Search results for: information centric network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8395

Search results for: information centric network

7105 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China

Authors: Tingke Wu, Man Yuan

Abstract:

“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.

Keywords: driving forces, Hubei, optimizing strategies, spatial pattern, territory

Procedia PDF Downloads 105
7104 Searching for Health-Related Information on the Internet: A Case Study on Young Adults

Authors: Dana Weimann Saks

Abstract:

This study aimed to examine the use of the internet as a source of health-related information (HRI), as well as the change in attitudes following the online search for HRI. The current study sample included 88 participants, randomly divided into two experimental groups. One was given the name of an unfamiliar disease and told to search for information about it using various search engines, and the second was given a text about the disease from a credible scientific source. The study findings show a large percentage of participants used the internet as a source of HRI. Likewise, no differences were found in the extent to which the internet was used as a source of HRI when demographics were compared. Those who searched for the HRI on the internet had more negative opinions and believed symptoms of the disease were worse than the average opinion among those who obtained the information about the disease from a credible scientific source. The Internet clearly influences the participants’ beliefs, regardless of demographic differences.

Keywords: health-related information, internet, young adults, HRI

Procedia PDF Downloads 126
7103 Gender Justice and Feminist Self-Management Practices in the Solidarity Economy: A Quantitative Analysis of the Factors that Impact Enterprises Formed by Women in Brazil

Authors: Maria de Nazaré Moraes Soares, Silvia Maria Dias Pedro Rebouças, José Carlos Lázaro

Abstract:

The Solidarity Economy (SE) acts in the re-articulation of the economic field to the other spheres of social action. The significant participation of women in SE resulted in the formation of a national network of self-managed enterprises in Brazil: The Solidarity and Feminist Economy Network (SFEN). The objective of the research is to identify factors of gender justice and feminist self-management practices that adhere to the reality of women in SE enterprises. The conceptual apparatus related to feminist studies in this research covers Nancy Fraser approaches on gender justice, and Patricia Yancey Martin approaches on feminist management practices, and authors of postcolonial feminism such as Mohanty and Maria Lugones, who lead the discussion to peripheral contexts, a necessary perspective when observing the women’s movement in SE. The research has a quantitative nature in the phases of data collection and analysis. The data collection was performed through two data sources: the database mapped in Brazil in 2010-2013 by the National Information System in Solidary Economy and 150 questionnaires with women from 16 enterprises in SFEN, in a state of Brazilian northeast. The data were analyzed using the multivariate statistical technique of Factor Analysis. The results show that the factors that define gender justice and feminist self-management practices in SE are interrelated in several levels, proving statistically the intersectional condition of the issue of women. The evidence from the quantitative analysis allowed us to understand the dimensions of gender justice and feminist management practices intersectionality; in this sense, the non-distribution of domestic work interferes in non-representation of women in public spaces, especially in peripheral contexts. The study contributes with important reflections to the studies of this area and can be complemented in the future with a qualitative research that approaches the perspective of women in the context of the SE self-management paradigm.

Keywords: feminist management practices, gender justice, self-management, solidarity economy

Procedia PDF Downloads 129
7102 Effects of Financial and Non-Financial Accounting Information Reports on Corporate Credibility and Image of the Listed-Firms in Thailand

Authors: Anocha Rojanapanich

Abstract:

This research investigates the effect of financial accounting information and non-financial accounting reports on corporate credibility via strength of board of directors and market environment volatility as moderating effect. Data in this research is collected by questionnaire form non-financial companies listed on the Stock Exchange of Thailand. Multiple regression statistic technique is used for analyzing the data. Results find that firms with greater financial accounting information reports and non-financial accounting information reports will gain greater corporate credibility. Therefore, the corporate reporting has the value for the firms. Moreover, the strength of board of directors will positively moderate the financial and non-financial accounting information reports and corporate credibility relationship. And market environment volatility will negatively moderate the financial and nonfinancial accounting information reports and corporate credibility relationship and the contribution of accounting information reports on corporate credibility is generated to the corporate image. That is the corporate image has affected by corporate credibility.

