Search results for: radial basis function networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10860

Search results for: radial basis function networks

9570 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications

Authors: Hazem M. Al-Mofleh

Abstract:

In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.

Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy

Procedia PDF Downloads 348
9569 Optimal Capacitor Placement in Distribution Systems

Authors: Sana Ansari, Sirus Mohammadi

Abstract:

In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: power losses, voltage stability, radial distribution systems, capacitor

Procedia PDF Downloads 647
9568 Green Hospitality Industry: An Experience Study with Game Theory in China

Authors: Min Wei

Abstract:

The green hotel provides the products/services consistent with the full utilization of resources, protecting the ecological environment conducive to customers’ requirements and health. In order to better develop the green hospitality industry, this paper applies the game theory to analyze the intrinsic relationship and balanced interests among the stakeholders including government, hotels, and tourists during green hospitality development. Based on the hypothesis in game theory, this paper tries to construct a linkage mechanism in stakeholders, by which a theoretical basis for the interests’ balance can be realized. By using game theory and constructing a game model including tourists, hotels and government, this paper analyzes the relationship of the various stakeholders involved in the green hospitality development, and subsequently proposes the development model of green hospitality industry. On the one hand, this paper applies game theory to construct a green hotel development model and provides a theoretical basis for the interest balance of stakeholders based on theoretical perspective. On the other hand, the current development of green hospitality industry is still in initial phase, and the outcome of this research tries to guide tourists to form a green awareness and to establish the concept of green consumption for hotel development, so that green hotel products/services are provided. In addition, this paper provides a basis for decision making in the relevant government departments so that the interests of all stakeholders are promoted and cooperative game between stakeholders is established, for which the sustainable development of green hotels is achieved. The findings indicate that the process of achieving green hospitality industry development is to maximize the whole interests of stakeholders.

Keywords: green hospitality, game theory, stakeholders, development model

Procedia PDF Downloads 131
9567 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 54
9566 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method

Authors: Md. Moinul Islam, N. M. Golam Zakaria

Abstract:

Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.

Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function

Procedia PDF Downloads 220
9565 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks

Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher

Abstract:

Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.

Keywords: neural networks, rainfall, prediction, climatic variables

Procedia PDF Downloads 488
9564 Understanding Health Behavior Using Social Network Analysis

Authors: Namrata Mishra

Abstract:

Health of a person plays a vital role in the collective health of his community and hence the well-being of the society as a whole. But, in today’s fast paced technology driven world, health issues are increasingly being associated with human behaviors – their lifestyle. Social networks have tremendous impact on the health behavior of individuals. Many researchers have used social network analysis to understand human behavior that implicates their social and economic environments. It would be interesting to use a similar analysis to understand human behaviors that have health implications. This paper focuses on concepts of those behavioural analyses that have health implications using social networks analysis and provides possible algorithmic approaches. The results of these approaches can be used by the governing authorities for rolling out health plans, benefits and take preventive measures, while the pharmaceutical companies can target specific markets, helping health insurance companies to better model their insurance plans.

Keywords: breadth first search, directed graph, health behaviors, social network analysis

Procedia PDF Downloads 471
9563 Optical Variability of Faint Quasars

Authors: Kassa Endalamaw Rewnu

Abstract:

