Search results for: reserve strength ration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4049

Search results for: reserve strength ration

2759 Energy Potential of Turkey and Evaluation of Solar Energy Technology as an Alternative Energy

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

Emerging demand for energy in developing countries rapid population growth and industrialization are causing a rapid increase, such as Turkey. Energy is an important and indispensable factor in the industry. At the same time, energy is one of the main indicators that reflect a country's economic and social development potential. There is a linear relationship between the energy consumption and social development, and in parallel this situation, it is seen that energy consumption increase with economic growth and prosperity. In recent year’s, energy sources consumption is increasingly continuing, because of population growth and economy in Turkey. 80% of the energy used in Turkey is supplied from abroad. At the same time, while almost all of the energy obtained from our country is met by hydropower. Alternatively, studies of determining and using potential renewable energy sources such as solar energy have been realized for recent years. In this study, first of all, the situation of energy sources was examined in Turkey. Information of reserve/capacity, production and consumption values of energy sources were emphasized. For this purpose, energy production and consumption, CO2 emission and electricity energy consumption of countries were investigated. Energy consumption and electricity energy consumption per capita were comparatively analyzed.

Keywords: energy potential, alternative energy sources, solar energy, Turkey

Procedia PDF Downloads 437
2758 Adopted Method of Information System Strategy for Knowledge Management System: A Literature Review

Authors: Elin Cahyaningsih, Dana Indra Sensuse, Wahyu Catur Wibowo, Sofiyanti Indriasari

Abstract:

Bureaucracy reform program drives Indonesian government to change their management and supporting unit in order to enhance their organization performance. Information technology as one of supporting unit became one of strategic plan that organization tried to improve, because IT can automate and speed up process, reduce business process life cycle become more effective and efficient. Knowledge management system is a technology application for supporting knowledge management implementation in government which is requirement based on problem and potential functionality of each knowledge management process. Define knowledge management that suitable for each organization it is difficult, that why we should make the knowledge management system strategy as an alignment of knowledge management process in the organization. Knowledge management system is one of information system development in people perspective, because this system has high dependency in human interaction and participation. Strategic plan for developing knowledge management system can be determine using some of information system strategic methods. This research conducted to define type of strategic method of information system, stage of activity each method, the strategic method strength and weakness. The author use literature review methods for identify and classify strategic methods of information system for differentiate method type, categorize common activities, strength and weakness. Result of this research are determine and compare six strategic information system methods, there are Balanced Scorecard, Five Force Porter, SWOT analysis, Value Chain Analysis, Risk Analysis and Gap Analysis. Balanced Scorecard and Risk Analysis believe as common strategic method that usually used and have the highest excellence strength.

Keywords: knowledge management system, balanced scorecard, five force, risk analysis, gap analysis, value chain analysis, SWOT analysis

Procedia PDF Downloads 476
2757 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: gypsum board, anchor, shear test, cyclic loading, load-unload curve

Procedia PDF Downloads 385
2756 Leather Quality of Some Sudan Goats under Range Condition

Authors: Mohammed Alhadi Ebrahiem

Abstract:

This study was designed to investigate the effect of breed and feeding level before slaughter on the skin\leather quality of the three main breeds of Sudan goats. Thirty (30) pieces of fresh skins from the three goat breeds (an average age 1-1.5 years) were chosen for the study purpose. For whole variations between the three breeds in two levels of feeding (poor and rich pastures) Complete Randomized Design (CRD) was used for data analysis. The results revealed that, leather weight (kg), elongation%, tensile strength (kg/cm2), cracking load (kg), thickness (mm), tear load (kg/cm) and chrome% findings were significantly affected (P≥0.05) by breed variation. Flexibility, moisture%, Ash% and fat % were not significantly affected (P ≥ 0.05) by breed. On the other hand, skin weight (kg), Cracking load (kg), Tear load (kg/cm) and Ash% were significantly affected (P≥0.05) by pasture quality. While Leather Elongation%, Tensile strength (kg/cm2), Thickness (mm), Flexibility, Moisture%, Fat % and Chrome% were not statistically (P ≥ 0.05) affected by pastures quality.

