Search results for: optimal sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4205

Search results for: optimal sensing

2915 Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method

Authors: M. N. Zelenin, V. S. Mikhailov, R. P. Zhivotovsky

Abstract:

It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken.

Keywords: residual welding deformations, longitudinal and transverse shortenings of welding joints, method of analytic dependences, finite elements method

Procedia PDF Downloads 409
2914 Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water

Authors: Temesgen Geremew

Abstract:

This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications.

Keywords: polythiophene, Pb2+, SERS, nanoparticles

Procedia PDF Downloads 54
2913 Groundwater Recharge Suitability Mapping Using Analytical Hierarchy Process Based-Approach

Authors: Aziza Barrek, Mohamed Haythem Msaddek, Ismail Chenini

Abstract:

Excessive groundwater pumping due to the increasing water demand, especially in the agricultural sector, causes groundwater scarcity. Groundwater recharge is the most important process that contributes to the water's durability. This paper is based on the Analytic Hierarchy Process multicriteria analysis to establish a groundwater recharge susceptibility map. To delineate aquifer suitability for groundwater recharge, eight parameters were used: soil type, land cover, drainage density, lithology, NDVI, slope, transmissivity, and rainfall. The impact of each factor was weighted. This method was applied to the El Fahs plain shallow aquifer. Results suggest that 37% of the aquifer area has very good and good recharge suitability. The results have been validated by the Receiver Operating Characteristics curve. The accuracy of the prediction obtained was 89.3%.

Keywords: AHP, El Fahs aquifer, empirical formula, groundwater recharge zone, remote sensing, semi-arid region

Procedia PDF Downloads 119
2912 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market

Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette

Abstract:

The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.

Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation

Procedia PDF Downloads 123
2911 Structured Access Control Mechanism for Mesh-based P2P Live Streaming Systems

Authors: Chuan-Ching Sue, Kai-Chun Chuang

Abstract:

Peer-to-Peer (P2P) live streaming systems still suffer a challenge when thousands of new peers want to join into the system in a short time, called flash crowd, and most of new peers suffer long start-up delay. Recent studies have proposed a slot-based user access control mechanism, which periodically determines a certain number of new peers to enter the system, and a user batch join mechanism, which divides new peers into several tree structures with fixed tree size. However, the slot-based user access control mechanism is difficult for accurately determining the optimal time slot length, and the user batch join mechanism is hard for determining the optimal tree size. In this paper, we propose a structured access control (SAC) mechanism, which constructs new peers to a multi-layer mesh structure. The SAC mechanism constructs new peer connections layer by layer to replace periodical access control, and determines the number of peers in each layer according to the system’s remaining upload bandwidth and average video rate. Furthermore, we propose an analytical model to represent the behavior of the system growth if the system can utilize the upload bandwidth efficiently. The analytical result has shown the similar trend in system growth as the SAC mechanism. Additionally, the extensive simulation is conducted to show the SAC mechanism outperforms two previously proposed methods in terms of system growth and start-up delay.

Keywords: peer-to-peer, live video streaming system, flash crowd, start-up delay, access control

Procedia PDF Downloads 315
2910 Identifying the Phases of Indian Agriculture Towards Desertification: An Introspect of Karnataka State, India

Authors: Arun Das

Abstract:

Indian agriculture is acclaimed from the dates of Indus civilization (2500 BC). Since this time until the day, there were tremendous expansion in terms of space and technology has taken place. Abrupt growth in technology took place past one and half century. Consequent to this development, the land which was brought under agriculture in the initial stages of introducing agriculture for the first time, that land is not possessing the same physical condition. Either it has lost the productive capacity or modified into semi agriculture land. On the grounds of its capacity and interwoven characteristics seven phases of agriculture scenario has been identified. Most of the land is on the march of desertification. Identifying the stages and the phase of the agriculture scenario is most relevant from the point of view of food security at regional, national and at global level. Secondly decisive measure can put back the degenerating environmental condition into arrest. GIS and Remote sensing applications have been used to identify the phases of agriculture.