The variability properties of a quasar sample, spectroscopically complete to magnitude J = 22.0, are investigated on a time baseline of 2 years using three different photometric bands (U, J and F). The original sample was obtained using a combination of different selection criteria: colors, slitless spectroscopy and variability, based on a time baseline of 1 yr. The main goals of this work are two-fold: first, to derive the percentage of variable quasars on a relatively short time baseline; secondly, to search for new quasar candidates missed by the other selection criteria; and, thus, to estimate the completeness of the spectroscopic sample. In order to achieve these goals, we have extracted all the candidate variable objects from a sample of about 1800 stellar or quasi-stellar objects with limiting magnitude J = 22.50 over an area of about 0.50 deg2. We find that > 65% of all the objects selected as possible variables are either confirmed quasars or quasar candidates on the basis of their colors. This percentage increases even further if we exclude from our lists of variable candidates a number of objects equal to that expected on the basis of `contamination' induced by our photometric errors. The percentage of variable quasars in the spectroscopic sample is also high, reaching about 50%. On the basis of these results, we can estimate that the incompleteness of the original spectroscopic sample is < 12%. We conclude that variability analysis of data with small photometric errors can be successfully used as an efficient and independent (or at least auxiliary) selection method in quasar surveys, even when the time baseline is relatively short. Finally, when corrected for the different intrinsic time lags corresponding to a fixed observed time baseline, our data do not show a statistically significant correlation between variability and either absolute luminosity or redshift.

Keywords: nuclear activity, galaxies, active quasars, variability

Procedia PDF Downloads 81
9562 Integrated Approach of Quality Function Deployment, Sensitivity Analysis and Multi-Objective Linear Programming for Business and Supply Chain Programs Selection

Authors: T. T. Tham

Abstract:

The aim of this study is to propose an integrated approach to determine the most suitable programs, based on Quality Function Deployment (QFD), Sensitivity Analysis (SA) and Multi-Objective Linear Programming model (MOLP). Firstly, QFD is used to determine business requirements and transform them into business and supply chain programs. From the QFD, technical scores of all programs are obtained. All programs are then evaluated through five criteria (productivity, quality, cost, technical score, and feasibility). Sets of weight of these criteria are built using Sensitivity Analysis. Multi-Objective Linear Programming model is applied to select suitable programs according to multiple conflicting objectives under a budget constraint. A case study from the Sai Gon-Mien Tay Beer Company is given to illustrate the proposed methodology. The outcome of the study provides a comprehensive picture for companies to select suitable programs to obtain the optimal solution according to their preference.

Keywords: business program, multi-objective linear programming model, quality function deployment, sensitivity analysis, supply chain management

Procedia PDF Downloads 123
9561 Three Tier Indoor Localization System for Digital Forensics

Authors: Dennis L. Owuor, Okuthe P. Kogeda, Johnson I. Agbinya

Abstract:

Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices.

Keywords: indoor localization, digital forensics, fingerprinting, tracking and cloud

Procedia PDF Downloads 337
9560 Effect of Colloid Versus Crystalloid Administration in Cardiopulmonary Bypass Prime Solution on Tissue and Organ Perfusionm

Authors: Mohammad Java Esmaeily

Abstract:

Background: We evaluate the effects of tissue and organ perfusion during and after coronary artery bypass graft surgery with either colloid (Voluven) or crystalloid (Lactated ringers) as a prime solution. Materials and Methods: In this prospective randomized-controlled trial study, 70 patients undergoing on-pump coronary artery bypass graft surgery were randomly assigned to receive either colloid (Voluven) or crystalloid (Lactated ringer's) as a prime solution for initiation of cardiopulmonary bypass machine procedure. Tissue and organ perfusion markers, including lactate, troponin I, liver and renal function tests and electrolytes, were measured sequentially before induction (T1) to the second days after surgery (T5). Results: With the exception of chloride and potassium levels, no significant differences were detected in other measurements, and laboratory results were identical entirely in the two groups. Conclusion: Voluven® (hydroxyethyl starch, HES 130/0.4) has a not significant difference in comparison with crystalloid (Lactated ringer's) as priming solution on the basis of organ and tissue perfusion tests assessment.

