Search results for: destination image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3190

Search results for: destination image

1900 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 124
1899 Analysis on Yogyakarta Istimewa Citygates on Urban Area Arterial Roads

Authors: Nizar Caraka Trihanasia, Suparwoko

Abstract:

The purpose of this paper is to analyze the design model of city gates on arterial roads as Yogyakarta’s “Istimewa” (special) identity. City marketing has become a trend among cities in the past few years. It began to compete with each other in promoting their identity to the world. One of the easiest ways to recognize the identity is by knowing the image of the city which can be seen through architectural buildings or urban elements. The idea is to recognize how the image of the city can represent Yogyakarta’s identity, which is limited to the contribution of the city gates distinctiveness on Yogyakarta urban area. This study has concentrated on the aspect of city gates as built environment that provides a diversity, configuration and scale of development that promotes a sense of place and community. The visual analysis will be conducted to interpreted the existing Yogyakarta city gates (as built environment) focussing on some variables of 1) character and pattern, 2) circulation system establishment, and 3) open space utilisation. Literature review and site survey are also conducted to understand the relationship between the built environment and the sense of place in the community. This study suggests that visually the Yogyakarta city gate model has strong visual characters and pattern by using the concept of a sense of place of Yogyakarta community value.

Keywords: visual analysis, model, Yogyakarta “Istimewa”, citygates

Procedia PDF Downloads 258
1898 The Role of Media Relations in the Brand Image: Case Study in Three Brands of the Automobile Industry

Authors: Rosa Sobreira, Paula Arriscado

Abstract:

Marketers are aware that media relations is an important touch point, which is also cheaper, to bring their products and their brands to the consumer. They recognize the role of journalists as moderators and transformers of public opinion, and they realize their influence on brand image. And also, they know that readers, listeners, viewers and internet users "believe" more what they read, hear and see in the news than in an advertisement. The study is focused on the automotive industry and analyses the news published about three brands that share industrial facilities and components. We wanted to understand the role of the information created by the brand`s media team in the journalists’ work, and the impact on management, activation and differentiation of brands and their products` attributes and benefits. Based on a qualitative methodology, the analysis focused on press news, making comparison between media coverage and their “narratives” about the three cars from different brands. The results point to the fact that journalists easily integrate speech from the marks on their products. In the case of this study, we found that apart from the description of the many similarities between the three cars, the average speech also "struggled" for revealing the attributes that differentiate them. This interpretation of the results helps us to understand the "marriage" between branding and media. We believe also this paper let us to understand how journalists, through news, join the speech of the brands.

Keywords: brand management, media relations, differentiation, positioning

Procedia PDF Downloads 225
1897 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 160
1896 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement

Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao

Abstract:

Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.

Keywords: feature analysis, machine vision, PCA, surface roughness, SVM

Procedia PDF Downloads 212
1895 Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams

Authors: Mostefa Hamrat, Bensaid Boulekbache, Mohamed Chemrouk, Sofiane Amziane

Abstract:

The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members.

Keywords: beams, digital image correlation (DIC), deflection, crack width, serviceability, codes provisions

Procedia PDF Downloads 335
1894 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients

Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho

Abstract:

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).

Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper

Procedia PDF Downloads 146
1893 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 366
1892 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 179
1891 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 133
1890 Application of Transportation Linear Programming Algorithms to Cost Reduction in Nigeria Soft Drinks Industry

Authors: Salami Akeem Olanrewaju

Abstract:

The transportation models or problems are primarily concerned with the optimal (best possible) way in which a product produced at different factories or plants (called supply origins) can be transported to a number of warehouses or customers (called demand destinations). The objective in a transportation problem is to fully satisfy the destination requirements within the operating production capacity constraints at the minimum possible cost. The objective of this study is to determine ways of minimizing transport cost in order to maximum profit. Data were gathered from the records of the Distribution Department of 7-Up Bottling Company Plc. Ilorin, Kwara State, Nigeria. The data were analyzed using SPSS (Statistical Package for Social Sciences) while applying the three methods of solving a transportation problem. The three methods produced the same results; therefore, any of the method can be adopted by the company in transporting its final products to the wholesale dealers in order to minimize total production cost.

