords: contamination coefficient, geoaccumulation factor, TOPSIS techniques, Sarcheshmeh copper complex

Procedia PDF Downloads 274
6865 Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk & Energy Consumption in a Typical PWR

Authors: Ebrahim Ghanbari, Mohammad Reza Nematollahi

Abstract:

Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant.

Keywords: IDPSA, human error, SBO, risk

Procedia PDF Downloads 129
6864 Health Risk Assessment of Exposing to Benzene in Office Building around a Chemical Industry Based on Numerical Simulation

Authors: Majid Bayatian, Mohammadreza Ashouri

Abstract:

Releasing hazardous chemicals is one of the major problems for office buildings in the chemical industry and, therefore, environmental risks are inherent to these environments. The adverse health effects of the airborne concentration of benzene have been a matter of significant concern, especially in oil refineries. The chronic and acute adverse health effects caused by benzene exposure have attracted wide attention. Acute exposure to benzene through inhalation could cause headaches, dizziness, drowsiness, and irritation of the skin. Chronic exposures have reported causing aplastic anemia and leukemia at the occupational settings. Association between chronic occupational exposure to benzene and the development of aplastic anemia and leukemia were documented by several epidemiological studies. Numerous research works have investigated benzene emissions and determined benzene concentration at different locations of the refinery plant and stated considerable health risks. The high cost of industrial control measures requires justification through lifetime health risk assessment of exposed workers and the public. In the present study, a Computational Fluid Dynamics (CFD) model has been proposed to assess the exposure risk of office building around a refinery due to its release of benzene. For simulation, GAMBIT, FLUENT, and CFD Post software were used as pre-processor, processor, and post-processor, and the model was validated based on comparison with experimental results of benzene concentration and wind speed. Model validation results showed that the model is highly validated, and this model can be used for health risk assessment. The simulation and risk assessment results showed that benzene could be dispersion to an office building nearby, and the exposure risk has been unacceptable. According to the results of this study, a validated CFD model, could be very useful for decision-makers for control measures and possibly support them for emergency planning of probable accidents. Also, this model can be used to assess exposure to various types of accidents as well as other pollutants such as toluene, xylene, and ethylbenzene in different atmospheric conditions.

Keywords: health risk assessment, office building, Benzene, numerical simulation, CFD

Procedia PDF Downloads 130
6863 Closed Incision Negative Pressure Therapy Dressing as an Approach to Manage Closed Sternal Incisions in High-Risk Cardiac Patients: A Multi-Centre Study in the UK

Authors: Rona Lee Suelo-Calanao, Mahmoud Loubani

Abstract:

Objective: Sternal wound infection (SWI) following cardiac operation has a significant impact on patient morbidity and mortality. It also contributes to longer hospital stays and increased treatment costs. SWI management is mainly focused on treatment rather than prevention. This study looks at the effect of closed incision negative pressure therapy (ciNPT) dressing to help reduce the incidence of superficial SWI in high-risk patients after cardiac surgery. The ciNPT dressing was evaluated at 3 cardiac hospitals in the United Kingdom". Methods: All patients who had cardiac surgery from 2013 to 2021 were included in the study. The patients were classed as high risk if they have two or more of the recognised risk factors: obesity, age above 80 years old, diabetes, and chronic obstructive pulmonary disease. Patients receiving standard dressing (SD) and patients using ciNPT were propensity matched, and the Fisher’s exact test (two-tailed) and unpaired T-test were used to analyse categorical and continuous data, respectively. Results: There were 766 matched cases in each group. Total SWI incidences are lower in the ciNPT group compared to the SD group (43 (5.6%) vs 119 (15.5%), P=0.0001). There are fewer deep sternal wound infections (14(1.8%) vs. 31(4.04%), p=0.0149) and fewer superficial infections (29(3.7%) vs. 88 (11.4%), p=0.0001) in the ciNPT group compared to the SD group. However, the ciNPT group showed a longer average length of stay (11.23 ± 13 days versus 9.66 ± 10 days; p=0.0083) and higher mean logistic EuroSCORE (11.143 ± 13 versus 8.094 ± 11; p=0.0001). Conclusion: Utilization of ciNPT as an approach to help reduce the incidence of superficial and deep SWI may be effective in high-risk patients requiring cardiac surgery.

Keywords: closed incision negative pressure therapy, surgical wound infection, cardiac surgery complication, high risk cardiac patients

Procedia PDF Downloads 96
6862 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco

Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali

Abstract:

This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.

Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco

Procedia PDF Downloads 18
6861 The Exploration of Psychosocial Risk and the Handling of Unsafe Acts and Misconduct

Authors: Jacquelene Swanepoel, J. C. Visagie, H. M. Linde

Abstract:

Purpose: The aim of this article is to investigate the psychosocial risk environment influencing employee behaviour, and subsequently the trust relationship between employer and employee. Design/methodology/approach: The unique nature and commonness of negative acts, such as unsafe behaviour, human errors, poor performance and negligence, also referred to as unsafe practice, are explored. A literature review is formulated to investigate the nature of negative acts or unsafe behaviour. The findings of this study are used to draw comparisons between unsafe behaviour/misconduct and accidents in the workplace and finally conclude how it should be addressed from a labour relations point of view. Findings: The results indicate comparisons between unsafe practice/misconduct and occupational injuries and accidents, as a result of system flaws, human error or psychosocial risk.