Keywords: prime, colloid, crystalloid, lactate, troponin, hydroxyethyl starch

Procedia PDF Downloads 88
9559 Application of Modal Analysis for Commissioning of a Ball Screw System

Authors: T. D. Tran, H. Schlegel, R. Neugebauer

Abstract:

Ball screws are an important component in machine tools. In mechatronic systems and machine tools, a ball screw has to work usually at a high speed. Otherwise the axial compliance of the ball screw, in combination with the inertia of the slide, the motor, the coupling and the screw, will cause an oscillation resonance, which limits the systems bandwidth and consequently influences performance of the motion controller. In this paper, the modal analysis method by measuring and analysing the vibrating parameters of the ball screw system to determine the dynamic characteristic of existing structures is used. On the one hand, the results of this study were obtained by the theoretical analysis and the modal testing of a ball screw system test station with the help of an impact hammer, respectively using excitation by motor. The experimental study showed oscillating forms of the ball screw for each frequency and obtained eigenfrequencies of the ball screw system. On the other hand, in this research a simulation with the help of the numerical modal analysis in order to analyse the oscillation and to find the eigenfrequencies of the ball screw system is used. Furthermore, the model order reduction by modal reduction and also according to Guyan is carried out. On the basis of these results a secure and also rapid commissioning of the control loops with regard to operating in their optimal function is targeted.

Keywords: modal analysis, ball screw, controller system, machine tools

Procedia PDF Downloads 460
9558 Active Contours for Image Segmentation Based on Complex Domain Approach

Authors: Sajid Hussain

Abstract:

The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.

Keywords: image segmentation, active contour, level set, Mumford and Shah model

Procedia PDF Downloads 114
9557 Landmark Based Catch Trends Assessment of Gray Eel Catfish (Plotosus canius) at Mangrove Estuary in Bangladesh

Authors: Ahmad Rabby

Abstract:

The present study emphasizing the catch trends assessment of Gray eel catfish (Plotosus canius) that was scrutinized on the basis of monthly length frequency data collected from mangrove estuary, Bangladesh during January 2017 to December 2018. A total amount of 1298 specimens were collected to estimate the total length (TL) and weight (W) of P. canius ranged from 13.3 cm to 87.4 cm and 28 g to 5200 g, respectively. The length-weight relationship was W=0.006 L2.95 with R2=0.972 for both sexes. The von Bertalanffy growth function parameters were L∞=93.25 cm and K=0.28 yr-1, hypothetical age at zero length of t0=0.059 years and goodness of the fit of Rn=0.494. The growth performances indices for L∞ and W∞ were computed as Φ'=3.386 and Φ=1.84, respectively. The size at first sexual maturity was estimated in TL as 48.8 cm for pool sexes. The natural mortality was 0.51 yr-1 at average annual water surface temperature as 22 0C. The total instantaneous mortality was 1.24 yr-1 at CI95% of 0.105–1.42 (r2=0.986). While fishing mortality was 0.73 yr-1 and the current exploitation ratio as 0.59. The recruitment was continued throughout the year with one major peak during May-June was 17.20-17.96%. The Beverton-Holt yield per recruit model was analyzed by FiSAT-II, when tc was at 1.43 yr, the Fmax was estimated as 0.6 yr-1 and F0.1 was 0.33 yr-1. Current age at the first capture was approximately 0.6 year, however Fcurrent = 0.73 yr-1 which is beyond the F0.1 indicated that the current stock of P. canius of Bangladesh was overexploited.

Keywords: Plotosus canius, mangrove estuary, asymptotic length, FiSAT-II

Procedia PDF Downloads 151
9556 Discourse Analysis of the Concept of Citizenship in Textbooks in Iran

Authors: Jafar Ahmadi

Abstract:

This research has been done as a discourse analysis of the concept of citizenship in textbooks in Iran. The purpose of this study is to identify the dominant citizenship discourse in textbooks in the content of textbooks. The research method in this research is qualitative and qualitative content analysis. The statistical sample was selected in a purposeful manner and according to the research topic of books related to Persian literature, religious education and social education. The selected theoretical framework of this research is the three theories of citizenship (pre-modern, modern and postmodern). For each of these discourses, components and indicators have been extracted that are the basis of data analysis. The research findings show that the dominant citizenship discourse on the content of Iranian textbooks is pre-modern discourse and is the basis of this type of religious citizenship discourse. Finally, the findings show that the government uses the institution of education to reproduce its power.