Keywords: cost minimization, resources utilization, distribution system, allocation problem

Procedia PDF Downloads 257
1889 Natural Disaster Tourism as a Type of Dark Tourism

Authors: Dorota Rucińska

Abstract:

This theoretical paper combines the academic discourse regarding a specific part of dark tourism. Based on the literature analysis, distinction of natural disasters in thanatourism was investigated, which is connected with dynamic geographical conditions. Natural disasters used to play an important role in social life by their appearance in myths and religions. Nowadays, tourists pursuing natural hazards can be divided into three groups: Those interested in natural hazards themselves; those interested in landscape deformation and experiencing emotions shortly after extreme events - natural disasters - occur; and finally those interested in historic places log after an extreme event takes place. An important element of the natural disaster tourism is quick access to information on the location of a disaster and the destination of a potential excursion. Natural disaster tourism suits alternative tourism, yet it is opposed culture tourism, and sustainable tourism. The paper compares types and groups of tourists. It also considers the contradictions that describe dualism, which exists in dark tourism.

Keywords: dark tourism, dualism, natural disasters, natural hazards, thanatoursim

Procedia PDF Downloads 384
1888 Blue Eyes and Blonde Hair in Mass Media: A News Discourse Analysis of Western Media on the News Coverage of Ukraine

Authors: Zahra Mehrabbeygi

Abstract:

This research is opted to analyze and survey discourse variety and news image-making in western media regarding the news coverage of the Russian army intrusion into Ukraine. This research will be done on the news coverage of Ukraine in a period from February 2022 to May 2022 in five western media, "BBC, CBS, NBC, Al Jazeera, and Telegraph." This research attempts to discover some facts about the news policies of the five western news agencies during the circumstances of the Ukraine-Russia war. Critical theories in the news, such as Framing, Media Imperialism of News, Image Making, Discourse, and Ideology, were applied to achieve this goal. The research methodology uses Van Dijk's discourse exploration method based on discourse analysis. The research's statistical population is related to all the news about racial discrimination during the mentioned period. After a statistical population survey with Targeted Sampling, the researcher randomly selected ten news cases for exploration. The research findings show that the western media have similarities in their texts via lexical items, polarization, citations, persons, and institutions. The research findings also imply pre-suppositions, connotations, and components of consensus agreement and underlying predicates in the outset, middle, and end events. The reaction of some western media not only shows their bewilderment but also exposes their prejudices rooted in racism.

Keywords: news discourse analysis, western media, racial discrimination, Ukraine-Russia war

Procedia PDF Downloads 97
1887 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 509
1886 Path Planning for Orchard Robot Using Occupancy Grid Map in 2D Environment

Authors: Satyam Raikwar, Thomas Herlitzius, Jens Fehrmann

Abstract:

In recent years, the autonomous navigation of orchard and field robots is an emerging technology of the mobile robotics in agriculture. One of the core aspects of autonomous navigation builds upon path planning, which is still a crucial issue. Generally, for simple representation, the path planning for a mobile robot is performed in a two-dimensional space, which creates a path between the start and goal point. This paper presents the automatic path planning approach for robots used in orchards and vineyards using occupancy grid maps with field consideration. The orchards and vineyards are usually structured environment and their topology is assumed to be constant over time; therefore, in this approach, an RGB image of a field is used as a working environment. These images undergone different image processing operations and then discretized into two-dimensional grid matrices. The individual grid or cell of these grid matrices represents the occupancy of the space, whether it is free or occupied. The grid matrix represents the robot workspace for motion and path planning. After the grid matrix is described, a probabilistic roadmap (PRM) path algorithm is used to create the obstacle-free path over these occupancy grids. The path created by this method was successfully verified in the test area. Furthermore, this approach is used in the navigation of the orchard robot.

Keywords: orchard robots, automatic path planning, occupancy grid, probabilistic roadmap

Procedia PDF Downloads 155
1885 Structure of Tourists’ Shopping Behavior: From the Tyranny of Hotels to Public Markets

Authors: Asmaa M. Marzouk, Abdallah M. Elshaer

Abstract:

Despite the well-recognized value of shopping as a revenue-generating resource, little effort was made to investigate what is the structure of tourists’ shopping behavior, which in turn, affect their travel experience. The purpose of this paper is to study the structure of tourists’ shopping process to better understand their shopping behavior by investigating factors that influence this activity other than hotels tyranny. This study specifically aims to propose a model incorporating those all variables. This empirical study investigates the shopping experience of international tourists using a questionnaire aimed to examine multinational samples selected from the tourist population visiting a specific destination in Egypt. This study highlights the various stakeholders that make tourists do shop independent of hotels. The results, therefore, demonstrate the relationship between the shopping process entities involved and configure the variables within the model in a way that provides a viable solution for visitors to avoid the tyranny of hotel facilities and amenities on the public markets.