Keywords: skin\leather quality, goats leather, natural pasture, Sudan

Procedia PDF Downloads 358
2755 Classifying and Analysis 8-Bit to 8-Bit S-Boxes Characteristic Using S-Box Evaluation Characteristic

Authors: Muhammad Luqman, Yusuf Kurniawan

Abstract:

S-Boxes is one of the linear parts of the cryptographic algorithm. The existence of S-Box in the cryptographic algorithm is needed to maintain non-linearity of the algorithm. Nowadays, modern cryptographic algorithms use an S-Box as a part of algorithm process. Despite the fact that several cryptographic algorithms today reuse theoretically secure and carefully constructed S-Boxes, there is an evaluation characteristic that can measure security properties of S-Boxes and hence the corresponding primitives. Analysis of an S-Box usually is done using manual mathematics calculation. Several S-Boxes are presented as a Truth Table without any mathematical background algorithm. Then, it’s rather difficult to determine the strength of Truth Table S-Box without a mathematical algorithm. A comprehensive analysis should be applied to the Truth Table S-Box to determine the characteristic. Several important characteristics should be owned by the S-Boxes, they are Nonlinearity, Balancedness, Algebraic degree, LAT, DAT, differential delta uniformity, correlation immunity and global avalanche criterion. Then, a comprehensive tool will be present to automatically calculate the characteristics of S-Boxes and determine the strength of S-Box. Comprehensive analysis is done on a deterministic process to produce a sequence of S-Boxes characteristic and give advice for a better S-Box construction.

Keywords: cryptographic properties, Truth Table S-Boxes, S-Boxes characteristic, deterministic process

Procedia PDF Downloads 361
2754 Emotions and Message Sharing on the Chinese Microblog

Authors: Yungeng Xie, Cong Liu, Yi Liu, Xuanao Wan

Abstract:

The study aims to explore microblog users’ emotion expression and sharing behaviors on the Chinese microblog (Weibo). The first theme of study analyzed whether microblog emotions impact readers’ message sharing behaviors, specifically, how the strength of emotion (positive and negative) in microblog messages facilitate/inhibit readers’ sharing behaviors. The second theme compared the differences among the three types of microblog users (i.e., verified enterprise users, verified individual users and unverified users) in terms of their profiles and microblog behaviors. A total of 7114 microblog messages about 24 hot public events in China were sampled from Sina Weibo. The first study results show that strength of negative emotions that microblog messages carry significantly increase the possibility of the message being shared. The second study results indicate that there are significant differences across the three types of users in terms of their emotion expression and its influence on microblog behaviors.

Keywords: emotion expression, information diffusion, microblog, sharing

Procedia PDF Downloads 238
2753 Seismic Behaviour of CFST-RC Columns

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.

Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance

Procedia PDF Downloads 243
2752 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia

Authors: Benedictus Asriparusa

Abstract:

Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.

Keywords: estimation, solar radiation power, REST 2, solar transmittance

Procedia PDF Downloads 425
2751 Optimal Sizes of Battery Energy Storage Systems for Economic Operation in Microgrid

Authors: Sirus Mohammadi, Sara Ansari, Darush dehghan, Habib Hoshyari

Abstract:

Batteries for storage of electricity from solar and wind generation farms are a key element in the success of sustainability. In recent years, due to large integration of Renewable Energy Sources (RESs) like wind turbine and photovoltaic unit into the Micro-Grid (MG), the necessity of Battery Energy Storage (BES) has increased dramatically. The BES has several benefits and advantages in the MG-based applications such as short term power supply, power quality improvement, facilitating integration of RES, ancillary service and arbitrage. This paper presents the cost-based formulation to determine the optimal size of the BES in the operation management of MG. Also, some restrictions, i.e. power capacity of Distributed Generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve and load demand satisfaction should be considered as well. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG.

Keywords: microgrid, energy storage system, optimal sizing, net present value

Procedia PDF Downloads 493
2750 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach

Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe

Abstract:

This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.

Keywords: paving stones, physical properties, mechanical properties, ANFIS

Procedia PDF Downloads 341
2749 Synthesis of Iso-Amyl, Benzyl and Cinnamyl Esters over Active, Selective, Reusable and Eco-Friendly Natural Silica Catalyst

Authors: Abd El-Aziz Said

Abstract:

In this study, natural silica was used as an active, selective, reusable and eco-friendly catalyst for the liquid phase synthesis of iso-amyl, benzyl and cinnamyl esters. The original and calcined natural silica were characterized by TG-DTA, XRF, XRD, FTIR, SEM, and N2-sorption analysis. The surface acidity of the catalysts was determined using isopropanol dehydration and the strength of available acid sites was measured using chemisorption of pyridine (PY) and dimethyl pyridine (DMPY). The results of acidity specified that the acidic sites are of Brönsted type, while PY-TPD demonstrated that almost of the acidic sites over the surface of natural silica are of weak and intermediate strength. The catalytic activity of natural silica towards esterification of acetic acid with alcohols was extensively studied. The results revealed that natural silica had high catalytic activity with 100% selectivity to all targeted esters. In addition, the yields obtained in batch methods were 83, 81, and 80%, respectively, whereas these yields after simple distillation were improved 97, 99.5, and 90%, respectively.