Keywords: citizenship, textbooks, discourse analysis, religious citizenship, representation

Procedia PDF Downloads 198
9555 Construction Unit Rate Factor Modelling Using Neural Networks

Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula

Abstract:

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry

Procedia PDF Downloads 364
9554 Best Resource Recommendation for a Stochastic Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.

Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model

Procedia PDF Downloads 390
9553 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 478
9552 Nonparametric Path Analysis with a Truncated Spline Approach in Modeling Waste Management Behavior Patterns

Authors: Adji Achmad Rinaldo Fernandes, Usriatur Rohma

Abstract:

Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best truncated spline nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 knot points and to determine the significance of estimating the best truncated spline nonparametric path function in the model of the effect of perceived benefits and perceived convenience on behavior to convert waste into economic value through the intention variable of changing people's mindset about waste using the t test statistic at the jackknife resampling stage. The data used in this study are primary data obtained from research grants. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3 knot points. In addition, the significance of the best truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.

Keywords: nonparametric path analysis, truncated spline, linear, kuadratic, behavior to turn waste into economic value, jackknife resampling

Procedia PDF Downloads 47
9551 Coefficients of Some Double Trigonometric Cosine and Sine Series

Authors: Jatinderdeep Kaur

Abstract:

In this paper, the results of Kano from one-dimensional cosine and sine series are extended to two-dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as the class of semi convexity and class R are extended from one dimension to two dimensions. Under these extended classes, I have checked the function f(x,y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function. Further, some results are obtained which are the generalization of Moricz's results.

Keywords: conjugate dirichlet kernel, conjugate fejer kernel, fourier series, semi-convexity

Procedia PDF Downloads 439
9550 Towards Understanding Arab Consumer’s Response to Foreign Marketing: An Empirical Evidence from Libya

Authors: Izzudin Busnaina

Abstract:

An important question for marketers in the international arena is whether the consumer’s responses (i.e., sentiment and behavioral aspects) toward the global marketing programs in developing countries depend on culture. In a study representing a large sample of consumers and four different home appliances country-of-origin global operators in Libya, the author explores the potential role of culture on Arab consumers' responses toward foreign marketing programs. Results indicate that although the foreign companies have a tendency to adopted standardization perspective, this does not impact on consumers’ responses in a single cultural context toward marketing. The findings reveal that buying behavior was more a function of individual difference than of national cultural context. Further, the results suggest that for mainstream home appliances, segmenting on the basis of nationality is probably unnecessary and that a standardized approach would likely be successful across an increasingly relevant Arab world; and that continuing perceptions of Arab insularity are likely to be misplaced. Faced with the effectiveness of globally efficient marketing programs, local manufacturers would need to work hard to identify particular niche segments where a culturally-specific appeal might be more successful.

Keywords: arab world, buyer’s characteristics, consumer behavior, home appliances, marketing program

Procedia PDF Downloads 396
9549 Knowledge Integration from Concept to Practice: An Exploratory Study of Designing a Flood Resilient Urban Park in Viet Nam

Authors: To Quyen Le, Oswald Devisch, Tu Anh Trinh, Els Hannes

Abstract:

Urban centres worldwide are affected differently by flooding. In Vietnam this impact is increasingly negative caused by a process of rapid urbanisation. Traditional spatial planning and flood mitigation planning are not able to deal with this growing threat. This article therefore proposes to focus on increasing the participation of local communities in flood control and management. It explores, on the basis of a design studio exercise, how lay knowledge on flooding can be integrated within planning processes. The article presents a theoretical basis for the structured criterion for site selection for a flood resilient urban park from the perspective of science, then discloses the tacit and explicit knowledge of the flood-prone area and finally integrates this knowledge into the design strategies for flood resilient urban park design.

