Search results for: optimization of composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4216

Search results for: optimization of composites

2926 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 364
2925 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 155
2924 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 208
2923 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.

Keywords: liquid crystals, polymers, small-angle scattering, optical properties

Procedia PDF Downloads 617
2922 Optimization Techniques for Microwave Structures

Authors: Malika Ourabia

Abstract:

A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.

Keywords: segmentation, s parameters, simulation, optimization

Procedia PDF Downloads 528
2921 Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity

Authors: Ganiyat Soliu, Glen Bright, Chiemela Onunka

Abstract:

Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario.

Keywords: performance optimization, productivity, queuing theory, robotics

Procedia PDF Downloads 154
2920 Optimization Study of Adsorption of Nickel(II) on Bentonite

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 23 factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10−3 and 5.10−3 mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied.

Keywords: adsorption, bentonite, factorial design, Nickel(II)

Procedia PDF Downloads 160
2919 Thermodynamic Optimization of an R744 Based Transcritical Refrigeration System with Dedicated Mechanical Subcooling Cycle

Authors: Mihir Mouchum Hazarika, Maddali Ramgopal, Souvik Bhattacharyya

Abstract:

The thermodynamic analysis shows that the performance of the R744 based transcritical refrigeration cycle drops drastically for higher ambient temperatures. This is due to the peculiar s-shape of the isotherm in the supercritical region. However, subcooling of the refrigerant at the gas cooler exit enhances the performance of the R744 based system. The present study is carried out to analyze the R744 based transcritical system with dedicated mechanical subcooling cycle. Based on this proposed cycle, the thermodynamic analysis is performed, and optimum operating parameters are determined. The amount of subcooling and the pressure ratio in the subcooling cycle are the parameters which are needed to be optimized to extract the maximum COP from this proposed cycle. It is expected that this study will be helpful in implementing the dedicated subcooling cycle with R744 based transcritical system to improve the performance.

Keywords: optimization, R744, subcooling, transcritical

Procedia PDF Downloads 306
2918 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee

Abstract:

Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.

Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant

Procedia PDF Downloads 155
2917 Optimization of Electrical Discharge Machining Parameters in Machining AISI D3 Tool Steel by Grey Relational Analysis

Authors: Othman Mohamed Altheni, Abdurrahman Abusaada

Abstract:

This study presents optimization of multiple performance characteristics [material removal rate (MRR), surface roughness (Ra), and overcut (OC)] of hardened AISI D3 tool steel in electrical discharge machining (EDM) using Taguchi method and Grey relational analysis. Machining process parameters selected were pulsed current Ip, pulse-on time Ton, pulse-off time Toff and gap voltage Vg. Based on ANOVA, pulse current is found to be the most significant factor affecting EDM process. Optimized process parameters are simultaneously leading to a higher MRR, lower Ra, and lower OC are then verified through a confirmation experiment. Validation experiment shows an improved MRR, Ra and OC when Taguchi method and grey relational analysis were used

Keywords: edm parameters, grey relational analysis, Taguchi method, ANOVA

Procedia PDF Downloads 294
2916 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements

Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating

Abstract:

Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.

Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly

Procedia PDF Downloads 233
2915 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms

Authors: Arslan Ellahi, Syed Amjad Hussain

Abstract:

Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.

Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation

Procedia PDF Downloads 190
2914 Fragment Domination for Many-Objective Decision-Making Problems

Authors: Boris Djartov, Sanaz Mostaghim

Abstract:

This paper presents a number-based dominance method. The main idea is how to fragment the many attributes of the problem into subsets suitable for the well-established concept of Pareto dominance. Although other similar methods can be found in the literature, they focus on comparing the solutions one objective at a time, while the focus of this method is to compare entire subsets of the objective vector. Given the nature of the method, it is computationally costlier than other methods and thus, it is geared more towards selecting an option from a finite set of alternatives, where each solution is defined by multiple objectives. The need for this method was motivated by dynamic alternate airport selection (DAAS). In DAAS, pilots, while en route to their destination, can find themselves in a situation where they need to select a new landing airport. In such a predicament, they need to consider multiple alternatives with many different characteristics, such as wind conditions, available landing distance, the fuel needed to reach it, etc. Hence, this method is primarily aimed at human decision-makers. Many methods within the field of multi-objective and many-objective decision-making rely on the decision maker to initially provide the algorithm with preference points and weight vectors; however, this method aims to omit this very difficult step, especially when the number of objectives is so large. The proposed method will be compared to Favour (1 − k)-Dom and L-dominance (LD) methods. The test will be conducted using well-established test problems from the literature, such as the DTLZ problems. The proposed method is expected to outperform the currently available methods in the literature and hopefully provide future decision-makers and pilots with support when dealing with many-objective optimization problems.