Keywords: liquid-phase esterification, natural silica, acidity esters, characterization

Procedia PDF Downloads 132
2748 The Power House of Mind: Determination of Action

Authors: Sheetla Prasad

Abstract:

The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.

Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche

Procedia PDF Downloads 451
2747 A Comprehensive Study on Cast NiTi and Ti64 Alloys for Biomedical Applications

Authors: Khaled Mohamed Ibrahim

Abstract:

A comprehensive study on two biomaterials of NiTi and Ti-6Al-4V (Ti64) was done. Those materials were cast using vacuum arc remelting technique. As-cast structure of Ni-Ti alloy consists of NiTi matrix and some fine precipitates of Ni4Ti3. Ti-6Al-4V alloy showed a structure composed of equiaxed β grains and varied α-phase morphologies. Maximum ultimate compressive strength and reduction in height of 2042 MPa of 18%, respectively, were reported for the cast Ti64 alloy. However, minimum ultimate compressive strength of 1804 MPa and low reduction in height of 3% were obtained for the cast NiTi alloy. Wear rate of both Ni-Ti and Ti-6Al-4V alloys significantly increased at saline solution (0.9% NaCl) condition as compared to dry testing condition. Saline solution harmed the wear resistance of about 2 to 4 times compared to the dry condition. Corrosion rate of NiTi alloy at saline solution (0.9% NaCl) was (0.00038 mm/yr) is almost three times the value of Ti64 alloy (0.000171 mm/yr). The corrosion rate of Ti64 in SBF (0.00024 mm/yr) was lower than Ni-Ti (0.0003 mm/yr).

Keywords: NiTi, Ti64, vacuum casting, biomaterials

Procedia PDF Downloads 79
2746 Sensitivity Analysis of Interference of Localised Corrosion on Bending Capacity of a Corroded RC Beam

Authors: Mohammad Mahdi Kioumarsi

Abstract:

In this paper, using the response surface method (RSM), tornado diagram method and non-linear finite element analysis, the effect of four parameters on residual bending capacity of a corroded RC beam was investigated. The parameters considered are amount of localised cross section reduction, ratio of pit distance on adjacent bars to rebar distance, concrete compressive strength, and rebar tensile strength. The focus is on the influence on the bending ultimate limit state. Based on the obtained results, the effects of the ratio of pit distance to rebar distance (Lp⁄Lr) and the ratio of the localised cross section reduction to the original area of the rebar (Apit⁄A0) were found significant. The interference of localised corrosion on adjacent reinforcement bars reduces the bending capacity of under-reinforced concrete beam. Using the sensitivity analysis could lead to recognize uncertainty parameters, which have the most influences on the performance of the structure.

Keywords: localised corrosion, concrete beam, sensitivity analyses, ultimate capacity

Procedia PDF Downloads 248
2745 Mechanical Performance of Geopolymeric Mortars Based on Natural Clay, Fly Ash and Metakaolin

Authors: W. Tahri, B. Samet, F. Pacheco-Torgal, J. L. Barroso de Aguiar, S. Baklouti

Abstract:

Infrastructure rehabilitation represents a multitrillion dollar opportunity for the construction industry. Since the majority of the existent infrastructures are Portland cement concrete based this means that concrete infrastructure rehabilitation is a hot issue to be dealt with. Geopolymers are novel inorganic binders with high potential to replace Portland cement based ones. So far very few studies in the geopolymer field have addressed the rehabilitation of deteriorated concrete structures. This paper discloses results of an investigation concerning the development geopolymeric repair mortars. The mortars are based on Tunisian natural clay plus calcium hydroxide, sodium silicate and sodium hydroxide. Results show that the geopolymeric mortar has a high compressive strength and a lower unrestrained shrinkage performance as long as partial replacement by metakaolin is carried out. The results also show that Tunisian calcined clay based mortars have hydration products with typical geopolymeric phases.