Keywords: corporate credibility, financial and non-financial reports, firms performance, corporate image

Procedia PDF Downloads 297
7101 The Impacts of Cultural Event on Networking: Liverpool's Cultural Sector in the Aftermath of 2008

Authors: Yi-De Liu

Abstract:

The aim of this paper is to discuss how the construct of networking and social capital can be used to understand the effect events can have on the cultural sector. Based on case study, this research sought the views of those working in the cultural sector on Liverpool’s year as the European Capital of Culture (ECOC). Methodologically, this study involves literature review to prompt theoretical sensitivity, the collection of primary data via online survey (n= 42) and follow-up telephone interviews (n= 8) to explore the emerging findings in more detail. The findings point to a number of ways in which the ECOC constitutes a boost for networking and its effects on city’s cultural sector, including organisational learning, aspiration and leadership. The contributions of this study are two-fold: (1) Evaluating the long-term effects on network formation in the cultural sector following major event; (2) conceptualising the impact assessment of organisational social capital for future ECOC or similar events.

Keywords: network, social capital, cultural impact, european capital of culture

Procedia PDF Downloads 204
7100 A Mixed Approach to Assess Information System Risk, Operational Risk, and Congolese Microfinance Institutions Performance

Authors: Alfred Kamate Siviri, Angelus Mafikiri Tsongo, Jean Robert Kala Kamdjoug

Abstract:

Digitalization and information systems well organized have been selected as relevant measures to mitigate operational risks within organizations. Unfortunately, information system comes with new threats that can cause severe damage and quick organization lockout. This study aims to measure perceived information system risks and their effects on operational risks within the microfinance institution in D.R. Congo. Also, the factors influencing the operational risk are identified, and the link between operational risk with other risks and performance is to be assessed. The study proposes a research model drawn on the combination of Resources-Based-View, dynamic capabilities, the agency theory, the Information System Security Model, and social theories of risk. Therefore, we suggest adopting a mixed methods research with the sole aim of increasing the literature that already exists on perceived operational risk assessment and its link with other risk and performance, a focus on IT risk.

Keywords: Democratic Republic Congo, information system risk, microfinance performance, operational risk

Procedia PDF Downloads 224
7099 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 355
7098 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
7097 Urban Poor: The Situations and Characteristics of the Problem and Social Welfare Service of Bangkok Metropolis

Authors: Sanchai Ratthanakwan

Abstract:

This research aims to study situations and characteristics of the problems facing the urban poor. The data and information are collected by focus group and in-depth interview leader and members of Four Regions Slum Network, community representatives and the social welfare officer. The research can be concluded that the problems of the urban poor faced with three major problems: Firstly, the shortage of housing and stability issues in housing; secondly, the problem of substandard quality of life; and thirdly, the debt problem. The study found that a solution will be found in two ways: First way is the creation of housing for the urban poor in slums or community intrusion by the state. Second way is the stability in the housing and subsistence provided by the community center called “housing stability”.

Keywords: urban poor, social welfare, Bangkok metropolis, housing stability

Procedia PDF Downloads 424
7096 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 446
7095 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power

Procedia PDF Downloads 114
7094 A Double Differential Chaos Shift Keying Scheme for Ultra-Wideband Chaotic Communication Technology Applied in Low-Rate Wireless Personal Area Network

Authors: Ghobad Gorji, Hasan Golabi

Abstract:

The goal of this paper is to describe the design of an ultra-wideband (UWB) system that is optimized for the low-rate wireless personal area network application. To this aim, we propose a system based on direct chaotic communication (DCC) technology. Based on this system, a 2-GHz wide chaotic signal is directly generated into the lower band of the UWB spectrum, i.e., 3.1–5.1 GHz. For this system, two simple modulation schemes, namely chaotic on-off keying (COOK) and differential chaos shift keying (DCSK), were studied before, and their performance was evaluated. We propose a modulation scheme, namely Double DCSK, to improve the performance of UWB DCC. Different characteristics of these systems, with Monte Carlo simulations based on the Additive White Gaussian Noise (AWGN) and the IEEE 802.15.4a standard channel models, are compared.