Keywords: multi-objective decision-making, many-objective decision-making, multi-objective optimization, many-objective optimization

Procedia PDF Downloads 91
2913 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application

Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui

Abstract:

Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.

Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling

Procedia PDF Downloads 284
2912 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant

Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar

Abstract:

This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.

Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration

Procedia PDF Downloads 82
2911 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 61
2910 Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches

Authors: Gautier Girard, Marion Martiny, Sebastien Mercier, Mohamad Jrad, Mohamed-Slim Bahi, Laurent Bodin, Francois Lechleiter, David Nevo, Sophie Dareys

Abstract:

Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged.

Keywords: homogenization, orthotropic behaviour, printed circuit board, woven composites

Procedia PDF Downloads 204
2909 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy

Procedia PDF Downloads 226
2908 Optimization of Multi Commodities Consumer Supply Chain: Part 1-Modelling

Authors: Zeinab Haji Abolhasani, Romeo Marian, Lee Luong

Abstract:

This paper and its companions (Part II, Part III) will concentrate on optimizing a class of supply chain problems known as Multi- Commodities Consumer Supply Chain (MCCSC) problem. MCCSC problem belongs to production-distribution (P-D) planning category. It aims to determine facilities location, consumers’ allocation, and facilities configuration to minimize total cost (CT) of the entire network. These facilities can be manufacturer units (MUs), distribution centres (DCs), and retailers/end-users (REs) but not limited to them. To address this problem, three major tasks should be undertaken. At the first place, a mixed integer non-linear programming (MINP) mathematical model is developed. Then, system’s behaviors under different conditions will be observed using a simulation modeling tool. Finally, the most optimum solution (minimum CT) of the system will be obtained using a multi-objective optimization technique. Due to the large size of the problem, and the uncertainties in finding the most optimum solution, integration of modeling and simulation methodologies is proposed followed by developing new approach known as GASG. It is a genetic algorithm on the basis of granular simulation which is the subject of the methodology of this research. In part II, MCCSC is simulated using discrete-event simulation (DES) device within an integrated environment of SimEvents and Simulink of MATLAB® software package followed by a comprehensive case study to examine the given strategy. Also, the effect of genetic operators on the obtained optimal/near optimal solution by the simulation model will be discussed in part III.

Keywords: supply chain, genetic algorithm, optimization, simulation, discrete event system

Procedia PDF Downloads 316
2907 Planning a Supply Chain with Risk and Environmental Objectives

Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali

Abstract:

The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.

Keywords: environmental indicators, optimization, risk, supply chain

Procedia PDF Downloads 351
2906 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 139
2905 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy

Abstract:

Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.

Keywords: fuzzy sets, uncertainty, qualitative factors, decision making

Procedia PDF Downloads 652
2904 Optimization of Municipal Solid Waste Management in Peshawar Using Mathematical Modelling and GIS with Focus on Incineration

Authors: Usman Jilani, Ibad Khurram, Irshad Hussain

Abstract:

Environmentally sustainable waste management is a challenging task as it involves multiple and diverse economic, environmental, technical and regulatory issues. Municipal Solid Waste Management (MSWM) is more challenging in developing countries like Pakistan due to lack of awareness, technology and human resources, insufficient funding, inefficient collection and transport mechanism resulting in the lack of a comprehensive waste management system. This work presents an overview of current MSWM practices in Peshawar, the provincial capital of Khyber Pakhtunkhwa, Pakistan and proposes a better and sustainable integrated solid waste management system with incineration (Waste to Energy) option. The diverted waste would otherwise generate revenue; minimize land fill requirement and negative impact on the environment. The proposed optimized solution utilizing scientific techniques (like mathematical modeling, optimization algorithms and GIS) as decision support tools enhances the technical & institutional efficiency leading towards a more sustainable waste management system through incorporating: - Improved collection mechanisms through optimized transportation / routing and, - Resource recovery through incineration and selection of most feasible sites for transfer stations, landfills and incineration plant. These proposed methods shift the linear waste management system towards a cyclic system and can also be used as a decision support tool by the WSSP (Water and Sanitation Services Peshawar), agency responsible for the MSWM in Peshawar.