Keywords: geopolymeric mortars, infrastructure repair, compressive strength, shrinkage

Procedia PDF Downloads 328
2744 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 238
2743 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 231
2742 3D Electromagnetic Mapping of the Signal Strength in Long Term Evolution Technology in the Livestock Department of ESPOCH

Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres

Abstract:

This article focuses on the 3D electromagnetic mapping of the intensity of the signal received by a mobile antenna within the open areas of the Department of Livestock of the Escuela Superior Politecnica de Chimborazo (ESPOCH), located in the city of Riobamba, Ecuador. The transmitting antenna belongs to the mobile telephone company ”TUENTI”, and is analyzed in the 2 GHz bands, operating at a frequency of 1940 MHz, using Long Term Evolution (LTE). Power signal strength data in the area were measured empirically using the ”Network Cell Info” application. A total of 170 samples were collected, distributed in 19 concentric circles around the base station. 3 campaigns were carried out at the same time, with similar traffic, and average values were obtained at each point, which varies between -65.33 dBm to -101.67 dBm. Also, the two virtualization software used are Sketchup and Unreal. Finally, the virtualized environment was visualized through virtual reality using Oculus 3D glasses, where the power levels are displayed according to a range of powers.

Keywords: reception power, LTE technology, virtualization, virtual reality, power levels

Procedia PDF Downloads 88
2741 Analyzing the Effect of Biomass and Cementitious Materials on Air Content in Concrete

Authors: Mohammed Albahttiti, Eliana Aguilar

Abstract:

A push for sustainability in the concrete industry is increasing. Cow manure itself is becoming a problem and having the potential solution to use it in concrete as a cementitious replacement would be an ideal solution. For cow manure ash to become a well-rounded substitute, it would have to meet the right criteria to progress in becoming a more popular idea in the concrete industry. This investigation primarily focuses on how the replacement of cow manure ash affects the air content and air void distribution in concrete. In order to assess these parameters, the Super Air Meter (SAM) was used to test concrete in this research. In addition, multiple additional tests were performed, which included the slump test, temperature, and compression test. The strength results of the manure ash in concrete were promising. The manure showed compression strength results that are similar to that of the other supplementary cementitious materials tested. On the other hand, concrete samples made with cow manure ash showed 2% air content loss and an increasing SAM number proportional to cow manure content starting at 0.38 and increasing to 0.8. In conclusion, while the use of cow manure results in loss of air content, it results in compressive strengths similar to other supplementary cementitious materials.

Keywords: air content, biomass ash, cow manure ash, super air meter, supplementary cementitious materials

Procedia PDF Downloads 148
2740 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 283
2739 New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates

Authors: A. S. Bouchikhi, A. Megueni, S. Habibi

Abstract:

One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations.

Keywords: FRP, mixed adhesive joints, stresses, tapered plate, retrofitted beams bonded

Procedia PDF Downloads 496
2738 Effects of Elastic, Plyometric and Strength Training on Selected Anaerobic Factors in Sanandaj Elite Volleyball Players

Authors: Majed Zobairy, Fardin Kalvandi, Kamal Azizbaigi

Abstract:

This research was carried out for evaluation of elastic, plyometric and resistance training on selected anaerobic factors in men volleyball players. For these reason 30 elite volleyball players of Sanandaj city randomly divided into 3 groups as follow: elastic training, plyometric training and resistance training. Pre-exercise tests which include vertical jumping, 50 yard speed running and scat test were done and data were recorded. Specific exercise protocol regimen was done for each group and then post-exercise tests again were done. Data analysis showed that there were significant increases in exercise test in each group. One way ANOVA analysis showed that increases in speed records in elastic group were significantly higher than the other groups (p<0/05),based on research data it seems that elastic training can be a useful method and new approach in improving functional test and training regimen.

Keywords: elastic training, plyometric training, strength training, anaerobic power

Procedia PDF Downloads 526
2737 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption

Procedia PDF Downloads 111
2736 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh

Abstract:

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Keywords: thin plate, transverse shear, tension field, finite element analysis, parametric study, design

Procedia PDF Downloads 216
2735 Improving the Dielectric Strength of Transformer Oil for High Health Index: An FEM Based Approach Using Nanofluids

Authors: Fatima Khurshid, Noor Ul Ain, Syed Abdul Rehman Kashif, Zainab Riaz, Abdullah Usman Khan, Muhammad Imran

Abstract:

As the world is moving towards extra-high voltage (EHV) and ultra-high voltage (UHV) power systems, the performance requirements of power transformers are becoming crucial to the system reliability and security. With the transformers being an essential component of a power system, low health index of transformers poses greater risks for safe and reliable operation. Therefore, to meet the rising demands of the power system and transformer performance, researchers are being prompted to provide solutions for enhanced thermal and electrical properties of transformers. This paper proposes an approach to improve the health index of a transformer by using nano-technology in conjunction with bio-degradable oils. Vegetable oils can serve as potential dielectric fluid alternatives to the conventional mineral oils, owing to their numerous inherent benefits; namely, higher fire and flashpoints, and being environment-friendly in nature. Moreover, the addition of nanoparticles in the dielectric fluid further serves to improve the dielectric strength of the insulation medium. In this research, using the finite element method (FEM) in COMSOL Multiphysics environment, and a 2D space dimension, three different oil samples have been modelled, and the electric field distribution is computed for each sample at various electric potentials, i.e., 90 kV, 100 kV, 150 kV, and 200 kV. Furthermore, each sample has been modified with the addition of nanoparticles of different radii (50 nm and 100 nm) and at different interparticle distance (5 mm and 10 mm), considering an instant of time. The nanoparticles used are non-conductive and have been modelled as alumina (Al₂O₃). The geometry has been modelled according to IEC standard 60897, with a standard electrode gap distance of 25 mm. For an input supply voltage of 100 kV, the maximum electric field stresses obtained for the samples of synthetic vegetable oil, olive oil, and mineral oil are 5.08 ×10⁶ V/m, 5.11×10⁶ V/m and 5.62×10⁶ V/m, respectively. It is observed that for the unmodified samples, vegetable oils have a greater dielectric strength as compared to the conventionally used mineral oils because of their higher flash points and higher values of relative permittivity. Also, for the modified samples, the addition of nanoparticles inhibits the streamer propagation inside the dielectric medium and hence, serves to improve the dielectric properties of the medium.

Keywords: dielectric strength, finite element method, health index, nanotechnology, streamer propagation

Procedia PDF Downloads 140
2734 Durability of Wood Shavel Composites with Environmental Friendly Based Binder

Authors: Jul Endawati

Abstract:

The composite element of 20 mm in thickness were manufactured using high volume fly ash, silica fume as alternative hydraulic binders and Portland cement Type II. Pine wood shavel as by product of local small wood working industries were used as the composite filler. The elements were given in situ wet and dry treatment for 9 months. Visually there is no fiber degradation as a result of the interaction of the environment. The assessment were done to the elements bending strength and dimensional properties. Increase in MoR after 180 days of exposure shown that mechanically this degradation is not seen yet. The increment of MoR (213%) compare to that of 28 days might be affected by the formation of calcium hydroxide (CH) or ettringite in the transition zone. The use of pozzolan showed also a delay or minimize degradation of composites while improving the pore structure, and minimize the mineralization of the fiber bond with the cement matrix. The water absorption is 4,22% at 180 days, 7,94% at 120 days and 12,38% at 28 days, in line with the 68% decrease in Thickness Swelling (TS). This unoccured degradation could also be affected by the presence of silica fume in the binder matrix. After 270 days of exposure under tropical condition, the flexural strength started to decrease.

Keywords: durability, fly ash, natural fibre, silica fume

Procedia PDF Downloads 261
2733 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm

Authors: A. Baviskar, C. Sandeep, K. Shankar

Abstract:

Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.

Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)

Procedia PDF Downloads 275
2732 Finite Element Modelling of Mechanical Connector in Steel Helical Piles

Authors: Ramon Omar Rosales-Espinoza

Abstract:

Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.

Keywords: piles, FEA, steel, mechanical connector

Procedia PDF Downloads 263
2731 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 436
2730 Numerical Modeling of Artisanal and Small Scale Mining of Coltan in the African Great Lakes Region

Authors: Sergio Perez Rodriguez

Abstract:

Coltan Artisanal and Small-Scale Mining (ASM) production from Africa's Great Lakes region has previously been addressed at large scales, notably from regional to country levels. The current findings address the unresolved issue of a production model of ASM of coltan ore by an average Democratic Republic of Congo (DRC) mineworker, which can be used as a reference for a similar characterization of the daily labor of counterparts from other countries in the region. To that end, the Fundamental Equation of Mineral Production has been applied, considering a miner's average daily output of coltan, estimated in the base of gross statistical data gathered from reputable sources. Results indicate daily yields of individual miners in the order of 300 g of coltan ore, with hourly peaks of production in the range of 30 to 40 g of the mineral. Yields are expected to be in the order of 5 g or less during the least productive hours. These outputs are expected to be achieved during the halves of the eight to ten hours of daily working sessions that these artisanal laborers can attend during the mining season.

Keywords: coltan, mineral production, production to reserve ratio, artisanal mining, small-scale mining, ASM, human work, Great Lakes region, Democratic Republic of Congo

Procedia PDF Downloads 75