Keywords: hotels’ amenities, shopping process, tourist behavior, tourist satisfaction

Procedia PDF Downloads 131
1884 Behavior of Foreign Tourists Visited Wat Phrachetuponwimolmangkalaram

Authors: Pranee Pathomchaiwat

Abstract:

This research aims to study tourism data and behavior of foreign tourists visited Wat Phrachetuponwimolmangkalaram (Wat Po) Sample groups are tourists who visited inside the temple, during February, March, April and May 2013. Tools used in the research are questionnaires constructed by the researcher, and samples are dawn by Convenience sampling. There are 207 foreign tourists who are willing to be respondents. Statistics used are percentage, average mean and standard deviation. The results of the research reveal that: A. General Data of Respondents: The foreign tourists who visited the temple are mostly female (57.5 %), most respondents are aged between 20-29 years (37.2%). Most respondents live in Europe (62.3%), most of them got the Bachelor’s degree (40.1%), British are mostly found (16.4%), respondents who are students are also found (23.2%), and Christian are mostly found (60.9%). B. Tourists’ Behavior While Visiting the Temple Compound: The result shows that the respondents came with family (46.4%), have never visited the temples (40.6%), and visited once (42 %). It is found that the foreign tourists’ inappropriate behavior are wearing revealing attires (58.9%), touching or getting closed to the monks (55.1%), and speaking loudly (46.9%) respectively. The respondents’ outstanding objectives are to visit inside the temple (57.5%), to pay respect to the Reclining Buddha Image in the Viharn (44.4%) and to worship the Buddha image in the Phra Ubosod (37.7%) respectively. C. The Respondents’ Self-evaluation of Performance: It is found that over all tourists evaluated themselves in the highest level averaged 4.40. When focusing on each item, it is shown that they evaluated themselves in the highest level on obeying the temple staff averaged 4.57, and cleanness concern of the temple averaged 4.52, well-behaved performance during the temple visit averaged 4.47 respectively.

Keywords: deportment, traveler, foreign tourists, temple

Procedia PDF Downloads 307
1883 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique

Authors: Ahmet Karagoz, Irfan Karagoz

Abstract:

Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.

Keywords: automatic target recognition, sparse representation, image classification, SAR images

Procedia PDF Downloads 366
1882 The Morphing Avatar of Startup Sales - Destination Virtual Reality

Authors: Sruthi Kannan

Abstract:

The ongoing covid pandemic has accelerated digital transformation like never before. The physical barriers brought in as a result of the pandemic are being bridged by digital alternatives. While basic collaborative activities like voice, video calling, screen sharing have been replicated in these alternatives, there are several others that require a more intimate setup. Pitching, showcasing, and providing demonstrations are an integral part of selling strategies for startups. Traditionally these have been in-person engagements, enabling a depth of understanding of the startups’ offerings. In the new normal scenario of virtual-only connects, startups are feeling the brunt of the lack of in-person connections with potential customers and investors. This poster demonstrates how a virtual reality platform has been conceptualized and custom-built for startups to engage with their stakeholders and redefine their selling strategies. This virtual reality platform is intended to provide an immersive experience for startup showcases and offers the nearest possible alternative to physical meetings for the startup ecosystem, thereby opening newer frontiers for entrepreneurial collaborations.

Keywords: collaboration, sales, startups, strategy, virtual reality

Procedia PDF Downloads 305
1881 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 139
1880 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 132
1879 Segmentation of Liver Using Random Forest Classifier

Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir

Abstract:

Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.