Keywords: agriculture phases, desertification, deforestation, foods security, transmigration

Procedia PDF Downloads 431
2909 The Adaptive Role of Negative Emotions in Optimal Functioning

Authors: Brianne Nichols, John A. Parkinson

Abstract:

Positive Psychology has provided a rich understanding of the beneficial effects of positive emotions in relation to optimal functioning, and research has been devoted to promote states of positive feeling and thinking. While this is a worthwhile pursuit, positive emotions are not useful in all contexts - some situations may require the individual to make use of their negative emotions to reach a desired end state. To account for the potential value of a wider range of emotional experiences that are common to the human condition, Positive Psychology needs to expand its horizons and investigate how individuals achieve positive outcomes using varied means. The current research seeks to understand the positive psychology of fear of failure (FF), which is a commonly experienced negative emotion relevant to most life domains. On the one hand, this emotion has been linked with avoidance motivation and self-handicap behaviours, on the other; FF has been shown to act as a drive to move the individual forward. To fully capture the depth of this highly subjective emotional experience and understand the circumstances under which FF may be adaptive, this study adopted a mixed methods design using SenseMaker; a web-based tool that combines the richness of narratives with the objectivity of numerical data. Two hundred participants consisting mostly of undergraduate university students shared a story of a time in the recent past when they feared failure of achieving a valued goal. To avoid researcher bias in the interpretation of narratives, participants self-signified their stories in a tagging system that was based on researchers’ aim to explore the role of past failures, the cognitive, emotional and behavioural profile of individuals high and low in FF, and the relationship between these factors. In addition, the role of perceived personal control and self-esteem were investigated in relation to FF using self-report questionnaires. Results from quantitative analyses indicated that individuals with high levels of FF, compared to low, were strongly influenced by past failures and preoccupied with their thoughts and emotions relating to the fear. This group also reported an unwillingness to accept their internal experiences, which in turn was associated with withdrawal from goal pursuit. Furthermore, self-esteem was found to mediate the relationship between perceived control and FF, suggesting that self-esteem, with or without control beliefs, may have the potential to buffer against high FF. It is hoped that the insights provided by the current study will inspire future research to explore the ways in which ‘acceptance’ may help individuals keep moving towards a goal despite the presence of FF, and whether cultivating a non-contingent self-esteem is the key to resilience in the face of failures.

Keywords: fear of failure, goal-pursuit, negative emotions, optimal functioning, resilience

Procedia PDF Downloads 194
2908 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello

Abstract:

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Keywords: Internet of Things, LoRa, LoRaWAN, smart cities

Procedia PDF Downloads 147
2907 Modelling Patient Condition-Based Demand for Managing Hospital Inventory

Authors: Esha Saha, Pradip Kumar Ray

Abstract:

A hospital inventory comprises of a large number and great variety of items for the proper treatment and care of patients, such as pharmaceuticals, medical equipment, surgical items, etc. Improper management of these items, i.e. stockouts, may lead to delay in treatment or other fatal consequences, even death of the patient. So, generally the hospitals tend to overstock items to avoid the risk of stockout which leads to unnecessary investment of money, difficulty in storing, more expiration and wastage, etc. Thus, in such challenging environment, it is necessary for hospitals to follow an inventory policy considering the stochasticity of demand in a hospital. Statistical analysis captures the correlation of patient condition based on bed occupancy with the patient demand which changes stochastically. Due to the dependency on bed occupancy, the markov model is developed that helps to map the changes in demand of hospital inventory based on the changes in the patient condition represented by the movements of bed occupancy states (acute care state, rehabilitative state and long-care state) during the length-of-stay of patient in a hospital. An inventory policy is developed for a hospital based on the fulfillment of patient demand with the objective of minimizing the frequency and quantity of placement of orders of inventoried items. The analytical structure of the model based on probability calculation is provided to show the optimal inventory-related decisions. A case-study is illustrated in this paper for the development of hospital inventory model based on patient demand for multiple inpatient pharmaceutical items. A sensitivity analysis is conducted to investigate the impact of inventory-related parameters on the developed optimal inventory policy. Therefore, the developed model and solution approach may help the hospital managers and pharmacists in managing the hospital inventory in case of stochastic demand of inpatient pharmaceutical items.