Keywords: UWB, DCC, IEEE 802.15.4a, COOK, DCSK

Procedia PDF Downloads 74
7093 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 18
7092 A Study on the Effect of Socioeconomic Status on Adolescents' Health Promoting Behaviors: Mediating Effect of Family-Based Activity

Authors: Sue Lynn Kim, Sang-Gyun Lee, Joan P. Yoo

Abstract:

Although adolescents in low socioeconomic status (SES) have been reported to less engage in health promoting behaviors (HPB), the specific mechanism between their SES and HPB has not been extensively studied. Considering the Korean education system which focuses only on college entrance exams while lacking of interest in students’ health, and unique traits of adolescents, such as ego-centric thinking, family members can significantly contribute to develop and enhance adolescents’ HPB. Based on the review of related literature and previous researches, this study examined the mediating effect of family-based activities on the relationship between SES and adolescents' HPB. 636 adolescents (4th graders in elementary and 1st graders in middle school) and their parents from the 1st year survey of Seoul Education & Health Welfare Panel were analyzed by AMOS 19.0 utilizing structural equation modeling. Analytic results show that adolescents in low SES were less likely to engage in family-based activities as well as HPB. This association between SES and HPB was partially mediated by family-based activities. Based on the findings, we suggest that special education programs to enhance HPB should be required in schools and community organizations especially for adolescents in low SES who may have difficulties in doing family-based activities due to parents’ low income and insufficient leisure time. In addition, family-based activities should be encouraged to enhance HPB by raising parents' awareness about the importance of family-based activities on their children's HPB.

Keywords: family-based activity, health promoting behaviors, socioeconomic status, HPB

Procedia PDF Downloads 381
7091 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 265
7090 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 97
7089 Assessing the Current State of Software Engineering and Information Technology in Ghana

Authors: David Yartel

Abstract:

Drawing on the current state of software engineering and information technology in Ghana, the study documents its significant contribution to the development of Ghanaian industries. The study focuses on the application of modern trends in technology and the barriers faced in the area of software engineering and information technology. A thorough analysis of a dozen of interviews with stakeholders in software engineering and information technology via interviews reveals how modern trends in software engineering pose challenges to the industry in Ghana. Results show that to meet the expectation of modern software engineering and information technology trends, stakeholders must have skilled professionals, adequate infrastructure, and enhanced support for technology startups. Again, individuals should be encouraged to pursue a career in software engineering and information technology, as it has the propensity to increase the efficiency and effectiveness of work-related activities. This study recommends that stakeholders in software engineering and technology industries should invest enough in training more professionals by collaborating with international institutions well-versed in the area by organizing frequent training and seminars. The government should also provide funding opportunities for small businesses in the technology sector to drive creativity and development in order to bring about growth and development.

Keywords: software engineering, information technology, Ghana, development

Procedia PDF Downloads 94
7088 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
7087 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
7086 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor

Authors: K. Senthil Kumar, A. Vasumalaikannan

Abstract:

In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.

Keywords: teleoperation, quadrotor, neural smith predictor, time delay

Procedia PDF Downloads 615
7085 Guidance for Strengthening Ethics of Entrepreneurs in Information and Communication Technology Professional

Authors: Routsukol Sunalai

Abstract:

The objectives of this paper were to study current problem of ethics of entrepreneurs in information and communication technology professional, and to build their awareness of ethics, which would be useful as guidance for strengthening professional ethics among them. The study employed quantitative research method in order to analyze relationships or differences found in each ethics factor and report in statistics. The sample of this paper was 300 information technology users of Rajabhat Universities in Bangkok. The findings revealed that the ethics factors which gained the highest and high level of opinion included possessing principles of righteousness, having trust in themselves and others, and respecting different opinions of others and accepting the fact that people of different opinions.