Keywords: analytic hierarchy process, AHP, design resilience, flood resilient urban park, knowledge integration

Procedia PDF Downloads 179
9548 Marriage, Foundation of Family Strength and the Best Opportunity for Human Existence and Relationships

Authors: Tamriko Pavliashvili

Abstract:

Marriage is such an important institution of family law, which is an indicator of the development of society. Although a family can be created by the birth of a child between an unmarried couple, marriage is still the main basis for the creation of a family, during which the rights and duties imposed require legal regulation. At present, in the conditions of globalization, there are different types of marriage, although, in the main countries, it is still a union of a woman and a man, which involves voluntary cohabitation and assuming and fulfilling the norms and responsibilities established on the basis of the law. Modern society is at the stage where there is a need to create a family, and therefore marriage provides the best opportunity for relationships and existence between people. The mentioned paper about the state institution - of marriage gives us the opportunity to get more information about the existing habits and legal norms from ancient times to the modern period in Georgia, and also through comparison, we will see what the differences and commonalities were and are in the marriage law of the countries of the world and Georgia.

Keywords: marriage, family law, the union of man and woman, church law, concubinage, registered marriage, impeding circumstances, positive and negative conditions of marriage

Procedia PDF Downloads 69
9547 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 308
9546 The Effects of Cardiovascular Risk on Age-Related Cognitive Decline in Healthy Older Adults

Authors: A. Badran, M. Hollocks, H. Markus

Abstract:

Background: Common risk factors for cardiovascular disease are associated with age-related cognitive decline. There has been much interest in treating modifiable cardiovascular risk factors in the hope of reducing cognitive decline. However, there is currently no validated neuropsychological test to assess the subclinical cognitive effects of vascular risk. The Brief Memory and Executive Test (BMET) is a clinical screening tool, which was originally designed to be sensitive and specific to Vascular Cognitive Impairment (VCI), an impairment characterised by decline in frontally-mediated cognitive functions (e.g. Executive Function and Processing Speed). Objective: To cross-sectionally assess the validity of the BMET as a measure of the subclinical effects of vascular risk on cognition, in an otherwise healthy elderly cohort. Methods: Data from 346 participants (57 ± 10 years) without major neurological or psychiatric disorders were included in this study, gathered as part of a previous multicentre validation study for the BMET. Framingham Vascular Age was used as a surrogate measure of vascular risk, incorporating several established risk factors. Principal Components Analysis of the subtests was used to produce common constructs: an index for Memory and another for Executive Function/Processing Speed. Univariate General Linear models were used to relate Vascular Age to performance on Executive Function/Processing Speed and Memory subtests of the BMET, adjusting for Age, Premorbid Intelligence and Ethnicity. Results: Adverse vascular risk was associated with poorer performance on both the Memory and Executive Function/Processing Speed indices, adjusted for Age, Premorbid Intelligence and Ethnicity (p=0.011 and p<0.001, respectively). Conclusions: Performance on the BMET reflects the subclinical effects of vascular risk on cognition, in age-related cognitive decline. Vascular risk is associated with decline in both Executive Function/Processing Speed and Memory groups of subtests. Future studies are needed to explore whether treating vascular risk factors can effectively reduce age-related cognitive decline.

Keywords: age-related cognitive decline, vascular cognitive impairment, subclinical cerebrovascular disease, cognitive aging

Procedia PDF Downloads 471
9545 Predicting Daily Patient Hospital Visits Using Machine Learning

Authors: Shreya Goyal

Abstract:

The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.