Keywords: occupational risks, unsafe practice, misconduct, organisational safety culture, ergonomics, management commitment and leadership, labour relations

Procedia PDF Downloads 357
6860 Development of a Geomechanical Risk Assessment Model for Underground Openings

Authors: Ali Mortazavi

Abstract:

The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).

Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering

Procedia PDF Downloads 145
6859 Risk Assessment on New Bio-Composite Materials Made from Water Resource Recovery

Authors: Arianna Nativio, Zoran Kapelan, Jan Peter van der Hoek

Abstract:

Bio-composite materials are becoming increasingly popular in various applications, such as the automotive industry. Usually, bio-composite materials are made from natural resources recovered from plants, now, a new type of bio-composite material has begun to be produced in the Netherlands. This material is made from resources recovered from drinking water treatments (calcite), wastewater treatment (cellulose), and material from surface water management (aquatic plants). Surface water, raw drinking water, and wastewater can be contaminated with pathogens and chemical compounds. Therefore, it would be valuable to develop a framework to assess, monitor, and control the potential risks. Indeed, the goal is to define the major risks in terms of human health, quality of materials, and environment associated with the production and application of these new materials. This study describes the general risk assessment framework, starting with a qualitative risk assessment. The qualitative risk analysis was carried out by using the HAZOP methodology for the hazard identification phase. The HAZOP methodology is logical and structured and able to identify the hazards in the first stage of the design when hazards and associated risks are not well known. The identified hazards were analyzed to define the potential associated risks, and then these were evaluated by using the qualitative Event Tree Analysis. ETA is a logical methodology used to define the consequences for a specific hazardous incidents, evaluating the failure modes of safety barriers and dangerous intermediate events that lead to the final scenario (risk). This paper shows the effectiveness of combining of HAZOP and qualitative ETA methodologies for hazard identification and risk mapping. Then, key risks were identified, and a quantitative framework was developed based on the type of risks identified, such as QMRA and QCRA. These two models were applied to assess human health risks due to the presence of pathogens and chemical compounds such as heavy metals into the bio-composite materials. Thus, due to these contaminations, the bio-composite product, during its application, might release toxic substances into the environment leading to a negative environmental impact. Therefore, leaching tests are going to be planned to simulate the application of these materials into the environment and evaluate the potential leaching of inorganic substances, assessing environmental risk.

Keywords: bio-composite, risk assessment, water reuse, resource recovery

Procedia PDF Downloads 109
6858 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 402
6857 Corporate Governance and Firm Performance in the UAE

Authors: Bakr Ali Al-Gamrh, Ku Nor Izah B. Ku Ismail

Abstract:

We investigate the relationship between corporate governance, leverage, risk, and firm performance. We use a firm level panel that spans the period 2008 to 2012 of all listed firms on Abu Dhabi Stock Exchange and Dubai Financial Market. After constructing an index of corporate governance strength, we find a negative effect of corporate governance on firm performance. We, however, discover that corporate governance strength indirectly improves the negative influence of leverage on firm performance in normal times. On the contrary, the results completely reversed when there is a black swan event. Corporate governance strength plays a significantly negative role in moderating the relationship between leverage and firm performance during the financial crisis. We also reveal that corporate governance strength increases firms’ risk and deteriorates performance during crisis. Results provide evidence that corporate governance indirectly plays a completely different role in different time periods.

Keywords: corporate governance, firm performance, risk, leverage, the UAE

Procedia PDF Downloads 550
6856 Treatment of Type 2 Diabetes Mellitus: Physicians’ Adherence to the American Diabetes Association Guideline in Central Region, Saudi Arabia

Authors: Ibrahim Mohammed

Abstract:

Background: Diabetes mellitus is a chronic disease that can cause devastating secondary complications, reducing the quality and length of life as well as increasing medical costs for the patient and society. The guidelines recommend both clinical and preventive strategies for diabetes management and are regularly updated. The aim of the study is to assess the level of adherence of physicians to American Diabetes Association Guidelines. Method: Observational multicenter retrospective study will be conducted among different hospitals in the central region. Patient data will be collected from the records of the last three years (2017- 2020). Records will be selected randomly after a complete randomized design. The study focuses on the management of type 2 according to ADA not changed in the last three updating; those standards; all patients should be taking Metformin 1500 to 2000 mg/day as recommended dose and should be received a high dose of statin if the high risk to ASCVD or moderate statin if not at risk, patients with hypertension and diabetes should taking ACE or ARBS. Result: The study aimed to evaluate the commitment of physicians in the central region to the ADA. Out of the 153 selected patients, only 17 % were able to control their diabetes with an average A1c below 7. ADA stated that to reach the minimum benefit of using Metformin, the daily dose should be between 1500 and 2000 mg. Results showed that 110 patients were on Metformin, where 68% of them were on the recommended dose. ADA recommended the intake of high statin for diabetic patients with ASCVD risk, while diabetic patients without ASCVD risk should be on a moderate statin. Results showed that 61.5% of patients with ASCVD risk were at high statin while only 36% of patients without ASCVD risk were at moderate statin. Results showed that 89 patients have hypertension, and 80% of them are getting ACE/ARBs as recommended by the ADA. Recommendation: It is necessary to implement periodic training courses for some physicians to enhance and update their knowledge.