Keywords: bed occupancy, hospital inventory, markov model, patient condition, pharmaceutical items

Procedia PDF Downloads 321
2906 Mapping of Potential Areas for Groundwater Storage in the Sais Plateau and Its Middle Atlas Borders, Morocco

Authors: Abdelghani Qadem, Zohair Qadem, Mohamed Lasri

Abstract:

At the level of the Moroccan Sais Plateau, groundwater constitutes strategic natural resources for agricultural, industrial, and domestic use. Today, due to climate change and population growth, the pressure on groundwater has increased considerably. This contribution aims to delineate and map potential areas for groundwater storage in the area in question using GIS and remote sensing. The methodology adopted is based on the identification of the thematic layers used to assess the potential recharge of the aquifer. The mapping of potential areas for groundwater storage is developed through the method of modeling and weighted overlay using the spatial analysis tool on the Geographic Information System. The results obtained can be used for the planning of future artificial recharge projects in the study area in order to ensure the good sustainable use of this underground gift.

Keywords: Morocco, climate change, groundwater, mapping, recharge

Procedia PDF Downloads 81
2905 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image

Authors: Leping Chen, Daoxiang An, Xiaotao Huang

Abstract:

Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.

Keywords: circular SAR, vehicle detection, automatic, imaging

Procedia PDF Downloads 365
2904 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices

Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim

Abstract:

In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.

Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer

Procedia PDF Downloads 331
2903 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm

Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz

Abstract:

Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.

Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations

Procedia PDF Downloads 134
2902 An Intelligent WSN-Based Parking Guidance System

Authors: Sheng-Shih Wang, Wei-Ting Wang

Abstract:

This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.

Keywords: Arduino, parking guidance, wireless sensor network, ZigBee

Procedia PDF Downloads 574
2901 Underwater Remotely Operated Vehicle (ROV) Exploration

Authors: M. S. Sukumar

Abstract:

Our objective is to develop a full-fledged system for exploring and studying nature of fossils and to extend this to underwater archaeology and mineral mapping. This includes aerial surveying, imaging techniques, artefact extraction and spectrum analysing techniques. These techniques help in regular monitoring of fossils and also the sensing system. The ROV was designed to complete several tasks which simulate collecting data and samples. Given the time constraints, the ROV was engineered for efficiency and speed in performing tasks. Its other major design consideration was modularity, allowing the team to distribute the building process, to easily test systems as they were completed and troubleshoot and replace systems as necessary. Our design itself had several challenges of on-board waterproofed sensor mounting, waterproofing of motors, ROV stability criteria, camera mounting and hydrophone sound acquisition.

Keywords: remotely operated vehicle (ROV) dragonair, underwater archaeology, full-fledged system, aerial imaging and detection

Procedia PDF Downloads 236
2900 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia

Authors: Ali A. Aldosari

Abstract:

Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.

Keywords: spatial analysis, geographical information system, change detection

Procedia PDF Downloads 401
2899 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields

Authors: Bing-Bing E. Goh

Abstract:

Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.

Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis

Procedia PDF Downloads 159
2898 Engineered Control of Bacterial Cell-to-Cell Signaling Using Cyclodextrin

Authors: Yuriko Takayama, Norihiro Kato

Abstract:

Quorum sensing (QS) is a cell-to-cell communication system in bacteria to regulate expression of target genes. In gram-negative bacteria, activation on QS is controlled by a concentration increase of N-acylhomoserine lactone (AHL), which can diffuse in and out of the cell. Effective control of QS is expected to avoid virulence factor production in infectious pathogens, biofilm formation, and antibiotic production because various cell functions in gram-negative bacteria are controlled by AHL-mediated QS. In this research, we applied cyclodextrins (CDs) as artificial hosts for the AHL signal to reduce the AHL concentration in the culture broth below its threshold for QS activation. The AHL-receptor complex induced under the high AHL concentration activates transcription of the QS-target gene. Accordingly, artificial reduction of the AHL concentration is one of the effective strategies to inhibit the QS. A hydrophobic cavity of the CD can interact with the acyl-chain of the AHL due to hydrophobic interaction in aqueous media. We studied N-hexanoylhomoserine lactone (C6HSL)-mediated QS in Serratia marcescens; accumulation of C6HSL is responsible for regulation of the expression of pig cluster. Inhibitory effects of added CDs on QS were demonstrated by determination of prodigiosin amount inside cells after reaching stationary phase, because production of prodigiosin depends on the C6HSL-mediated QS. By adding approximately 6 wt% hydroxypropyl-β-CD (HP-β-CD) in Luria-Bertani (LB) medium prior to inoculation of S. maecescens AS-1, the intracellularly accumulated prodigiosin was drastically reduced to 7-10%, which was determined after the extraction of prodigiosin in acidified ethanol. The AHL retention ability of HP-β-CD was also demonstrated by Chromobacterium violacuem CV026 bioassay. The CV026 strain is an AHL-synthase defective mutant that activates QS solely by adding AHLs from outside of cells. A purple pigment violacein is induced by activation of the AHL-mediated QS. We demonstrated that the violacein production was effectively suppressed when the C6HSL standard solution was spotted on a LB agar plate dispersing CV026 cells and HP-β-CD. Physico-chemical analysis was performed to study the affinity between the immobilized CD and added C6HSL using a quartz crystal microbalance (QCM) sensor. The COOH-terminated self-assembled monolayer was prepared on a gold electrode of 27-MHz AT-cut quartz crystal. Mono(6-deoxy-6-N, N-diethylamino)-β-CD was immobilized on the electrode using water-soluble carbodiimide. The C6HSL interaction with the β-CD cavity was studied by injecting the C6HSL solution to a cup-type sensor cell filled with buffer solution. A decrement of resonant frequency (ΔFs) clearly showed the effective C6HSL complexation with immobilized β-CD and its stability constant for MBP-SpnR-C6HSL complex was on the order of 102 M-1. The CD has high potential for engineered control of QS because it is safe for human use.

Keywords: acylhomoserine lactone, cyclodextrin, intracellular signaling, quorum sensing

Procedia PDF Downloads 236
2897 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing

Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj

Abstract:

This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.

Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano

Procedia PDF Downloads 57
2896 Optimal Sputtering Conditions for Nickel-Cermet Anodes in Intermediate Temperature Solid Oxide Fuel Cells

Authors: Waqas Hassan Tanveer, Yoon Ho Lee, Taehyun Park, Wonjong Yu, Yaegeun Lee, Yusung Kim, Suk Won Cha

Abstract:

Nickel-Gadolinium Doped Ceria (Ni-GDC) cermet anodic thin films were prepared on Scandia Stabilized Zirconia (ScSZ) electrolyte supports by radio frequency (RF) sputtering, with a range of different sputtering powers (50 – 200W) and background Ar gas pressures (30 – 90mTorr). The effects of varying sputtering power and pressure on the properties of Ni-GDC films were studied using Focused Ion Beam (FIB), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) techniques. The Ni content was found to be always higher than the Ce content, at all sputtering conditions. This increased Ni content was attributed to significantly higher energy transfer efficiency of Ni ions as compared to Ce ions with Ar background sputtering gas. The solid oxide fuel cell configuration was completed by using lanthanum strontium manganite (LSM/YSZ) cathodes on the other side of ScSZ supports. Performance comparison of cells was done by Voltage-Current-Power (VIP) curves, while the resistances of various cell components were observed by nyquist plots. Initial results showed that anode films made by higher powered RF sputtering performed better than lower powered ones for a specific Ar pressure. Interestingly, however, anodes made at highest power and pressure, were not the ones that showed the maximum power output at an intermediate solid oxide fuel cell temperature of 800°C. Finally, an optimal sputtering condition was reported for high performance Ni-GDC anodes.