Keywords: communication, ethics, information, entrepreneurs

Procedia PDF Downloads 411
7084 Gender Diversity on the Board and Asymmetry Information: An Empirical Analysis for Spanish Listed Firms

Authors: David Abad, M. Encarnación Lucas-Pérez, Antonio Minguez-Vera, José Yagüe

Abstract:

We examine explicitly the relation between the gender diversity on corporate boards and the levels of information asymmetry in the stock market. Based on prior evidence that suggests that the presence of women on director boards increases the quantity and quality of public disclosure by firms, we expect firms with higher gender diversity on their boards to show lower levels of information asymmetry in the market. Using a Spanish sample for the period 2004-2009, proxies for information asymmetry estimated from high-frequency data, and a system GMM methodology, we find that the gender diversity on boards is negative associated with the level of information asymmetry in the stock market. Our findings support legislative changes implemented to increase the presence of women on boards in several European countries by providing evidence that gender diverse boards have beneficial effects on stock markets.

Keywords: corporate board, female directors, gender diversity, information asymmetry, market microstructure

Procedia PDF Downloads 468
7083 Features for Measuring Credibility on Facebook Information

Authors: Kanda Runapongsa Saikaew, Chaluemwut Noyunsan

Abstract:

Nowadays social media information, such as news, links, images, or VDOs, is shared extensively. However, the effectiveness of disseminating information through social media lacks in quality: less fact checking, more biases, and several rumors. Many researchers have investigated about credibility on Twitter, but there is no the research report about credibility information on Facebook. This paper proposes features for measuring credibility on Facebook information. We developed the system for credibility on Facebook. First, we have developed FB credibility evaluator for measuring credibility of each post by manual human’s labelling. We then collected the training data for creating a model using Support Vector Machine (SVM). Secondly, we developed a chrome extension of FB credibility for Facebook users to evaluate the credibility of each post. Based on the usage analysis of our FB credibility chrome extension, about 81% of users’ responses agree with suggested credibility automatically computed by the proposed system.

Keywords: facebook, social media, credibility measurement, internet

Procedia PDF Downloads 356
7082 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 186
7081 Candid Panchali's Unheard Womanhood: A Study of Chitra Divakurani's the Palace of Illusions

Authors: Shalini Attri

Abstract:

Silence has been 'scriptured' in women within dominating social structures, as the modes of speaking and behaving which deny women free investiture to language. A woman becomes the product of ideological constructions as language substantiates andro-centric bias. Constrained from writing/speaking in the public sphere, women have traditionally been confined to expressing themselves in writing private poetry, letters or diaries. The helplessness of a woman is revealed in the ways in which she is expected to speak a language, which, in fact, is man-made. There are visible binaries of coloniser- colonised; Western-Eastern; White-Black, Nature-Culture, even Male-Female that contribute significantly to our understanding of the concept of representation and its resultant politics. Normally, an author is labeled as feminist, humanist, or propagandist and this process of labeling correspond to a sense of politics besides his inclination to a particular field. One cannot even think of contemporary literature without this representational politics. Thus, each and every bit of analysis of a work of literature demands a political angle to be dealt with. Besides literature, the historical facts and manuscripts are also subject to this politics. The image of woman as someone either dependent on man or is exploited by him only provides half the picture of this representational politics. The present paper is an attempt to study Panchali’s (Draupadi of Mahabharata) voiceless articulation and her representation as a strong woman in Chitra Divakurani’s The Palace of Illusions.