Keywords: CT images, image validation, random forest, segmentation

Procedia PDF Downloads 313
1878 Strategies to Accelerate Indonesian Halal Food Export to the Japan Market

Authors: Ferry Syarifuddin

Abstract:

The potential for growth in the Japanese halal industry is promising, especially for the export of processed food products, due to the significant increase in the Muslim population over the past decade. Japan is also the second largest destination for processed food export from developing countries. However, there has been a decline in the export of processed food from Indonesia, a Muslim-majority developing country, to Japan, dropping from $350 million in 2019 to $119 million in 2023. To address this issue, this study aims to assess the strengths, weaknesses, opportunities, and threats (SWOT) of Indonesian halal processed food products export to the Japanese market, investigate successful strategies employed by other countries and recommend the most prioritized strategy for exporting Indonesian halal processed food products to the Japan market. Our findings identify collaborating with Japan's food industry associations and trade organizations as the key strategy for successful export to the Japanese market.

Keywords: ANP-SWOT, export strategy, halal product, Japan market

Procedia PDF Downloads 47
1877 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone

Authors: Zhuang Hou, Xiaolei Cao

Abstract:

The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.

Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program

Procedia PDF Downloads 134
1876 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase

Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick

Abstract:

This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.

Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers

Procedia PDF Downloads 161
1875 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation

Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga

Abstract:

Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.

Keywords: classification, coastline, color, sea-land segmentation

Procedia PDF Downloads 247
1874 An Indoor Guidance System Combining Near Field Communication and Bluetooth Low Energy Beacon Technologies

Authors: Rung-Shiang Cheng, Wei-Jun Hong, Jheng-Syun Wang, Kawuu W. Lin

Abstract:

Users rely increasingly on Location-Based Services (LBS) and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS) technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study presents a methodology based on GPS, Bluetooth Low Energy (BLE) beacons, and Near Field Communication (NFC) technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoor and outdoor on smartphones, with aim to provide users a smart life through this system. The presented system is implemented on a smartphone and evaluated on a student campus environment. The experimental results confirm the ability of the presented app to switch automatically from an outdoor mode to an indoor mode and to guide the user to the requested target destination via the shortest possible route.

Keywords: beacon, indoor, BLE, Dijkstra algorithm

Procedia PDF Downloads 302
1873 The German Air Passenger Tax: An Empirical Analysis of Tourism Outflows

Authors: Paul Gurr, Maik Moser

Abstract:

In Europe, some countries recently abolished air passenger taxes (APT), while others issued or consider issuing an APT. From a fiscal perspective, APT can benefit the environment, while generating a vast amount of tax revenue with relatively low administration costs. However, they may have significant negative effects on the economy. Focusing on the German air passenger tax issued 2011, this work estimates the elasticity of tourism outflows using data on passenger departures from German airports between 2010 and 2016 aggregated by destination country. The results are obtained by estimating a model of the demand for outbound tourism. In line with theory, the regression results indicate a negative relationship between taxes and departures from Germany. Furthermore, on average, an increase of the air passenger tax rate results in a relatively higher decrease of passenger departures. The elasticity of tourism outflows can be used to estimate tax revenue changes and hence evaluate possible policy actions. Neglecting environmental reasons, the results suggest that tax revenue might be maximized by reducing the air passenger tax rate. Besides Germany, this work is also important for countries which have or consider implementing APT.

Keywords: air passenger tax, Germany, Outbound tourism, panel data

Procedia PDF Downloads 298
1872 Sustainable Marine Tourism: Opinion and Segmentation of Italian Generation Z

Authors: M. Bredice, M. B. Forleo, L. Quici

Abstract:

Coastal tourism is currently facing huge challenges on how to balance environmental problems and tourist activities. Recent literature shows a growing interest in the issue of sustainable tourism from a so-called civilized tourists’ perspective by investigating opinions, perceptions, and behaviors. This study investigates the opinions of youth on what makes them responsible tourists and the ability of coastal marine areas to support tourism in future scenarios. A sample of 778 Italians attending the last year of high school was interviewed. Descriptive statistics, tests, and cluster analyses are applied to highlight the distribution of opinions among youth, detect significant differences based on demographic characteristics, and make segmentation of the different profiles based on students’ opinions and behaviors. Preliminary results show that students are largely convinced (62%) that by 2050 the quality of coastal environments could limit seaside tourism, while 10% of them believe that the problem can be solved simply by changing the tourist destination. Besides the cost of the holiday, the most relevant aspect respondents consider when choosing a marine destination is the presence of tourist attractions followed by the quality of the marine-coastal environment, the specificity of the local gastronomy and cultural traditions, and finally, the activities offered to guests such as sports and events. The reduction of waste and lower air emissions are considered the most important environmental areas in which marine-coastal tourism activities can contribute to preserving the quality of seas and coasts. Areas in which, as a tourist, they believe possible to give a personal contribution were (responses “very much” and “somewhat”); do not throw litter in the sea and on the beach (84%), do not buy single-use plastic products (66%), do not use soap or shampoo when showering in beaches (53%), do not have bonfires (47%), do not damage dunes (46%), and do not remove natural materials (e.g., sand, shells) from the beach (46%). About 6% of the sample stated that they were not interested in contributing to the aforementioned activities, while another 7% replied that they could not contribute at all. Finally, 80% of the sample has never participated in voluntary environmental initiatives or citizen science projects; moreover, about 64% of the students have never participated in events organized by environmental associations in marine or coastal areas. Regarding the test analysis -based on Kruskal-Wallis and Mann and Whitney tests - gender, region, and studying area of students reveals significance in terms of variables expressing knowledge and interest in sustainability topics and sustainable tourism behaviors. The classification of the education field is significant for a great number of variables, among which those related to several sustainable behaviors that respondents declare to be able to contribute as tourists. The ongoing cluster analysis will reveal different profiles in the sample and relevant variables. Based on preliminary results, implications are envisaged in the fields of education, policy, and business strategies for sustainable scenarios. Under these perspectives, the study has the potential to contribute to the conference debate about marine and coastal sustainable development and management.

Keywords: cluster analysis, education, knowledge, young people

Procedia PDF Downloads 77
1871 Pricing Techniques to Mitigate Recurring Congestion on Interstate Facilities Using Dynamic Feedback Assignment

Authors: Hatem Abou-Senna

Abstract:

Interstate 4 (I-4) is a primary east-west transportation corridor between Tampa and Daytona cities, serving commuters, commercial and recreational traffic. I-4 is known to have severe recurring congestion during peak hours. The congestion spans about 11 miles in the evening peak period in the central corridor area as it is considered the only non-tolled limited access facility connecting the Orlando Central Business District (CBD) and the tourist attractions area (Walt Disney World). Florida officials had been skeptical of tolling I-4 prior to the recent legislation, and the public through the media had been complaining about the excessive toll facilities in Central Florida. So, in search for plausible mitigation to the congestion on the I-4 corridor, this research is implemented to evaluate the effectiveness of different toll pricing alternatives that might divert traffic from I-4 to the toll facilities during the peak period. The network is composed of two main diverging limited access highways, freeway (I-4) and toll road (SR 417) in addition to two east-west parallel toll roads SR 408 and SR 528, intersecting the above-mentioned highways from both ends. I-4 and toll road SR 408 are the most frequently used route by commuters. SR-417 is a relatively uncongested toll road with 15 miles longer than I-4 and $5 tolls compared to no monetary cost on 1-4 for the same trip. The results of the calibrated Orlando PARAMICS network showed that percentages of route diversion vary from one route to another and depends primarily on the travel cost between specific origin-destination (O-D) pairs. Most drivers going from Disney (O1) or Lake Buena Vista (O2) to Lake Mary (D1) were found to have a high propensity towards using I-4, even when eliminating tolls and/or providing real-time information. However, a diversion from I-4 to SR 417 for these OD pairs occurred only in the cases of the incident and lane closure on I-4, due to the increase in delay and travel costs, and when information is provided to travelers. Furthermore, drivers that diverted from I-4 to SR 417 and SR 528 did not gain significant travel-time savings. This was attributed to the limited extra capacity of the alternative routes in the peak period and the longer traveling distance. When the remaining origin-destination pairs were analyzed, average travel time savings on I-4 ranged between 10 and 16% amounting to 10 minutes at the most with a 10% increase in the network average speed. High propensity of diversion on the network increased significantly when eliminating tolls on SR 417 and SR 528 while doubling the tolls on SR 408 along with the incident and lane closure scenarios on I-4 and with real-time information provided. The toll roads were found to be a viable alternative to I-4 for these specific OD pairs depending on the user perception of the toll cost which was reflected in their specific travel times. However, on the macroscopic level, it was concluded that route diversion through toll reduction or elimination on surrounding toll roads would only have a minimum impact on reducing I-4 congestion during the peak period.

Keywords: congestion pricing, dynamic feedback assignment, microsimulation, paramics, route diversion

Procedia PDF Downloads 178