Keywords: intermediate temperature solid oxide fuel cells, nickel-cermet anodic thin films, nyquist plots, radio frequency sputtering

Procedia PDF Downloads 237
2895 Small Scale Waste to Energy Systems: Optimization of Feedstock Composition for Improved Control of Ash Sintering and Quality of Generated Syngas

Authors: Mateusz Szul, Tomasz Iluk, Aleksander Sobolewski

Abstract:

Small-scale, distributed energy systems enabling cogeneration of heat and power based on gasification of sewage sludge, are considered as the most efficient and environmentally friendly ways of their treatment. However, economic aspects of such an investment are very demanding; therefore, for such a small scale sewage sludge gasification installation to be profitable, it needs to be efficient and simple at the same time. The article presents results of research on air gasification of sewage sludge in fixed bed GazEla reactor. Two of the most important aspects of the research considered the influence of the composition of sewage sludge blends with other feedstocks on properties of generated syngas and ash sintering problems occurring at the fixed bed. Different means of the fuel pretreatment and blending were proposed as a way of dealing with the above mentioned undesired characteristics. Influence of RDF (Refuse Derived Fuel) and biomasses in the fuel blends were evaluated. Ash properties were assessed based on proximate, ultimate, and ash composition analysis of the feedstock. The blends were specified based on complementary characteristics of such criteria as C content, moisture, volatile matter, Si, Al, Mg, and content of basic metals in the ash were analyzed, Obtained results were assessed with use of experimental gasification tests and laboratory ISO-procedure for analysis of ash characteristic melting temperatures. Optimal gasification process conditions were determined by energetic parameters of the generated syngas, its content of tars and lack of ash sinters within the reactor bed. Optimal results were obtained for co-gasification of herbaceous biomasses with sewage sludge where LHV (Lower Heating Value) of the obtained syngas reached a stable value of 4.0 MJ/Nm3 for air/steam gasification.

Keywords: ash fusibility, gasification, piston engine, sewage sludge

Procedia PDF Downloads 194
2894 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review

Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari

Abstract:

Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.

Keywords: environmental phenomena, change detection, monitor, techniques

Procedia PDF Downloads 273
2893 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project

Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen

Abstract:

This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.

Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project

Procedia PDF Downloads 165
2892 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 132
2891 Isolation and Expansion of Human Periosteum-Derived Mesenchymal Stem Cells in Defined Serum-Free Culture Medium

Authors: Ainur Mukhambetova, Miras Karzhauov, Vyacheslav Ogay

Abstract:

Introduction: Mesenchymal stem cells (MSCs) have the capacity to be differentiated into several cell lineages and are a promising source for cell therapy and tissue engineering. However, currently most MSCs culturing protocols use media supplemented with fetal bovine serum (FBS), which limits their application in clinic due to the possibility of zoonotic infections, contamination and immunological reactions. Consequently, formulating effective serum free culture medium becomes one of the important problems in contemporary cell biotechnology. Objectives: The aim of this study was to define an optimal serum-free medium for culturing of periosteum derived MSCs. Materials and methods: The MSCs were extracted from human periosteum and transferred to the culture flasks pretreated with CELLstart™. Immunophenotypic characterization, proliferation and in vitro differentiation of cells grown on STEM PRO® MSC SFM were compared to the cells cultured in the standard FBS containing media. Chromosome analysis and flow cytometry were also performed. Results: We have shown that cells were grown on STEM PRO® MSC SFM retained all the morphological, immunophenotypic (CD73, CD90, CD105, vimentin and Stro-1) and cell differentiation characteristics specific to MSCs. Chromosome analysis indicated no anomalies in the chromosome structure. Flow cytometry showed a high expression of cell adhesion molecules CD44 (98,8%), CD90 (97,4%), CD105 (99,1%). In addition, we have shown that cell is grown on STEM PRO® MSC SFM have higher proliferation capacity compared to cell expanded on standard FBS containing the medium. Conclusion: We have shown that STEM PRO® MSC SFM is optimal for culturing periosteum derived human MSCs which subsequently can be safely used in cell therapy.

Keywords: cell technologies, periosteum-derived MSCs, regenerative medicine, serum-free medium

Procedia PDF Downloads 296
2890 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 288
2889 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise

Procedia PDF Downloads 361
2888 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 137
2887 Multiple-Channel Coulter Counter for Cell Sizing and Enumeration

Authors: Yu Chen, Seong-Jin Kim, Jaehoon Chung

Abstract:

High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated.

Keywords: Coulter counter, cell enumeration, high through-put, cell sizing

Procedia PDF Downloads 609
2886 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 70