Keywords: American Diabetic Association, diabetes mellitus, atherosclerotic cardiovascular disease, ACE inhibitors

Procedia PDF Downloads 85
6855 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 150
6854 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design

Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng

Abstract:

The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser, and a heating plate was used to produce biodiesel. Key parameters, including time, temperature, and mixing rate was kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.

Keywords: ANOVA, biodiesel, catalyst, transesterification, central composite design

Procedia PDF Downloads 152
6853 Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis

Authors: Mohamed Aly, Aliaa Rehan Youssef, Emad Sawerees, Mounir Guirgis

Abstract:

Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise.

Keywords: clinical prediction rule, knee osteoarthritis, physical therapy exercises, validity

Procedia PDF Downloads 422
6852 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 120
6851 Prevalence of Pre Hypertension and Its Association to Risk Factors for Cardiovascular Diseases Among Male Undergraduate Students in Chennai

Authors: R. S. Dinesh Madhavan, M. Logaraj

Abstract:

Background: Recent studies have documented an increase in the risk of cardiovascular diseases (CVD) and a high rate of progression to hypertension in persons with pre hypertension. The risk factors for the growing burden of cardiovascular diseases especially hypertension, diabetes, overweight or obesity and waist hip ratio are increasing. Much study has not been done on cardiovascular risk factors associated with blood pressure (BP) among college students in Indian population. Objectives: The objective of our study was to estimate the prevalence of prehypertension among male students and to assess the association between prehypertension and risk factors for cardiovascular diseases. Material and Methods: A cross-sectional study was conducted among students of a university situated in the suburban area of Chennai. A total of 403 students was studied which included 200 medical and 203 engineering students. The information on selected socio-demographic variables were collected with the help of pre tested structured questionnaire. Measurements of height, weight, blood pressure and postprandial blood glucose were carried out as per standard procedure. Results: The mean age of the participants was 19.56 ± 1.67years. The mean systolic and diastolic blood pressure were 125.80±10.03 mm of Hg and 78.96 ±11.75mm of Hg. The average intake of fruits and vegetable per week were 4.34 ±3.47days and 6.55±4.39 days respectively. Use of smoke and smokeless tobacco were 27.3% and 3% respectively. About 30.3% of the students consume alcohol. Nearly 45.9 % of them did not practice regular exercise. About 29 % were overweight and 5.7% were obese, 24.8% were with waist circumference above 90 centimeters. The prevalence of pre hypertension and hypertension was 49.6% and 19.1% among male students. The prevalence of pre hypertension was higher in medical students (51.5%) compared to engineering students (47.8%). Higher risk of being pre hypertensive were noted above the age of 20 years (OR=4.32), fruit intake less than 3 days a week (OR= 1.03), smokers (OR= 1.13), alcohol intake (OR=1.56), lack of physical exercise (OR=1.90), BMI of more than 25 kg/m2 (OR=1.99). But statistically significant difference was noted between pre hypertensive and normotensive for age (p<0.0001), lack of physical exercise (p=0.004) and BMI (p=0.015). Conclusion: In conclusion nearly half of the students were pre hypertensive. Higher prevalence of smoking, alcohol intake, lack of physical exercise, overweight and increased waist circumference and postprandial blood sugar more than 140 mg/dl was noted among pre-hypertensive compared to normotensive.

Keywords: cardiovascular diseases, prehypertension, risk factors, undergraduate Students

Procedia PDF Downloads 439
6850 Perception of Risks of the Telecommunication Towers in Malaysia: A Qualitative Inquiry

Authors: Y. Kamarulzaman, A. Madun, F. D. Yusop, N. Abdullah, N. K. Hoong

Abstract:

In 2011, the Malaysian Government has initiated a nationwide project called 1BestariNet which will adopt the using of technology in teaching and learning, resulting in the construction of telecommunication towers inside the public schools’ premise. Using qualitative approach, this study investigated public perception of risks associated with the project, particularly the telecommunication towers. Data collection involved observation and in-depth interviews with 22 individuals consist of a segment of public that was anxious about the risks of radio frequency electromagnetic field (RFEMF) which include two employees of telecommunication companies (telcos) and five employees of Government agencies. Observation of the location of the towers at 10 public schools, a public forum, and media reports provide valuable information in our analysis. The study finds that the main concern is related to the health risks. This study also shows that it is not easy for the Government to manage public perception mainly because it involves public trust. We find that risk perception is related with public trust, as well as the perceived benefits and level of knowledge. Efficient communication and continuous engagement with the local communities help to build and maintain public trust, reduce public fear and anxiety, hence mitigating the risk perception among the public.

Keywords: risk perception, risk communication, trust, telecommunication tower, radio frequency electromagnetic field (RFEMF)

Procedia PDF Downloads 320