Keywords: machine learning, SVM, HIPAA, data

Procedia PDF Downloads 65
9544 The Post-Crisis Expansion of European Central Bank Powers: Understanding the Legitimate Boundaries of the ECB's Supervisory Independence and Accountability

Authors: Jakub Gren

Abstract:

The recent transfer of banking supervision to the ECB has expanded its influence as of a non-majoritarian and technocratic policy-shaper in EU supervisory policies. To fulfil the main policy objectives of the Single Supervisory Mechanism, the ECB has been tasked with building a single supervisory approach to supervised banks across the euro area and is now exclusively responsible for direct supervision of the largest ‘significant’ euro area banks and the oversight of the remaining ‘less significant’ banks. This enhanced supranational position of the ECB significantly alters the EU institutional order and creates powerful incentives to actively pursue integrationist agenda by the ECB. However, this drastic shift has a little impact upon adapting the ECB’s new supervisory mandate to the requirements of democratic legitimacy. Whereas the ECB’s strong pre-crisis independence and limited accountability could be reconciled with democratic principles through a clearly articulated price stability mandate, independence and limited accountability in the context of a more complex supervisory mandate is problematic. Hence, in order to ensure the democratic legitimacy of the ECB/SSM’s supervisory policies, the ECB’s supervisory mandate requires both a lower scope of independence and higher accountability requirements. To address this situation, organizational separation (“Chinese Wall”) between the ECB monetary and supervisory arms was introduced. This separation includes different reporting lines and the relocation of the ECB’s monetary function to a new building complex while leaving its supervisory function at the Euro-tower (“Two Towers”). This paper argues that these measures are not sufficient to establish proper checks and balances on the ECB’s powers to pursue euro zone’s wide supervisory policies. As a remedy, this contribution suggests that the ECB’s Treaties-embedded independence, as set out by art. 130 TFEU, designed to carry out its monetary function shall not be fully applicable to its supervisory function. Indeed functional and conditional reading of this provision to ECB supervisory function could enhance the legitimacy of future ECB’s supervisory action.

Keywords: accountability and transparency, democratic governance, financial management, rule of law

Procedia PDF Downloads 207
9543 Safety Approach Highway Alignment Optimization

Authors: Seyed Abbas Tabatabaei, Marjan Naderan Tahan, Arman Kadkhodai

Abstract:

An efficient optimization approach, called feasible gate (FG), is developed to enhance the computation efficiency and solution quality of the previously developed highway alignment optimization (HAO) model. This approach seeks to realistically represent various user preferences and environmentally sensitive areas and consider them along with geometric design constraints in the optimization process. This is done by avoiding the generation of infeasible solutions that violate various constraints and thus focusing the search on the feasible solutions. The proposed method is simple, but improves significantly the model’s computation time and solution quality. On the other, highway alignment optimization through Feasible Gates, eventuates only economic model by considering minimum design constrains includes minimum reduce of circular curves, minimum length of vertical curves and road maximum gradient. This modelling can reduce passenger comfort and road safety. In most of highway optimization models, by adding penalty function for each constraint, final result handles to satisfy minimum constraint. In this paper, we want to propose a safety-function solution by introducing gift function.

Keywords: safety, highway geometry, optimization, alignment

Procedia PDF Downloads 409
9542 Innovation Environments: A Comparison between Mexico and BRICS

Authors: Peña Aguilar Juan M., Arriaga Barrera H., Velázquez Alejos Miguel, Genis Ernesto, Valencia Pérez L. R., Bermúdez Peña M. Carmen

Abstract:

To give a general view of the innovation environments is the aim of this paper, we pretend to make an analysis between Mexico and BRICS (Brazil, Russia, India, China and South Africa- countries belonging to the group of five major emerging economies). The comparison takes by reference a set of various indicators that directly or indirectly affect innovation in a positive or negative way. Firstly, a research to obtain the values of each of the indicators was conducted, considering the main primary sources, then, within a set of radial charts is presented the resulting values of each nation and a comparison between them. Finally, a description of the gaps between Mexico and the BRICS were established, including the areas of opportunity for Mexico

Keywords: innovation, triple helix, comparison, Mexico and BRICS

Procedia PDF Downloads 352
9541 Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks

Authors: Tugce Talay, Kadir Erkan

Abstract:

In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque.

Keywords: AFPM, ANSYS Maxwell, cogging torque, design optimisation, efficiency, NNTOOL

Procedia PDF Downloads 220