Keywords: municipal solid waste management, incineration, mathematical modeling, optimization, GIS, Peshawar

Procedia PDF Downloads 376
2903 A Multicriteria Mathematical Programming Model for Farm Planning in Greece

Authors: Basil Manos, Parthena Chatzinikolaou, Fedra Kiomourtzi

Abstract:

This paper presents a Multicriteria Mathematical Programming model for farm planning and sustainable optimization of agricultural production. The model can be used as a tool for the analysis and simulation of agricultural production plans, as well as for the study of impacts of various measures of Common Agriculture Policy in the member states of European Union. The model can achieve the optimum production plan of a farm or an agricultural region combining in one utility function different conflicting criteria as the maximization of gross margin and the minimization of fertilizers used, under a set of constraints for land, labor, available capital, Common Agricultural Policy etc. The proposed model was applied to the region of Larisa in central Greece. The optimum production plan achieves a greater gross return, a less fertilizers use, and a less irrigated water use than the existent production plan.

Keywords: sustainable optimization, multicriteria analysis, agricultural production, farm planning

Procedia PDF Downloads 604
2902 Optimization Technique for the Contractor’s Portfolio in the Bidding Process

Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry

Abstract:

Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.

Keywords: bidding process, internal resources, optimization, contracting portfolio management

Procedia PDF Downloads 142
2901 Coated Chromium Thin Film on Zirconium for Corrosion Resistance of Nuclear Fuel Rods by Plasma Focus Device

Authors: Amir Raeisdana, Davood Sohrabi, Mojtaba Nohekhan, Ameneh Kargarian, Maryam Ghapanvari, Alireza Aslezaeem

Abstract:

Improvement of zirconium properties by chromium coating and nitrogen implantation is ideal to protect the nuclear fuel rods against corrosion and secondary hydrogenation. Metallic chromium (Cr) has attracted attention as a potential coating material on zirconium alloys, to limit external cladding corrosion. In this research, high energy plasma focus device was used to coat the chromium and implant the nitrogen ions in the zirconium substrate. This device emits high-energy nitrogen ions of 10 keV-1 MeV and with a flux of 10^16 ions/cm^2 in each shot toward the target so it is attractive for implantation on the substrate materials at the room temperature. Six zirconium samples in 2cm×2cm dimensions with 1mm thickness were located at a distance of 20cm from the place where the pinch is formed. The experiments are carried out in 0.5 mbar of the nitrogen gas pressure and 15 kV of the charging voltage. Pure Cr disc was installed on the anode head for sputtering of the chromium and deposition on zirconium substrate. When the pinch plasma column decays due to various instabilities, intense and high-energy N2 ions are accelerated towards the zirconium substrate also sputtered Cr is deposited on the zirconium substrate. XRD and XRF analysis were used to study the structural properties of the samples. XRF analysis indicates 77.1% of Zr and 11.1% of Cr in the surface of the sample. XRD spectra shows the formation of ZrN, CrN and CrZr composites after nitrogen implantation and chromium coating. XRD spectra shows the chromium peak height equal to 152.80 a.u. for the major sample (θ=0֯) and 92.99 a.u. for the minor sample (θ=6֯), so implantation and coating along the main axis of the device is significantly more than other directions.

Keywords: ZrN and CrN and CrZr composites, angular distribution for Cr deposition rate, zirconium corrosion resistance, nuclear fuel rods, plasma focus device

Procedia PDF Downloads 24
2900 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform

Authors: Omaima N. Ahmad AL-Allaf

Abstract:

Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.

Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform

Procedia PDF Downloads 226
2899 Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA as New Alternative for Melanoma Therapy: A Review

Authors: L. B. Naves, L. Almeida

Abstract:

The development of Drugs Delivery System (DDS), has been wildly investigated in the last decades. In this paper, first a general overview of traditional and modern wound dressing is presented. This is followed by a review of what scientist have done in the medical environment, focusing the possibility to develop a new alternative for DDS through transdermal pathway, aiming to treat melanoma skin cancer.

Keywords: cancer therapy, dressing polymers, melanoma, wound healing

Procedia PDF Downloads 414
2898 Generalized Rough Sets Applied to Graphs Related to Urban Problems

Authors: Mihai Rebenciuc, Simona Mihaela Bibic

Abstract:

Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.

Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems

Procedia PDF Downloads 243
2897 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings

Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva

Abstract:

The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.

Keywords: adhesive, composites, crack propagation, fatigue

Procedia PDF Downloads 204