Keywords: politics, representation, silence, social structures

Procedia PDF Downloads 268
7080 The Impact of Board Director Characteristics on the Quality of Information Disclosure

Authors: Guo Jinhong

Abstract:

The purpose of this study is to explore the association between board member functions and information disclosure levels. Based on the literature variables, such as the characteristics of the board of directors in the past, a single comprehensive indicator is established as a substitute variable for board functions, and the information disclosure evaluation results published by the Securities and Foundation are used to measure the information disclosure level of the company. This study focuses on companies listed on the Taiwan Stock Exchange from 2006 to 2010 and uses descriptive statistical analysis, univariate analysis, correlation analysis and ordered normal probability (Ordered Probit) regression for empirical analysis. The empirical results show that there is a significant positive correlation between the function of board members and the level of information disclosure. This study also conducts a sensitivity test and draws similar conclusions, showing that boards with better board member functions have higher levels of information disclosure. In addition, this study also found that higher board independence, lower director shareholding pledge ratio, higher director shareholding ratio, and directors with rich professional knowledge and practical experience can help improve the level of information disclosure. The empirical results of this study provide strong support for the "relative regulations to improve the level of information disclosure" formulated by the competent authorities in recent years.

Keywords: function of board members, information disclosure, securities, foundation

Procedia PDF Downloads 97
7079 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 374
7078 Global Communication: Trends and Impact of Unbalanced Information in Nigerian Society

Authors: Uchenna Patricia Ekwugha, Cornelius Aghadiegwu Ukwueze

Abstract:

Global communication has changed life at the international scene affecting on the whole social, cultural and political life of individuals in a global community. It has brought about a changing trend in the field of communication and allowed people to learn, create and process information through mainline media and new media technologies. The paper debates that music is an integral form of global communication that cannot be overlooked because it is a beautiful and powerful tool in relating information to the people which they gladly imbibe. It is worrisome that through global communication there has been consistent clash of values on information’s disseminated to the global community of which the developing countries like Nigerians are the sufferers. Particularly involved in this vicious social dogma are the Nigerian youths, who learn defiant behaviour through global communication and lose touch of African cultural values.

Keywords: global communication, trends, impact, unbalanced information

Procedia PDF Downloads 508
7077 Collect Meaningful Information about Stock Markets from the Web

Authors: Saleem Abuleil, Khalid S. Alsamara

Abstract:

Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.

Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market

Procedia PDF Downloads 393
7076 Drug and Poison Information Centers: An Emergent Need of Health Care Professionals in Pakistan

Authors: Asif Khaliq, Sayeeda A. Sayed

Abstract:

The drug information centers provide drug related information to the requesters that include physicians, pharmacist, nurses and other allied health care professionals. The International Pharmacist Federation (FIP) describes basic functions of a drug and poison information centers as drug evaluation, therapeutic counseling, pharmaceutical advice, research, pharmaco-vigilence and toxicology. Continuous advancement in the field of medicine has expanded the medical literature, which has increased demand of a drug and poison information center for the guidance, support and facilitation of physicians. The objective of the study is to determine the need of drug and poison information centers in public and private hospitals of Karachi, Pakistan. A cross sectional study was conducted during July 2013 to April 2014 using a self-administered, multi-itemed questionnaire. Non Probability Convenient sampling was used to select the study participants. A total of 307 physicians from public and private hospitals of Karachi participated in the study. The need for 24/7 Drug and poison information center was highlighted by 92 % of physicians and 67% physicians suggested opening a drug information center at the hospital. It was reported that 70% physicians take at least 15 minutes for searching the information about the drug while managing a case. Regarding the poisoning case management, 52% physicians complaint about the unavailability of medicines in hospitals; and mentioned the importance of medicines for safe and timely management of patients. Although 73% physicians attended continued medical education (CME) sessions, 92 % physicians insisted on the need of 24/7 Drug and poison information center. The scarcity of organized channel for obtaining the information about drug and poisons is one of the most crucial problems for healthcare workers in Pakistan. The drug and poison information center is an advisory body that assists health care professional and patients in provision of appropriate drug and hazardous substance information. Drug and poison information center is one of the integral needs for running an effective health care system. Provision of a 24 /7 drug information centers with specialized staff offer multiple benefits to the hospitals while reducing treatment delays, addressing awareness gaps of all stakeholders and ensuring provision of quality health care.

Keywords: drug and poison information centers, Pakistan, physicians, public and private hospitals

Procedia PDF Downloads 327